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ON FEJÉR TYPE SUMMABILITY

OF WEIGHTED LAGRANGE INTERPOLATION

ON THE LAGUERRE ROOTS

L. Szili (Budapest, Hungary)

Dedicated to Professor Antal Járai on his 60th and
Professor Péter Vértesi on his 70th birthdays

Abstract. The sequence of certain arithmetic means of the Lagrange
interpolation on the roots of Laguerre polynomials is shown to be uniformly
convergent in suitable weighted function spaces.

1. Introduction

Let wα(x) := xαe−x (x ∈ R+ := (0,+∞), α > −1) be a Laguerre weight
and denote by Un(wα) (n ∈ N := {1, 2, . . .}) the root system of pn(wα) (n ∈
∈ N0 := {0, 1, . . .}) (orthonormal polynomials with respect to the weight wα).
We shall consider a Fejér type summation of Lagrange interpolation on Un(wα)
(n ∈ N). The corresponding polynomials will be denoted by σn

(
f, Un(wα), ·

)
(see (2.8)).

The goal of this paper is to give conditions for the parameters α > −1, γ ≥ 0
ensuring

lim
n→+∞

∥∥(f − σn

(
f, Un(wα), ·

))√
wγ

∥∥
∞ = 0

for all f ∈ C√
wγ

(see Section 2.1), where ‖ · ‖∞ denotes the maximum norm.
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2. Notations and preliminaries

We are going to summarize definitions and statements on function spaces,
weighted approximation, weighted Lagrange interpolation, which we shall need
in the following sections.

2.1. Some weighted uniform spaces. Setting

wγ(x) := xγe−x (x ∈ R+
0 := [0,+∞), γ ≥ 0),

we define the weighted functional space C√
wγ

as follows:

i) for γ > 0, f ∈ C√
wγ iff f is a continuous function in any segment

[a, b] ⊂ R+ and

lim
x→0+0

f(x)
√
wγ(x) = 0 = lim

x→+∞ f(x)
√
wγ(x);

ii) for γ = 0, f ∈ C√
w0

iff f is continuous in [0,+∞) and

lim
x→+∞ f(x)

√
w0(x) = 0.

In other words, when γ > 0, the function f in C√
wγ

could take very large values,
with polynomial growth, as x approaches zero from the right, and could have
an exponential growth as x→ +∞.

If we introduce the norm

‖f‖√wγ :=
∥∥f√wγ

∥∥
∞ := max

x∈R+
0

∣∣f(x)∣∣√wγ(x),

in C√
wγ

, γ ≥ 0, then we get the Banach space
(
C√

wγ
, ‖ · ‖√wγ

)
.

2.2. Weighted polynomial approximation. We recall two fundamental
results with respect to the polynomial approximation in the function space(
C√

wγ
, ‖ · ‖√wγ

)
.

The first fact is that the set of polynomials are dense in the function space(
C√

wγ
, ‖ · ‖√wγ

)
. More precisely, if we denote by Pn the linear space of all

polynomials of degree at most n and by

En(f,
√
wγ) := inf

P∈Pn

‖(f − P )
√
wγ‖∞ = inf

P∈Pn

‖f − P‖wγ
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the best polynomial approximation of the function f ∈ C√
wγ

, then we have

lim
n→+∞En(f,

√
wγ) = 0

(see for example [9, p. 11] and [1, p. 186]).

The second fact is associated with the Mhaskar–Rahmanov–Saff number :
For every γ ≥ 0 and n ∈ N there are positive real numbers an := an(γ) and
bn := bn(γ) such that for any polynomial P ∈ Pn we get

(2.1) ‖P‖√wγ
= ‖P√wγ‖∞ = max

x∈R+
0

∣∣P (x)
∣∣√wγ(x) = max

an≤x≤bn

∣∣P (x)
∣∣√wγ(x)

and

‖P√wγ‖∞ >
∣∣P (x)

∣∣√wγ(x) for all 0 ≤ x < an and bn < x.

Moreover, for every γ ≥ 0 and n ∈ N we have

an : = an(γ) = (2n+ γ)

(
1−

√
1− γ2

(γ + 2n)2

)
>

γ2

4n+ 2γ
,

bn : = bn(γ) = (2n+ γ)

(
1 +

√
1− γ2

(γ + 2n)2

)
= 4n+ 2γ +

C

n

(2.2)

with a constant C > 0 independent of n (see for example [6, (2.1)]).

