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RESTRICTED SUMMABILITY OF

MULTI-DIMENSIONAL

VILENKIN–FOURIER SERIES

F. Weisz (Budapest, Hungary)

Dedicated to Professor Antal Járai on his 60th birthday

Abstract. It is proved that the maximal operator of the (C,α) (α =
= (α1, . . . , αd)) and Riesz means of a multi-dimensional Vilenkin–Fourier
series is bounded from Hp to Lp (1/(αk +1) < p <∞) and is of weak type
(1, 1), provided that the supremum in the maximal operator is taken over
a cone-like set. As a consequence we obtain the a.e. convergence of the
summability means of a function f ∈ L1 to f .

1. Introduction

It can be found in Zygmund [16] (Vol. I, p.94) that the trigonometric Cesàro
or (C,α) means σα

nf (α > 0) of a one-dimensional function f ∈ L1(T) converge
a.e. to f as n → ∞. Moreover, it is known (see Zygmund [16, Vol. I, pp.
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154-156]) that the maximal operator of the (C,α) means σα
∗ := supn∈N |σα

n | is
of weak type (1, 1), i.e.

sup
ρ>0

ρ λ(σα
∗ f > ρ) ≤ C‖f‖1 (f ∈ L1(T)).

For two-dimensional trigonometric Fourier series Marcinkiewicz and Zyg-
mund [6] proved that the Fejér means σ1

nf of a function f ∈ L1(T
2) converge

a.e. to f as n → ∞ in the restricted sense. This means that n must be in
a positive cone, i.e., 2−τ ≤ ni/nj ≤ 2τ for every i, j = 1, 2 and for some
τ ≥ 0. The author [13] extended this result to the (C,α) and Riesz means
of the trigonometric Fourier series for higher dimensions, too. We proved also
that the restricted maximal operator

σα
∗ := sup

2−τ≤ni/nj≤2τ

i,j=1,...,d

|σα
n |

is bounded fromHp to Lp for max{1/(αj+1)} < p <∞ where α = (α1, . . . , αd).
By interpolation we obtained the weak (1, 1) inequality for σα

∗ which guarantees
the preceding convergence results. Recently Gát [4] introduced more general
sets than cones, the so called cone-like sets, and proved the preceding conver-
gence theorem for two-dimensional Fejér means. The author [15] extended this
result to higher dimensions, to Cesàro and Riesz means and proved also the
above maximal inequality.

For one-dimensional Walsh–Fourier series the convergence result is due to
Fine [2] and the weak (1, 1) inequality for α = 1 to Schipp [7]. Fujii [3] proved
that σ1

∗ is bounded from H1 to L1 (see also Schipp, Simon [8]). For Vilenkin–
Fourier series the results are due to Simon [10]. The author [12, 14] proved the
convergence theorem and the maximal inequality mentioned above for multi-
dimensional Cesàro and Riesz means of Vilenkin–Fourier series, provided that
the n is in a cone.

More recently Gát and Nagy [5] extended the convergence for cone-like sets
and for two-dimensional Fejér means of Walsh-Fourier series. In this paper we
generalize the preceding results and prove the convergence and maximal in-
equality for cone-like sets and for Cesàro and Riesz means of more-dimensional
Vilenkin–Fourier series.

2. Martingale Hardy spaces and cone-like sets

For a set X �= ∅ let Xd be its Cartesian product X× . . .×X taken with itself
d-times. To define the d-dimensional Vilenkin systems we need a sequence
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p := (pn, n ∈ N) of natural numbers whose terms are at least 2. We suppose
always that this sequence is bounded. Introduce the notations P0 = 1 and

Pn+1 :=

n∏
k=0

pk, (n ∈ N).

