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RESTRICTED SUMMABILITY OF

MULTI-DIMENSIONAL
VILENKIN-FOURIER SERIES

F. Weisz (Budapest, Hungary)

Dedicated to Professor Antal Jdrai on his 60th birthday

Abstract. It is proved that the maximal operator of the (C,a) (o =
= (a1,...,aq)) and Riesz means of a multi-dimensional Vilenkin-Fourier
series is bounded from H, to L, (1/(ax+1) < p < 00) and is of weak type
(1,1), provided that the supremum in the maximal operator is taken over
a cone-like set. As a consequence we obtain the a.e. convergence of the
summability means of a function f € L; to f.

1. Introduction

It can be found in Zygmund [16] (Vol. I, p.94) that the trigonometric Cesaro
or (C,a) means o f (a > 0) of a one-dimensional function f € L1 (T) converge
a.e. to f as m — oo. Moreover, it is known (see Zygmund [16, Vol. I, pp.
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154-156]) that the maximal operator of the (C, o) means o := sup,,cy 05| is
of weak type (1,1), i.e.

sup p Moy’ f > p) < O f[lh (f € Li(T)).
p>0

For two-dimensional trigonometric Fourier series Marcinkiewicz and Zyg-
mund [6] proved that the Fejér means o f of a function f € L;(T?) converge
a.e. to f as n — oo in the restricted sense. This means that n must be in
a positive cone, ie., 277 < n;/n; < 27 for every i,j = 1,2 and for some
7 > 0. The author [13] extended this result to the (C,«a) and Riesz means
of the trigonometric Fourier series for higher dimensions, too. We proved also
that the restricted maximal operator

oy

= sup oy
277 <n;/n;<27
i,j=1,...,d

is bounded from H,, to L, for max{1/(a;+1)} < p < oo where a = (a1, ..., aq).
By interpolation we obtained the weak (1, 1) inequality for c% which guarantees
the preceding convergence results. Recently Gét [4] introduced more general
sets than cones, the so called cone-like sets, and proved the preceding conver-
gence theorem for two-dimensional Fejér means. The author [15] extended this
result to higher dimensions, to Cesaro and Riesz means and proved also the
above maximal inequality.

For one-dimensional Walsh—Fourier series the convergence result is due to
Fine [2] and the weak (1, 1) inequality for & = 1 to Schipp [7]. Fujii [3] proved
that ol is bounded from H; to Ly (see also Schipp, Simon [8]). For Vilenkin—
Fourier series the results are due to Simon [10]. The author [12, 14] proved the
convergence theorem and the maximal inequality mentioned above for multi-
dimensional Cesaro and Riesz means of Vilenkin—Fourier series, provided that
the n is in a cone.

More recently Gét and Nagy [5] extended the convergence for cone-like sets
and for two-dimensional Fejér means of Walsh-Fourier series. In this paper we
generalize the preceding results and prove the convergence and maximal in-
equality for cone-like sets and for Cesaro and Riesz means of more-dimensional
Vilenkin—Fourier series.

2. Martingale Hardy spaces and cone-like sets

For a set X # () let X% be its Cartesian product X x ... x X taken with itself
d-times. To define the d-dimensional Vilenkin systems we need a sequence
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p := (pn,n € N) of natural numbers whose terms are at least 2. We suppose
always that this sequence is bounded. Introduce the notations Py = 1 and

Py = Hpk, (n € N)
k=0

By a Vilenkin interval we mean one of the form [k/FP,, (k + 1)/P,) for
some k,n € N, 0 < k < P,. Given ne€ N and z € [0,1) let I,,(z) denote
the Vilenkin interval of length 1/P, which contains z. Clearly, the Vilenkin
rectangle of area 1/P,, x ...x 1/P,, containing x € [0,1)% is given by I,,(z) :=
=L, (1) X ... x I, (z4). For n:= (ny,...,n4) € N? the o-algebra generated
by the Vilenkin rectangles {I,(x),z € [0,1)?} will be denoted by F,,. The
conditional expectation operators relative to F,, are denoted by E,,. We briefly
write L, instead of the L,([0,1)%, \) space. The Lebesgue measure is denoted
by A in any dimension. We denote the Lebesgue measure of a set H also by

Suppose that for all j =2,...,d, v; : Ry — Ry are strictly increasing and
continuous functions such that lim,, v; = oo. Moreover, suppose that there
exist ¢;1,¢j,2,& > 1 such that

(1) i1 (@) <7(€x) < cjpvi(z) (2> 0).