2.3. Weighted Lagrange interpolation. Let

pn(wα, x) (x ∈ R+
0 , n ∈ N0, α > −1)

be the sequence of orthonormal Laguerre polynomials with positive leading
coefficients. Let us denote by

(2.3) Un(wα) := {yk,n := yk,n(wα) | k = 1, 2, . . . , n} (n ∈ N)

the n different roots of pn(wα, ·). We index them as

0 < y1,n(wα) < y2,n(wα) < · · · < yn−1,n(wα) < yn,n(wα) <∞.

For a given function f : R+
0 → R we denote by Ln(f, Un(wα), ·) the Lagrange

interpolatory polynomial of degree ≤ n− 1 at the zeros of pn(wα), i.e.

Ln (f, Un(wα), yk,n) = f(yk,n) (k = 1, 2, . . . , n).
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We have

Ln (f, Un(wα), x) =

n∑
k=1

f(yk,n)�k,n (Un(wα), x)

(x ∈ R+
0 , n ∈ N),

where

�k,n (Un(wα), x) =
pn(wα, x)

p′n(wα, yk,n)(x− yk,n)

(x ∈ R+
0 ; k = 1, 2, . . . , n; n ∈ N)

are the fundamental polynomials associated with the nodes Un(wα).

Consider the (uniform) convergence of the sequence Ln

(
f, Un(wα), ·

)
(n ∈ N) in the Banach space

(
C√

wγ
, ‖ · ‖√wγ

)
. In other words, for a func-

tion f ∈ C√
wγ

we have to investigate the real sequence

�n(f) :=
∥∥∥(f − Ln

(
f, Un(wα), ·

))√
wγ

∥∥∥
∞

(n ∈ N).

In other words, we approximate the function f
√
wγ by the weighted Lagrange

interpolatory polynomials

(2.4) Ln

(
f, Un(wα), x

)√
wγ(x) (x ∈ R+

0 , n ∈ N).

The main question is: is it true that �n(f) → 0 (n → +∞) for all f ∈ C√
wγ

or not?

The classical Lebesgue estimate for the weighted Lagrange interpolation is
the following: take the best uniform approximation Pn−1(f) to f ∈ Cwγ

(the
existence of such a Pn−1(f) is obvious), and consider∣∣∣f(x)− Ln

(
f, Un(wα), x

)∣∣∣√wγ(x) ≤

≤
∣∣∣f(x)− Pn−1(f, x)

∣∣∣√wγ(x) +
∣∣∣Ln

(
f − Pn−1(f), Un(wα), x

)∣∣∣√wγ(x) ≤

≤ En−1

(
f,
√
wγ

)(
1 +

n∑
k=1

∣∣∣�k,n(Un(wα, x)
)∣∣∣ √

wγ(x)√
wγ(yk,n)

)
.

This estimate shows that the pointwise/uniform convergence of the sequence
(2.4) depends on the orders of the weighted Lebesgue functions:

λn

(
Un(wα),

√
wγ , x

)
:=

n∑
k=1

∣∣∣�k,n(Un(wα, x)
)∣∣∣ √

wγ(x)√
wγ(yk,n)

(x ∈ R+
0 , n ∈ N),
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and on the orders of the weighted Lebesgue constants :

Λn

(
Un(wα),

√
wγ

)
:= sup

x∈R+
0

λn

(
Un(wα),

√
wγ , x

)
(n ∈ N).

It is clear that for all γ ≥ 0, α > −1 and n ∈ N

(2.5)
Ln(·, Un(wα),

√
wγ) :

(
C√

wγ
, ‖ · ‖√wγ

)
→ Pn−1 ⊂

(
C√

wγ
, ‖ · ‖√wγ

)
Ln(f, Un(wα),

√
wγ) := Ln

(
f, Un(wα), ·

)
is a bounded linear operator and its norm is

‖Ln(·, Un(wα),
√
wγ)‖ : = sup

0 �≡f∈C√
wγ

‖Ln(f, Un(wα),
√
wγ)‖√wγ

‖f‖√wγ

=

= sup
0 �≡f∈Cwγ

‖Ln

(
f, Un(wα), ·

)√
wγ‖∞

‖f√wγ‖∞
.