By a Vilenkin interval we mean one of the form [k/Pn, (k + 1)/Pn) for
some k, n ∈ N, 0 ≤ k < Pn. Given n ∈ N and x ∈ [0, 1) let In(x) denote
the Vilenkin interval of length 1/Pn which contains x. Clearly, the Vilenkin
rectangle of area 1/Pn1

× . . .×1/Pnd
containing x ∈ [0, 1)d is given by In(x) :=

:= In1
(x1)× . . .× Ind

(xd). For n := (n1, . . . , nd) ∈ Nd the σ-algebra generated
by the Vilenkin rectangles {In(x), x ∈ [0, 1)d} will be denoted by Fn. The
conditional expectation operators relative to Fn are denoted by En. We briefly
write Lp instead of the Lp([0, 1)

d, λ) space. The Lebesgue measure is denoted
by λ in any dimension. We denote the Lebesgue measure of a set H also by
|H|.

Suppose that for all j = 2, . . . , d, γj : R+ → R+ are strictly increasing and
continuous functions such that lim∞ γj = ∞. Moreover, suppose that there
exist cj,1, cj,2, ξ > 1 such that

(1) cj,1γj(x) ≤ γj(ξx) ≤ cj,2γj(x) (x > 0).

Let cj,1 = ξτj,1 and cj,2 = ξτj,2 (j = 2, . . . , d). For convenience we extend
the notations for j = 1 by γ1 := I, c1,1 = c1,2 = ξ and τ1,1 = τ1,2 = 1. Let
γ = (γ1, . . . , γd) and δ = (δ1, . . . , δd) with δ1 = 1 and fixed δj ≥ 1 (j = 2, . . . , d).
We will investigate the maximal operator of the summability means and the
convergence over a cone-like set (with respect to the first dimension)

(2) L := {n ∈ Nd : δ−1
j γj(n1) ≤ nj ≤ δjγj(n1), j = 2, . . . , d}.

Cone-like sets were introduced and investigated first by Gát [4]. The con-
dition on γj seems to be natural, because he [4] proved in the two-dimensional
case that to each cone-like set with respect to the first dimension there exists a
larger cone-like set with respect to the second dimension and reversely, if and
only if (1) holds.

To consider summability means over a cone-like set we need to define new
martingale Hardy spaces depending on γ. Given n1 ∈ N we define n2, . . . , nd

by γ0
j (Pn1

) := Pnj
, where Pnj

≤ γj(Pn1
) < Pnj+1 (j = 2, . . . , d). Let n1 :=

:= (n1, n2, . . . , nd). Since the functions γj are increasing, the sequence (n1, n1 ∈
∈ N) is increasing, too. We investigate the class of (one-parameter) martingales
f = (fn1

, n1 ∈ N) with respect to (Fn1
, n1 ∈ N).
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For 0 < p ≤ ∞ the martingale Hardy space Hγ
p ([0, 1)

d) = Hγ
p consists of all

martingales for which

‖f‖Hγ
p
:= ‖ sup

n1∈N
|fn1

|‖p <∞.

It is known (see e.g. Weisz [13]) that Hγ
p ∼ Lp for 1 < p ≤ ∞ where ∼ denotes

the equivalence of the norms and spaces.

3. Cesàro and Riesz summability of Vilenkin–Fourier series

Every point x ∈ [0, 1) can be written in the following way:

x =

∞∑
k=0

xk

Pk+1
, 0 ≤ xk < pk, xk ∈ N.

If there are two different forms, choose the one for which limk→∞ xk = 0. The
functions

rn(x) := exp
2πıxn

pn
(n ∈ N)

are called generalized Rademacher functions, where ı =
√
−1. The functions

corresponding to the sequence (2, 2, . . .) are called Rademacher functions.

The product system generated by the generalized Rademacher functions is
the one-dimensional Vilenkin system:

wn(x) :=

∞∏
k=0

rk(x)
nk

where n =
∑∞

k=0 nkPk, 0 ≤ nk < pk. The product system corresponding to
the Rademacher functions is called Walsh system (see Vilenkin [11] or Schipp,
Wade, Simon and Pál [9]).