Let ¢;i = 7 and ¢j0 = 72 (j = 2,...,d). For convenience we extend
the notations for j = 1 by v1 :=Z, c11 =cip =& and 7113 = 712 = 1. Let
vy=,...,7a) and § = (01,...,6q) with §; = land fixed §; > 1(j =2,...,d).
We will investigate the maximal operator of the summability means and the
convergence over a cone-like set (with respect to the first dimension)

(2) L:={neN¢: 5;1’yj(n1) <nj <d;vi(n1),j=2,...,d}.

Cone-like sets were introduced and investigated first by Gat [4]. The con-
dition on +y; seems to be natural, because he [4] proved in the two-dimensional
case that to each cone-like set with respect to the first dimension there exists a
larger cone-like set with respect to the second dimension and reversely, if and
only if (1) holds.

To consider summability means over a cone-like set we need to define new

martingale Hardy spaces depending on 7. Given n; € N we define no, ..., ng
by §(Pn,) = Pn;, where Py, < 7j(Py,) < Poj1 (§ = 2,...,d). Let my =
= (n1,n2,...,nq). Since the functions ; are increasing, the sequence (71, n1 €

€ N) is increasing, too. We investigate the class of (one-parameter) martingales
f = (fa,,n1 € N) with respect to (Fz,,n1 € N).
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For 0 < p < oo the martingale Hardy space H;)([0,1)?) = H} consists of all
martingales for which

1 1y == 1l sup [f, [llp < oc.

n1€N

It is known (see e.g. Weisz [13]) that H) ~ L, for 1 < p < oo where ~ denotes
the equivalence of the norms and spaces.

3. Cesaro and Riesz summability of Vilenkin—Fourier series

Every point z € [0,1) can be written in the following way:
oo
k=

If there are two different forms, choose the one for which limg_, o 2 = 0. The
functions

0 <z <pg, v € N
Pk+1

2mTy,

rn(z) = exp (n e N)

Pn
are called generalized Rademacher functions, where 1+ = v/—1. The functions
corresponding to the sequence (2,2, ...) are called Rademacher functions.

The product system generated by the generalized Rademacher functions is
the one-dimensional Vilenkin system:

= H TL (l’)nk
k=0

where n = Z?’:O ngPr, 0 < ng < pr. The product system corresponding to
the Rademacher functions is called Walsh system (see Vilenkin [11] or Schipp,
Wade, Simon and P4l [9]).

The Kronecker product (w,;n € N%) of d Vilenkin systems is said to be the
d-dimensional Vilenkin system. Thus

wn(x) = Wn,y (-rl) cr Wiy ('Td)

where n = (n1,...,nq4) € N4 2 = (21,...,24) € [0,1)%. If we consider in each
(4)

coordinate a different sequence (pr;’,n € N) and a different Vilenkin system
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(wﬁlj),n € N4) (j = 1,...,d), then the same results hold. For simplicity we
suppose that each Vilenkin system is the same.

If f € Ly then the number f(n) := f[o 1ya fwn dA (n € N%) is said to be
the nth Vilenkin—Fourier coefficients of f. We can extend this definition to
martingales in the usual way (see Weisz [13]).

Let a = (a1,...,0q) with0 < ag <1 (k=1,...,d) and let

A7 = (w;&) _ (ﬂ+1)(5+j2')...(6+j)

It is known that Af ~ 0(57) (j € N) (see Zygmund [16]). The (C, ) or Cesaro
means and the Riesz means of a martingale f are defined by

d n;—1

Y (T A o

Hz 1“n;—1 j=1m;=0 i=1

o f =

and .
on P f = %Z > (H(nf —mfi)ai)f(m)wmv

where = (f1,...,84) and 0 < a, <1< g (k=1,...,d). The functions

n—1
1
KY .=

n

-1
1 n
n_powk, and Kpf = noB Z(nﬂ -
-1 k=0 k=0

are the one-dimensional Cesdro and Riesz kernels. If a =1 or a = 8 =1 then
we obtain the Fejér means

d nj—1 d nj—1
1f—ZZ(H1—*) m)wn, Sif.
j=1m;=0 i=1 1] 1m;=0

Since the results of this paper are independent of 3, both the (C, «) and Riesz
kernels will be denoted by K and the corresponding summability means by
oy. It is simple to show that

/ SO (21t0) - KO (g ta)) dt (€ N9
[0,1)4

if f € L;. Note that the group operations + and — were defined in Vilenkin
[11] or in Schipp, Wade, Simon, P4l [9].
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For a given =, d satisfying the above conditions the restricted mazimal op-
erator is defined by

of f = sup|oy fl,
neL

where the cone-like set L is defined in (2). If v; = Z for all j = 2,...,d then
we get a cone.