Since

Ln

(
f, Un(wα), x

)
=

n∑
k=1

f(yk,n)�k,n
(
Un(wα), x

)
=

=
n∑

k=1

f(yk,n)
√
wγ(yk,n) · �k,n

(
Un(wα), x

)
· 1√

wγ(yk,n)
,

thus by a usual argument we have that the norm of the operator (2.5) equals
to the n-th Lebesgue constant, i.e.∥∥Ln(·, Un(wα),

√
wγ)

∥∥ = Λn

(
Un(wα),

√
wγ

)
(n ∈ N).

The pointwise/uniform convergence of Ln(f, Un(wα), ·) (n ∈ N) in different
function spaces were investigated by several authors (see [3], [8], [6]). For
example in 2001, G. Mastroianni and D. Occorsio showed that for arbitrary
γ ≥ 0 and α > −1 the order of the norm of the operator Ln(·, Un(wα),

√
wγ)

is n1/6 (see [6, Theorem 3.3]), i.e.

‖Ln(·, Un(wα),
√
wγ)‖ ∼ n1/6 (n ∈ N).

Here and in the sequel, if A and B are two expressions depending on certain
indices and variables, then we write

A ∼ B, if and only if 0 < C1 ≤
∣∣∣∣AB

∣∣∣∣ ≤ C2

uniformly for the indices and variables considered.
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From results of P. Vértesi it follows that for any interpolatory matrix Xn ⊂
⊂ R+

0 (n ∈ N) the order of the corresponding weighted Lebesgue constants is
at least log n, i.e. if γ ≥ 0 and Xn ⊂ R+ (n ∈ N) is an arbitrary interpolatory
matrix then there exists a constant C > 0 independent of n such that

Λn(Xn,
√
wγ) = ‖Ln(·, Xn,

√
wγ)‖ ≥ C log n (n ∈ N).

See [16, Theorem 7.2], [14] and [15]. Thus using the Banach–Steinhaus theorem
we obtain the following Faber type result:

Theorem A. If γ ≥ 0 and Xn ⊂ R+ (n ∈ N) is an arbitrary interpolatory
matrix then there exists a function f ∈ C√

wγ
for which the relation∥∥(f − Ln(f,Xn, ·))

√
wγ

∥∥
∞ → 0 as n→ +∞

does not hold.

In [6] G. Mastroianni and D. Occorsio also proved that there exist point
systems for which the optimal Lebesgue constants can be attained. We recall
only the following result:

Theorem B (see [6, Theorem 3.4]). If Vn+1 := Un(wα) ∪ {4n}, then

‖Ln+1

(
·,Vn+1,

√
wγ

)
‖ = Λn+1

(
Vn+1,

√
wγ

)
∼ log n (n ∈ N)

if and only if the parameters α > −1 and γ ≥ 0 satisfy the additional conditions:

α

2
+

1

4
≤ γ ≤ α

2
+

5

4
.

2.4. Fejér type sums. Using the Christoffel–Darboux formula [12, The-
orem 3.2.2] we write the Lagrange interpolatory polynomials as

(2.6) Ln

(
f, Un(wα), x

)
=

n−1∑
l=0

cl,n(f)pl(wα, x) (x ∈ R+
0 , n ∈ N),

where

(2.7) cl,n(f) :=

n∑
k=1

f(yk,n)pl (wα, yk,n)λk,n (l = 0, 1, . . . , n− 1, n ∈ N).

Here and in the sequel λk,n := λk,n(wα) (k = 1, 2, . . . , n, n ∈ N) denote the
Christoffel numbers with respect to the weight wα (cf. [12, (15.3.5)]).
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Using (2.6) and (2.7) we have

Ln(f, x) : = Ln

(
Un(wα), f, x

)
=

n−1∑
l=0

cl,n(f)pl(wα, x) =

=
n∑

k=1

f (yk,n)Kn−1 (x, yk,n)λk,n,

where

Kn−1(x, y) :=

n−1∑
l=0

pl (wα, x) pl (wα, y)(
x, y ∈ R+

0 , n ∈ N
)
.

Let

Ln,m(f, x) :=

m∑
l=0

cl,n(f)pl(wα, x) =

n∑
k=1

f (yk,n)Km (x, yk,n)λk,n(
x ∈ R+

0 , m = 0, 1, . . . , n− 1, n ∈ N
)
.

The Fejér means of the Lagrange interpolation of the function f : R+
0 → R are

defined as the arithmetic means of the sums Ln,0, Ln,1, . . ., Ln,n−1, i.e.