The Kronecker product (wn;n ∈ Nd) of d Vilenkin systems is said to be the
d-dimensional Vilenkin system. Thus

wn(x) := wn1(x1) · · ·wnd
(xd)

where n = (n1, . . . , nd) ∈ Nd, x = (x1, . . . , xd) ∈ [0, 1)d. If we consider in each

coordinate a different sequence (p
(j)
n , n ∈ N) and a different Vilenkin system



Restricted summability of multi-dimensional Vilenkin–Fourier series 309

(w
(j)
n ;n ∈ Nd) (j = 1, . . . , d), then the same results hold. For simplicity we

suppose that each Vilenkin system is the same.

If f ∈ L1 then the number f̂(n) :=
∫
[0,1)d

fwn dλ (n ∈ Nd) is said to be

the nth Vilenkin–Fourier coefficients of f . We can extend this definition to
martingales in the usual way (see Weisz [13]).

Let α = (α1, . . . , αd) with 0 < αk ≤ 1 (k = 1, . . . , d) and let

Aβ
j :=

(
j + β

j

)
=

(β + 1)(β + 2) . . . (β + j)

j!
(j ∈ N;β �= −1,−2, . . .).

It is known that Aβ
j ∼ O(jβ) (j ∈ N) (see Zygmund [16]). The (C,α) or Cesàro

means and the Riesz means of a martingale f are defined by

σα
nf :=

1∏d
i=1 A

αi
ni−1

d∑
j=1

nj−1∑
mj=0

( d∏
i=1

Aαi
ni−mi−1

)
f̂(m)wm

and

σα,β
n f :=

1∏d
i=1 ni

αiβi

d∑
j=1

nj−1∑
mj=0

( d∏
i=1

(nβi

i −mβi

i )αi

)
f̂(m)wm,

where β = (β1, . . . , βd) and 0 < αk ≤ 1 ≤ βk (k = 1, . . . , d). The functions

Kα
n :=

1

Aα
n−1

n−1∑
k=0

Aα
n−k−1wk, and Kα,β

n :=
1

nαβ

n−1∑
k=0

(nβ − kβ)αwk

are the one-dimensional Cesàro and Riesz kernels. If α = 1 or α = β = 1 then
we obtain the Fejér means

σ1
nf :=

d∑
j=1

nj−1∑
mj=0

( d∏
i=1

(1− mi

ni
)
)
f̂(m)wm =

1∏d
i=1 ni

d∑
j=1

nj−1∑
mj=0

smf.

Since the results of this paper are independent of β, both the (C,α) and Riesz
kernels will be denoted by Kα

n and the corresponding summability means by
σα
n . It is simple to show that

σα
nf(x) =

∫
[0,1)d

f(t)(Kα1
n1

(x1−̇t1) · · ·Kαd
nd

(xd−̇td)) dt (n ∈ Nd)

if f ∈ L1. Note that the group operations +̇ and −̇ were defined in Vilenkin
[11] or in Schipp, Wade, Simon, Pál [9].
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For a given γ, δ satisfying the above conditions the restricted maximal op-
erator is defined by

σα
γ f := sup

n∈L
|σα

nf |,

where the cone-like set L is defined in (2). If γj = I for all j = 2, . . . , d then
we get a cone.

4. Estimations of the (C,α) and Riesz kernels

Recall (see Fine [1] and Vilenkin [11]) that the Vilenkin-Dirichlet kernels

Dk :=
∑k−1

j=0 wj satisfy

(3) DPk
(x) =

{
Pk, if x ∈ [0, P−1

k )

0, if x ∈ [P−1
k , 1)

(k ∈ N).

If we write n in the form n = r1Pn1
+ r2Pn2

+ . . . + rvPnv
with n1 > n2 >

> . . . > nv ≥ 0 and 0 < ri < pi (i = 1, . . . , v), then let n(0) := n and
n(i) := n(i−1) − riPni . We have estimated the (C,α) and Riesz kernels in [14].