4. Estimations of the (C, a) and Riesz kernels

Recall (see Fine [1] and Vilenkin [11]) that the Vilenkin-Dirichlet kernels
k—1 .
Dy := )5 wj satisfy

Py, ifxef0, Pt

k € N).
0, ifxelP 1) ( )

(3) Dp,(z) = {

If we write n in the form n = rP,, + 12 P, + ... + 1y Py, with ny > ng >
> ...o>mny 20 and 0 < r; < p; (i = 1,...,v), then let n® := n and
n( .= nt=1) — 7P, . We have estimated the (C,a) and Riesz kernels in [14].

Theorem 1 ([14]) For 0 < a <1 < 8 we have
v np ngp Pi—1 )
@) K@) <CnY Y >N P'PiDp (a+hP),  (neN).
k=1j=0 i=j h=0
The uniform boundedness of the integrals of the kernel functions follows
easily from this (see [14]): for 0 < a <1 < 8 we have

(5) IKS|dA<C,  (neN).
/

Lemma 1. If1<s<K,0<a<1<fBandl/(a+1)<p<1 then

1 Pt
/ sup - ( / |Kg (@) dt)? de < C, Py,
n>Pk s
Pl 0
K—s

where Cy, is depending on s, p and «.
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Proof. If j > K —sand z & [0, Pl,) then a+hP;, & [0, Pl ,). Thus

-1
Py

/D (z+hP L) dt =0

for z ¢ [0,Pgt,),i>j>K—sand h =0,...,p; — 1. Applying (4) we
conclude

Pt

/ KO ()| dt <
0

ng Nk Pj—

Z ZZZP“ 1P/ Dp, (x+hP Y +t) dt +

k=1 =
nk<K§j =0 =35 h=0

v —s—1K— Pt
n=® Z Z Z Zpia_lpj / Dp, x+hP+1+t)dt+
k=1 =0 i=j h=0 r
np>K—s
K—s—1 Pt

Z PP /DP (z+hP Y 4t) dt =

j=0 =K

v
Y
k=1
>
)

= (An) +(Bn) + kCn).

It is easy to see, that equality (3) implies

—1
PK

—1
Dp, (z+hPp ) +t) dt = PPy Ynpot et ips H(@)

for j <1< K —1. Thus

K—s—1 | K-1pj—1

(An) < CPI;C:S Z Z Z Z Piailpjpiplzll[hP LhPIL P )(x)

. . . ‘]+1)
=1 j=0 i=j h=0
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Consequently, if p > 1/(a+ 1) and ap # 1 then
1 K—s—1 | K-1
/ sup (A,)Pd\ < C,Pg"P Z Z PePTipr <
g, m2Pr-. I=1 j=0 i=j
PK—S
K—-s—1 1
—ap— ap+p—1
SCPPKPPZ Pjpp <
=1 j=0
K—s—1
< Cpp};ap*p Z Plaerpfl <
1=1
< C,Pg".
Recall that the sequence (p;) is bounded. If ap = 1, in other words, ifa =p =1

then

P K—s—1 1
/ sup (An)PdA <GP >~ N (K —j)PP <
pot n2Pr—s I=1 j=0
K—s—1
<Pt Y (K- )PPt <
j=1
K—s—1
SO Pt Y (K- K<
j=1
<O Pyl

Since P, “Pg_,_ (1
is bounded, we obtain
(Bn) <

—s—1K—-1p;—1

— K +s+1) <2-am=Ktstl)(pn, _ K + 54 1), which

< CP;%(m —K+s+1 o> P 1P Dp, (z+hP; ) dt <
7=0 i=35 h=0
K—s—1K-1p;—1
—« po— 1 _
SCP ., Y > Z PiPPictlypot o spoy ().

7=0 i=37 h=0

Hence
K—s—1K-1

1
/ >Pr_s ; o
po1 K j=0 i=j
K—s

sup (Bn)PdA < CpPLP™F >~ " PPTIPP < O, Pt
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as before. The case a = p = 1 can be handled similarly.
If ¢ > K then (3) implies

Pgl
Dp,(x+hPh ) dt = 1 pot pi s po ().