(2.8)

σn(f, x) := σn

(
f, Un(wα), x

)
:=

:=
Ln,0(f, x) + Ln,1(f, x) + · · ·+ Ln,n−1(f, x)

n

(x ∈ R+
0 , n ∈ N).

From the above formulas we have

σn(f, x) =

n−1∑
l=0

(
1− l

n

)
cl,n(f)pl(wα, x) =

=
n∑

k=1

f(yk,n)
{ 1

n

n−1∑
m=0

Km(x, yk,n)
}
λk,n =

=

n∑
k=1

f(yk,n)K
(1)
n (x, yk,n)λk,n,

(2.9)

where

(2.10)
K(1)

n (x, y) :=
1

n

n−1∑
m=0

Km(x, y) =

n−1∑
l=0

(
1− l

n

)
pl(wα, x)pl(wα, y)(

x, y ∈ R+
0 , n ∈ N

)
.
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Remark 1. It is important to observe that we defined the Fejér means of
Lagrange interpolation by considering the means (2.8) and not by the means

(2.11)
L0(f, x) + L1(f, x) + · · ·+ Ln−1(f, x)

n
(x ∈ R+

0 , n ∈ N).

Several earlier results suggest that the two methods (2.8) and (2.11) have dif-
ferent behavior with respect to uniform convergence.

For example in the trigonometric case J. Marcinkiewicz [4] proved that the
method corresponding to (2.8) is uniformly convergent in C2π (the Banach
space of 2π periodic continuous functions defined on R endowed with the max-
imum norm), moreover there exists a function f ∈ C2π such that the sequence
corresponding to (2.11) diverges at a point. In other words we have an analogue
of the classical theorem of L. Fejér about the uniform convergence of the (C, 1)
means of the partial sums of the trigonometric Fourier series only for suitable
arithmetic means of the Lagrange interpolation.

The situation is similar if we consider the Lagrange interpolation on the
roots of the Chebyshev polynomials of the first kind. In [13] A.K. Varma and
T.M. Mills showed that the (2.8) type means of the Lagrange interpolation
uniformly convergent for every f ∈ C[−1, 1]. Moreover in [2] P. Erdős and
G. Halász proved that there exists a continuous function for which the (2.11)
type means are almost everywhere divergent on the interval [−1, 1].

3. Uniform convergence of suitable arithmetic means

The main goal of this paper is to show that the (2.8) type arithmetic means
of the Lagrange interpolation on the roots of Laguerre polynomials is uniformly
convergent in suitable weighted function spaces.

Theorem. Let α > −1 and 0 ≤ γ =: α + 2r, i.e.
√
wγ(x) =

√
wα(x)x

r

(x ∈ R+). If

(3.1) −min

(
α

2
,
1

4

)
< r ≤ 7

6
,

then

(3.2) lim
n→+∞

∥∥∥(f − σn(f, Un(wα), ·)
)√

wγ

∥∥∥
∞

= 0

holds for all f ∈ C√
wγ

.
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Remark 2. We intend to investigate the convergence of the method (2.11)
in a subsequent paper.

Remark 3. The formulas (2.6) and (2.7) show that the Lagrange interpo-
lation polynomials on the roots of Laguerre polynomials can be considered as a
discrete version of partial sums of the Fourier series with respect to the system
of Laguerre polynomials. In [9] E.L. Poiani proved (among other things) that
the sequence of the (C, 1) means of the Laguerre series of an arbitrary function
f ∈ Cwγ

(γ = 2r + α, α > −1) converges to f in the space
(
Cwγ ,‖·‖wγ

)
, if

−min

(
α

2
,
1

2

)
< r < 1 + min

(
α

2
,
1

4

)
and − 1

2
≤ r ≤ 7

6
.

4. Proof of the Theorem

4.1. Laguerre polynomials. We mention some relations with respect to
the Laguerre polynomials which will be used later. Let {pn(wα)}, α > −1,
be the sequence of orthonormal Laguerre polynomials with positive leading
coefficients. The zeros yk,n := yk,n(wα) of pn(wα), n ≥ 1 satisfy

(4.1)
C1

n
< y1,n < y2,n < . . . < yn,n = 4n+ 2α+ 2− C2

3
√
4n,

(4.2) yk,n ∼
k2

n
(k = 1, 2, . . . , n, n ∈ N)

(see [12, Section 6.32] and [5, Section 2.3.5]).

Here and what follows C,C1, . . . will always denote positive constants (not
necessarily the same at each occurrence) being independent of parameters k
and n.