Theorem 1 ([14]) For 0 < α ≤ 1 ≤ β we have

(4) |Kα
n (x)| ≤ Cn−α

v∑
k=1

nk∑
j=0

nk∑
i=j

pj−1∑
h=0

Pα−1
i PjDPi(x+̇hP−1

j+1), (n ∈ N).

The uniform boundedness of the integrals of the kernel functions follows
easily from this (see [14]): for 0 < α ≤ 1 ≤ β we have

(5)

1∫
0

|Kα
n | dλ ≤ C, (n ∈ N).

Lemma 1. If 1 ≤ s ≤ K, 0 < α ≤ 1 ≤ β and 1/(α+ 1) < p ≤ 1 then

1∫
P−1

K−s

sup
n≥PK−s

(

P−1
K∫

0

|Kα
n (x+̇t)| dt)p dx ≤ CpP

−1
K ,

where Cp is depending on s, p and α.
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Proof. If j ≥ K − s and x �∈ [0, P−1
K−s) then x+̇hP−1

j+1 �∈ [0, P−1
K−s). Thus

P−1
K∫

0

DPi(x+̇hP−1
j+1+̇t) dt = 0

for x �∈ [0, P−1
K−s), i ≥ j ≥ K − s and h = 0, . . . , pj − 1. Applying (4) we

conclude

P−1
K∫

0

|Kα
n (x+̇t)| dt ≤

≤ Cn−α
v∑

k=1
nk<K−s

nk∑
j=0

nk∑
i=j

pj−1∑
h=0

Pα−1
i Pj

P−1
K∫

0

DPi(x+̇hP−1
j+1+̇t) dt+

+ Cn−α
v∑

k=1
nk≥K−s

K−s−1∑
j=0

K−1∑
i=j

pj−1∑
h=0

Pα−1
i Pj

P−1
K∫

0

DPi
(x+̇hP−1

j+1+̇t) dt+

+ Cn−α
v∑

k=1
nk≥K−s

K−s−1∑
j=0

nk∑
i=K

pj−1∑
h=0

Pα−1
i Pj

P−1
K∫

0

DPi
(x+̇hP−1

j+1+̇t) dt =

= (An) + (Bn) + (Cn).

It is easy to see, that equality (3) implies

P−1
K∫

0

DPi(x+̇hP−1
j+1+̇t) dt = PiP

−1
K 1[hP−1

j+1,hP
−1
j+1+̇P−1

i )(x)

for j ≤ i ≤ K − 1. Thus

(An) ≤ CP−α
K−s

K−s−1∑
l=1

l∑
j=0

K−1∑
i=j

pj−1∑
h=0

Pα−1
i PjPiP

−1
K 1[hP−1

j+1,hP
−1
j+1+̇P−1

i )(x).
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Consequently, if p > 1/(α+ 1) and αp �= 1 then

1∫
P−1

K−s

sup
n≥PK−s

(An)
p dλ ≤ CpP

−αp−p
K

K−s−1∑
l=1

l∑
j=0

K−1∑
i=j

Pαp−1
i P p

j ≤

≤ CpP
−αp−p
K

K−s−1∑
l=1

l∑
j=0

Pαp+p−1
j ≤

≤ CpP
−αp−p
K

K−s−1∑
l=1

Pαp+p−1
l ≤

≤ CpP
−1
K .

Recall that the sequence (pj) is bounded. If αp = 1, in other words, if α = p = 1
then

1∫
P−1

K−s

sup
n≥PK−s

(An)
p dλ ≤ CpP

−αp−p
K

K−s−1∑
l=1

l∑
j=0

(K − j)P p
j ≤

≤ C1P
−1
K

K−s−1∑
j=1

(K − j)2PjP
−1
K ≤

≤ C1P
−1
K

K−s−1∑
j=1

(K − j)22j−K ≤

≤ C1P
−1
K .