jt+1
0

Similarly as above we can see that

(Cn) <

v pj—1

K—s5—1 ng
<Cn_a/3 Z Z Z Z:PD‘/‘3 1P /DP x+hP+1+t)dt<

= i=K h=0
ﬂk>K§

— a/3—1
<CP (i — K +s+1) Z ZZP/ Pilyp npstipeh (@) <

j+17

K—s—1 oo Pj

—a/3 ~ — /31
<COPg 7, Z Z Z Fi le[hP;+11’hPJ+1+ Pic H{@):

j=0 =K h=0

Consequently,
P K—s—1 oo
—ap/3 a/3—1 —1 —1
/ sup (Ca)P dA <GPy PEONT ST PP prpl < P
po1 NZ PR —s j=0 i=K
K—s
which shows the lemma. |

5. The boundedness of the maximal operators on Hardy spaces

A bounded measurable function a is a p-atom if there exists a Vilenkin
rectangle I € Fz, such that

(i) supp a C I,
(i) flall < 11717,
(i) [ad\=0.
i



314 F. Weisz

Theorem 2. Suppose that
max{l/(ozj+1),j: L,...,d} =1po <p < o0
and 0 < a; <1< B; (j=1,...,d). Then

(6) lo5 fllp < Collfllm,  (f € Hp).

In particular, if f € Ly then

(7) sup p A5 f > p) < C||f]]1-
p>0

Proof. We have to show that the operator o5 is bounded from Lo to Lo
and

(8) / 0%l dA < C,

for every p-atom a (see Weisz [13]).

The boundedness follows from (5). Let a be an arbitrary p-atom with
support I = Iy x ... x Iq and || = Pg', || = ¥9(Px)™" (j = 2,....4;
K € N). Recall that 4Y = Z and 7?(PK) = Pk, if Pk, <vj(Px) < Pg,;11
(j=2,...,d; K,K; € N). We can assume that [; = [O,P[}jl) G=1,...,d). It
is easy to see that a(n) = 0if n; < 'y?(PK) for all j =1,...,d. In this case
opa=0.

Suppose that ny < Px_, for some r € N. Let §; = £* and a;7;1 < pj <
< (aj + 1)7;,1 for some a; € N. By the definition of the cone-like set and by
(1) we have

nj < &Myi(ng) < EWTDTI (PR ) < (€9 Pg ).

Choose a,b; € N such that £ < 2% and m = sup;eyp; < £71%. Then

nj < ETTl (€T Py ) <

1 1
< —9i(2"Pg_,) < —
= m’YJ( K—r) < m

1
(20l HHb) Py <
m'Yj( K ) >~
v (Px) <7 (Pr)

for all j = 2,...,d, where let r := max;—»
opa=0.

afa(a; +1+b;)}. In this case

.....

Thus we can suppose that n; > Pk _,.. By the right hand side of (1),
n; > é‘—(aj"rl)‘rj,l,yj(PK_T) > E—(aj+1)‘r_7',1§—rj,zbr,yj(PK_Tgbr) >
2 5_(aj+l)Tj'1_Tj'2bT’yj(PKfrmT) 2 2_a((aj+1)Tj’1+Tj'2bT)’yj(PK) 2
> 2_SPKj > PKj—s7
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where b, s € N are chosen such that m < £° and

max d{a((aj + )71+ 7j2br)} < s.
3=24000s

We can suppose that s > r. Therefore

ola < sup lo>al.

;> Prc;—ej=1,....d
By the Lo boundedness of o5 we conclude
d d d
/ jo%al” dx < Cyllall% [T P, < € TT P, [T P < G
e 0.Pg ) =t = A

To compute the integral over [0,1)%\ szl[(), ng_l_s) it is enough to integrate
over

Hy = [0, )\ [0, P} )% [0, 1)\[0, P ) x [0, Pyl )% . x [0, Pl )

for k=1,...,d. Using (5) and the definition of the atom we can see that

lopa(z)] < / la()|(|Kn! (z1Ft1)] X - x [Kpd(zqtta)|) dt <
I 00.P )
d k
(H ””)H / & (a5t5)] dt.
7=1 =1, Py )

Lemma 1 implies that

/|0a )P de < C, HPK HP* HP{S:

Hy, Jj=k+1

which verifies (8) as well as (6) for each py < p < 1. The weak type (1,1)
inequality in (7) follows by interpolation. |

This theorem was proved by the author in [12, 14] for cones, i.e. if each
v; =Z, and in [15] for trigonometric Fourier series.

Observe that the set of the Vilenkin polynomials is dense in L;. The
weak type (1,1) inequality in Theorem 2 and the usual density argument of
Marcinkievicz and Zygmund [6] imply
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Corollary 1. If0<a; <1< (j=1,...,d) and f € L1 then

lim o%f= a.e.
n—oo,neL nf f

The a.e. convergence of o2 f was proved by G&t and Nagy [5] for two-

dimensional Fejér means.
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