It is known that

(4.3)
!yk,n := yk+1,n − yk,n ∼

√
yk,n

4n− yk,n

(k = 1, 2, . . . , n− 1, n ∈ N),

and for yk,n ≤ x ≤ yk+1,n (k = 1, 2, . . . , n− 1) we have√
yk,n

4n− yk,n
∼
√

x

4n− x
∼
√

yk+1,n

4n− yk+1,n
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uniformly in k and n (see [6, (2.4) and (2.5)]). From (4.2) and (4.3) it follows
that

(4.4) |yj,n − yk,n| ≥ C
|j2 − k2|

n
(j, k = 1, 2, . . . , n).

For the Christoffel numbers we have

(4.5) λk,n := λk,n(wα) ∼ wα(yk,n)

√
yk,n

4n− yk,n
∼ wα(yk,n)!yk,n

uniformly in k = 1, 2, . . . , n and n ∈ N (see [6, (2.7)]).

In an article of B. Muckenhoupt and D.W. Webb [7] there is a pointwise
upper estimate for the kernel of (C, δ) (δ > 0) Cesàro means of Laguerre–
Fourier series (see also [17]). We shall use this result only with respect to (C, 1)

means, that is for the kernel function K
(1)
n (x, y) (see (2.10)): Let α > −1. Then

we have

(4.6)

∣∣∣K(1)
n (x, y)

∣∣∣ ≤ C√
wα(x)

√
wα(y)

Gn(x, y)

(0 < x, y < ν(n) + 3
√
ν(n), n ∈ N),

where ν := ν(n) := 4n+ 2α+ 2,

(4.7)

Gn(x, y) :=

:=
1

ν
Mn(x)Mn(y)

(x+ y)
[
ν1/3 + |x− ν|+ |y − ν|

]2
(x+ y) + (x− y)2

[
ν1/3 + |x− ν|+ |y − ν|

]
and

(4.8) Mn(x) :=
xα/2

(
x+ 1

ν

)−α/2−1/4

4
√
ν1/3 + |x− ν|

(see [7, p. 1124]).

Denote by yj,n one of the closest root(s) to x (shortly x ≈ yj,n, j = j(n)).
Using the above relations we obtain that

(4.9) Mn(x) ∼Mn(yj,n) ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1√
j
, if

c

n
≤ x ≤ ν

2

1
4
√
n|yj,n − ν|

, if
ν

2
≤ x ≤ ν − 3

√
ν

1
3
√
n
, if ν − 3

√
ν ≤ x ≤ ν + 3

√
ν

for x ∈ [c/n, ν + 3
√
ν].
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4.2. Uniform boundedness. Let us consider for every n ∈ N the bounded
linear operator

Fn :
(
C√

wγ , ‖ · ‖√wγ

)
→ Pn ⊂

(
C√

wγ , ‖ · ‖√wγ

)
Fnf := σn(f, Un(wα), ·).

For the norm of the operator Fn we obtain that (see (2.9))

‖Fn‖ := sup
0 �≡f∈C√

wγ

‖Fnf‖√wγ

‖f‖√wγ

= sup
0 �≡f∈C√

wγ

∥∥σn

(
f, Un(wα), ·

)√
wγ

∥∥
∞∥∥f√wγ

∥∥
∞

=

= max
x∈R+

0

n∑
k=1

∣∣K(1)
n (x, yk,n)

∣∣ √
wγ(x)√

wγ(yk,n)
λk,n.

The core of the proof of the Theorem is contained in the following lemma,
which states the uniform boundedness of the operator sequence (Fn).

Lemma 4.1. Let α > −1 and r satisfy the inequality (3.1). Then there
exists a constant C > 0 independent of n ∈ N such that

(4.10) ‖Fn‖ = max
x∈R+

0

n∑
k=1

∣∣K(1)
n (x, yk,n)

∣∣ √
wα(x)√

wα(yk,n)

( x

yk,n

)r

λk,n ≤ C.

Proof. We shall use the following important equality (see [11, Lemma 1]): If
γ ≥ 0, m ≤ n ∈ N and qk ∈ Pn (k = 1, 2, . . . ,m) are arbitrary polynomials
then

max
x∈R+

0

[√
wγ(x)

m∑
k=1

|qk(x)|
]
= max

an≤x≤bn

[√
wγ(x)

m∑
k=1

|qk(x)|
]
.