Since P−α
n1

Pα
K−s−1(n1 −K + s + 1) ≤ 2−α(n1−K+s+1)(n1 −K + s + 1), which

is bounded, we obtain

(Bn) ≤

≤ CP−α
n1

(n1 −K + s+ 1)

K−s−1∑
j=0

K−1∑
i=j

pj−1∑
h=0

Pα−1
i Pj

P−1
K∫

0

DPi
(x+̇hP−1

j+1+̇t) dt ≤

≤ CP−α
K−s−1

K−s−1∑
j=0

K−1∑
i=j

pj−1∑
h=0

Pα−1
i PjPiP

−1
K 1[hP−1

j+1,hP
−1
j+1+̇P−1

i )(x).

Hence

1∫
P−1

K−s

sup
n≥PK−s

(Bn)
p dλ ≤ CpP

−αp−p
K

K−s−1∑
j=0

K−1∑
i=j

Pαp−1
i P p

j ≤ CpP
−1
K
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as before. The case α = p = 1 can be handled similarly.

If i ≥ K then (3) implies

P−1
K∫

0

DPi
(x+̇hP−1

j+1+̇t) dt = 1[hP−1
j+1,hP

−1
j+1+̇P−1

K )(x).

Similarly as above we can see that

(Cn) ≤

≤ Cn−α/3
v∑

k=1
nk≥K−s

K−s−1∑
j=0

nk∑
i=K

pj−1∑
h=0

P
α/3−1
i Pj

P−1
K∫

0

DPi(x+̇hP−1
j+1+̇t) dt ≤

≤ CP−α/3
n1

(n1 −K + s+ 1)

K−s−1∑
j=0

∞∑
i=K

pj−1∑
h=0

P
α/3−1
i Pj1[hP−1

j+1,hP
−1
j+1+̇P−1

K )(x) ≤

≤ CP
−α/3
K−s−1

K−s−1∑
j=0

∞∑
i=K

pj−1∑
h=0

P
α/3−1
i Pj1[hP−1

j+1,hP
−1
j+1+̇P−1

K )(x).

Consequently,

1∫
P−1

K−s

sup
n≥PK−s

(Cn)
p dλ ≤ CpP

−αp/3
K

K−s−1∑
j=0

∞∑
i=K

P
(α/3−1)p
i P p

j P
−1
K ≤ CpP

−1
K ,

which shows the lemma. �

5. The boundedness of the maximal operators on Hardy spaces

A bounded measurable function a is a p-atom if there exists a Vilenkin
rectangle I ∈ Fn1

such that

(i) supp a ⊂ I,

(ii) ‖a‖∞ ≤ |I|−1/p,

(iii)
∫
I

a dλ = 0.
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Theorem 2. Suppose that

max{1/(αj + 1), j = 1, . . . , d} =: p0 < p <∞

and 0 < αj ≤ 1 ≤ βj (j = 1, . . . , d). Then

(6) ‖σα
γ f‖p ≤ Cp‖f‖Hp

(f ∈ Hp).

In particular, if f ∈ L1 then

(7) sup
ρ>0

ρ λ(σα
γ f > ρ) ≤ C‖f‖1.

Proof. We have to show that the operator σα
γ is bounded from L∞ to L∞

and

(8)

∫
[0,1)d

|σα
γ a|p dλ ≤ Cp

for every p-atom a (see Weisz [13]).

The boundedness follows from (5). Let a be an arbitrary p-atom with
support I = I1 × . . . × Id and |I1| = P−1

K , |Ij | = γ0
j (PK)−1 (j = 2, . . . , d;

K ∈ N). Recall that γ0
1 = I and γ0

j (PK) := PKj
, if PKj

≤ γj(PK) < PKj+1

(j = 2, . . . , d;K,Kj ∈ N). We can assume that Ij = [0, P−1
Kj

) (j = 1, . . . , d). It

is easy to see that â(n) = 0 if nj < γ0
j (PK) for all j = 1, . . . , d. In this case

σα
na = 0.