Therefore by (4.5)–(4.7) it is enough to show that

(4.11) max
an≤x≤bn

n∑
k=1

Gn(x, yk,n)

(
x

yk,n

)r √
yk,n

4n− yk,n
≤ C,

where
c

n
≤ an = an(γ) ≤ x ≤ bn = bn(γ) < ν + 3

√
ν.

In order to prove (4.11), we distinguish several cases.
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Case 1: Let x ∈ [an,
ν
2 ] and

(4.12)

n∑
k=1

Gn(x, yk,n)

(
x

yk,n

)r √
yk,n

4n− yk,n
=

∑
yk,n≤ ν

2

. . .+
∑

yk,n>
ν
2

. . . =: A(1)
n (x) +A(2)

n (x).

Since ν1/3 + |x − ν| + |yk,n − ν| ∼ n (k = 1, 2, . . . , n, n ∈ N) thus by (4.2),
(4.4), (4.7) and (4.9) we have

A(1)
n (x) ≤ C1

∑
yk,n≤ ν

2

n
j2 + k2

j2 + k2 + |j2 − k2|2
1√
kj

(
j

k

)2r
k

n
≤

≤ C2

⎧⎨⎩∑
k≤ j

2

j2r−5/2

k2r−1/2
+

∑
j
2≤k≤2j

1

1 + (k − j)2
+

∑
k≥2j

j2r−1/2

k2r+3/2

⎫⎬⎭ .

The second sum is bounded. For the first sum we obtain that

∑
k≤j/2

j2r−5/2

k2r−1/2
∼

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

log j

j
, if r =

3

4

j2r−5/2, if r >
3

4

1

j
, if r <

3

4

and these expressions are bounded (independently of j and n), if r ≤ 5/4.
Moreover by

n∑
k=j

1

ks
∼

⎧⎨⎩log n
j , if s = 1∣∣n−s+1 − j−s+1

∣∣ , if s �= 1

we have

∑
k≥2j

j2r−1/2

k2r+3/2
∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩
log n

j

j
, if r = −1

4

1

j

∣∣∣( j

n

)2r+1/2

− 1
∣∣∣, if r �= −1

4

whence the third sum is bounded (independently of j and n), if r > − 1
4 .

Therefore

(4.13) A(1)
n (x) ≤ C

(
x ∈ [an,

ν
2 ], n ∈ N

)
, if − 1

4 < r ≤ 5
4 .
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Let us consider A
(2)
n (x). Since yk,n ≥ ν

2 thus by (4.2), (4.4), (4.7) and (4.9)
we have

(4.14)

A(2)
n (x) ≤

≤ C1

∑
yk,n≥ ν

2

n

1 + |yj,n − yk,n|2
1√
j

1
4
√
n|yk,n − ν|

(
j

k

)2r √
yk,n

4n− yk,n
≤

≤ C2

{ ∑
ν
2≤yk,n≤ x+yn,n

2

· · ·+
∑

x+yn,n
2 <yk,n

· · ·
}

=:

=: A(21)
n (x) +A(22)

n (x).

If ν
2 ≤ yk,n ≤ x+yn,n

2 then |yk,n − ν| ∼ n thus by (4.2) and (4.4) we obtain
that

A(21)
n (x) ≤ C1

(
j

n

)2r−1/2 ∑
ν
2≤yk,n≤ x+yn,n

2

1

1 + |k − j|2 .

If x ≈ yj,n ≤ ν
4 and yk,n ≥ ν

2 then |k − j| ≥ cn therefore in this case

A(21)
n (x) ≤ C

1

j

(
j

n

)2r+1/2

,

which is bounded (independently of j and n), if r ≥ − 1
4 . Moreover, if x ≈ yj,n ≥

≥ ν
4 then j ∼ n hence A

(21)
n is bounded for all r.

If yk,n ≥ (x + yn,n)/2 then |yj,n − yk,n| ∼ n thus by (4.3) and (4.14) we
obtain that

A(22)
n (x) ≤ C1

j2r−1/2

n2r+5/4

∑
x+yn,n

2 ≤yk,n

!yk,n
4
√
|yk,n − ν|

≤

≤ C2
j2r−1/2

n2r+5/4

∫ yn,n

ν/2

1
4
√
ν − t

dt ≤

≤ C3
j2r−1/2

n2r+5/4
n3/4 = C3

(
j

n

)2r+1/2
1

j
,

and this is bounded, if r ≥ − 1
4 . Consequently

(4.15) A(2)
n (x) ≤ C

(
x ∈

[
an,

ν
2

]
, n ∈ N

)
, if − 1

4 ≤ r.
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By (4.13)–(4.15) we get: there exists a constant C > 0 independent of x and n
such that

(4.16) A(1)
n (x) +A(2)

n (x) ≤ C
(
x ∈

[
an,

ν
2

]
, n ∈ N

)
if − 1

4 < r ≤ 5
4 .

Case 2: Let x ∈ [ 12ν,
3
4ν] and

(4.17)

n∑
k=1

Gn(x, yk,n)

(
x

yk,n

)r √
yk,n

4n− yk,n
=

=
∑

yk,n≤ ν
4

. . .+
∑

ν
4<yk,n≤ 7

8 ν

. . .+
∑

7
8 ν<yk,n

. . . =:

:= B(1)
n (x) +B(2)

n (x) +B(3)
n (x).

If x ∈ [ ν2 ,
3
4ν] and yk,n ≤ ν

4 then |x− yk,n| ∼ n therefore by (4.7) and (4.9) we
get

B(1)
n (x) ≤ C1

∑
yk,n≤ ν

4

1

n

nn2

n+ n2n

1√
n

1√
k

(n
k

)2r k

n
≤

≤ C2

n∑
k=1

n2r−5/2

k2r−1/2
∼

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

log n

n
, if r =

3

4

n2r−5/2, if r >
3

4

1

n
, if r <

3

4

and this is bounded, if r ≤ 5
4 .

If x ∈ [ ν2 ,
3
4ν] and

ν
4 ≤ yk,n ≤ 7

8ν then

|x− yk,n| ≥ c1
|j2 − k2|

n
≥ c2|j − k|

(see (4.4)) thus by (4.7) and (4.9) we have

B(2)
n (x) ≤ C1

∑
ν
4≤yk,n≤ 7

8 ν

1

n

nn2

n+ |j − k|2n
1√
n

1√
n
≤ C2

n∑
k=1

1

1 + |j − k|2 ,

i.e. this term is bounded for all r.
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If x ∈ [ 12ν,
3
4ν] and yk,n ≥ 7

8ν then |x− yk,n| ≥ cn thus

B(3)
n (x) ≤ C1

∑
7
8 ν≤yk,n

1

n

nn2

n+ n2n

1√
n

1
4
√
n|yk,n − ν|

√
yk,n

4n− yk,n
≤

≤ C2

n7/4

∫ yn,n

7
8 ν

1
4
√
ν − t

dt ≤ C3
n3/4

n7/4

which means that this term is also bounded for all r.

Consequently there exists a constant C > 0 independent of x and n such
that

(4.18) B(1)
n (x) +B(2)

n (x) +B(3)
n (x) ≤ C

(
x ∈

[
1
2ν,

3
4ν
]
, n ∈ N

)
, if r ≤ 5

4 .

Case 3: Let x ∈ [ 34ν, yn,n] and

(4.19)

n∑
k=1

Gn(x, yk,n)

(
x

yk,n

)r √
yk,n

4n− yk,n
=

=
∑

yk,n≤ 5ν
8

. . .+
∑

5ν
8 <yk,n<yj−1,n

. . .+

j+1∑
k=j−1

. . .+
∑

yj+1,n<yk,n<
x+yn,n

2

. . .+

+
∑

x+yn,n
2 ≤yk,n

. . . =:

=: D(1)
n (x) +D(2)

n (x) +D(3)
n (x) +D(4)

n (x) +D(5)
n (x).

If yk,n ≤ 5
8ν then |x − yk,n| ∼ n and |yj,n − ν| ≥ c 3

√
n therefore by (4.7) and

(4.9) we get

D(1)
n (x) ≤ C1

∑
y
k,n≤ 5ν

8

1

n

nn2

n+ n2n

1
4
√
n|yj,n − ν|

1√
k

(n
k

)2r k

n
≤

≤ C2

n∑
k=1

n2r−7/3

k2r−1/2
∼

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

log n

n5/6
, if r =

3

4

n2r−7/3, if r >
3

4

n−5/6, if r <
3

4

and this is bounded, if r ≤ 7
6 .
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If x ∈ [ 34ν, yn,n] and
5
8ν ≤ yk,n < yj−1,n then