Suppose that n1 < PK−r for some r ∈ N. Let δj = ξμj and ajτj,1 ≤ μj <
< (aj + 1)τj,1 for some aj ∈ N. By the definition of the cone-like set and by
(1) we have

nj ≤ ξμjγj(n1) ≤ ξ(aj+1)τj,1γj(PK−r) ≤ γj(ξ
aj+1PK−r).

Choose a, bj ∈ N such that ξ ≤ 2a and m = supj∈N pj ≤ ξτj,1bj . Then

nj ≤ ξ−τj,1bjγj(ξ
aj+1+bjPK−r) ≤

1

m
γj(2

a(aj+1+bj)PK−r) ≤

≤ 1

m
γj(2

rPK−r) ≤
1

m
γj(PK) ≤ γ0

j (PK)

for all j = 2, . . . , d, where let r := maxj=2,...,d{a(aj + 1 + bj)}. In this case
σα
na = 0.

Thus we can suppose that n1 ≥ PK−r. By the right hand side of (1),

nj ≥ ξ−(aj+1)τj,1γj(PK−r) ≥ ξ−(aj+1)τj,1ξ−τj,2brγj(PK−rξ
br) ≥

≥ ξ−(aj+1)τj,1−τj,2brγj(PK−rm
r) ≥ 2−a((aj+1)τj,1+τj,2br)γj(PK) ≥

≥ 2−sPKj ≥ PKj−s,
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where b, s ∈ N are chosen such that m ≤ ξb and

max
j=2,...,d

{a((aj + 1)τj,1 + τj,2br)} ≤ s.

We can suppose that s ≥ r. Therefore

σα
γ a ≤ sup

nj≥PKj−s,j=1,...,d
|σα

na|.

By the L∞ boundedness of σα
γ we conclude

∫
∏d

j=1[0,P
−1
Kj−s)

|σα
γ a|p dλ ≤ Cp‖a‖p∞

d∏
j=1

P−1
Kj−s ≤ Cp

d∏
j=1

PKj

d∏
j=1

P−1
Kj−s ≤ Cp.

To compute the integral over [0, 1)d \
∏d

j=1[0, P
−1
Kj−s) it is enough to integrate

over

Hk := [0, 1)\ [0, P−1
K1−s)× . . .× [0, 1)\ [0, P−1

Kk−s)× [0, P−1
Kk+1−s)× . . .× [0, P−1

Kd−s)

for k = 1, . . . , d. Using (5) and the definition of the atom we can see that

|σα
na(x)| ≤

∫
∏d

j=1[0,P
−1
Kj

)

|a(t)|(|Kα1
n1

(x1+̇t1)| × · · · × |Kαd
nd

(xd+̇td)|) dt ≤

≤ C
( d∏

j=1

P
1/p
Kj

) k∏
j=1

∫
[0,P−1

Kj
)

|Kαj
nj

(xj+̇tj)| dtj .

Lemma 1 implies that∫
Hk

|σα
γ a(x)|p dx ≤ Cp

d∏
j=1

PKj

k∏
j=1

P−1
Kj

d∏
j=k+1

P−1
Kj−s = Cp

which verifies (8) as well as (6) for each p0 < p ≤ 1. The weak type (1, 1)
inequality in (7) follows by interpolation. �

This theorem was proved by the author in [12, 14] for cones, i.e. if each
γj = I, and in [15] for trigonometric Fourier series.

Observe that the set of the Vilenkin polynomials is dense in L1. The
weak type (1, 1) inequality in Theorem 2 and the usual density argument of
Marcinkievicz and Zygmund [6] imply
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Corollary 1. If 0 < αj ≤ 1 ≤ βj (j = 1, . . . , d) and f ∈ L1 then

lim
n→∞,n∈L

σα
nf = f a.e.

The a.e. convergence of σα
nf was proved by Gát and Nagy [5] for two-

dimensional Fejér means.
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