ν1/3 + |x− ν|+ |yk,n − ν| ∼ |yk,n − ν| ≥ c|yj,n − ν|,

|yk,n − ν| ≤ cn,

x− yj−2,n ≥ !yj−1,n ∼ !yj,n ∼
√

n

ν − yj,n

thus

D(2)
n (x) ≤ C1

∑
5ν
8 ≤yk,n<yj−1,n

1

n

n|yk,n − ν|2
n+ (x− yk,n)2|yk,n − ν|×

× 1
4
√
n|yj,n − ν|

1
4
√
n|yk,n − ν|

√
yk,n

4n− yk,n
≤

≤ C2

√
n

|yj,n − ν|
∑

5ν
8 ≤yk,n<yj−1,n

!yk,n
(x− yk,n)2

≤

≤ C3

√
n

|yj,n − ν|

∫ yj−2,n

5ν
8

1

(x− t)2
dt ≤ C3

√
n

|yj,n − ν|
1

x− yj−2,n
≤ C4,

which holds for all r.

Let us consider D
(3)
n (x). Using that ν1/3 + |x − ν| + |yj,n − ν| ∼ |yj,n − ν|

we get

1

n

n|yj,n − ν|2
n+ (x− yk,n)2|yj,n − ν|

1√
n|yj,n − ν|

√
yj,n

4n− yj,n
≤

≤ C1
|yj,n − ν|2

n3/2

√
n

|yj,n − ν| ≤ C2

hence D
(3)
n (x) is bounded for all r.

If x ∈ [ 34ν, yn,n] and yj+1,n < yk,n <
x+yn,n

2 then

|yj,n − yk,n| ≥ c1
|j2 − k2|

n
≥ c2|j − k|, |x− ν| ∼ |yk,n − ν| ∼ |yj,n − ν|
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thus

D(4)
n (x) ≤

≤ C1

∑
yj+1,n<yk,n≤ x+yn,n

2

1

n

n|x− ν|2
n+ (yj,n − yk,n)2|x− ν|

1√
n|x− ν|

√
n

|x− ν| ≤

≤ C2

n∑
k=j+1

1

(j − k)2
≤ C3,

which holds for all r.

Finally let x ∈ [ 34ν, yn,n] and
x+yn,n

2 ≤ yk,n. Then

ν1/3 + |x− ν|+ |yk,n − ν| ∼ |x− ν|, |x− yk,n| ≥
|x− ν|

2
, |yj,n − ν| ≥ c 3

√
n.

Thus

D(5)
n (x) ≤ C1

∑
x+yn,n

2 ≤yk,n

1

n

n|x− ν|2
n+ (x− yk,n)2|x− ν|×

× 1
4
√
n|yj,n − ν|

1
4
√
n|yk,n − ν|

√
yk,n

4n− yk,n
≤

≤ C2
1√

n|yj,n − ν|5/4
∑

x+yn,n
2 ≤yk,n

!yk,n
4
√
ν − yk,n

≤

≤ C3

n11/12

∫ yn,n

x+yn,n
2

1
4
√
ν − t

dt ≤ C4
n3/4

n11/12
≤ C5

for all r.

Consequently there exists a constant C > 0 independent of x and n such
that

(4.20)

5∑
k=1

D(k)
n (x) ≤ C

(
x ∈

[
3
4ν, yn,n

]
, n ∈ N

)
, if r ≤ 7

6 .

Case 4: Let yn,n ≤ x ≤ bn(γ) ≤ ν + 3
√
ν and

(4.21)

n∑
k=1

Gn(x, yk,n)

(
x

yk,n

)r √
yk,n

4n− yk,n
=

=
∑

yk,n≤ ν
2

. . .+
∑

ν
2<yk,n

. . . =: E(1)
n (x) + E(2)

n (x).
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If yk,n ≤ ν
2 then (4.2), (4.7) and (4.9) yields

E(1)
n (x) ≤ C1

∑
yk,n≤ ν

2

1

n

n · n2

n+ n2 · n
1
3
√
n

1√
k

(n
k

)2r k

n
≤

≤ C2

n∑
k=1

n2r−7/3

k2r−1/2
∼

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

log n

n5/6
, if r =

3

4

n2r−7/3, if r >
3

4

n−5/6, if r <
3

4

which is bounded if r ≤ 7
6 .

Now let ν
2 ≤ yk,n < yn,n and x ∈ [yn,n, ν + 3

√
ν]. Then

|x− yk,n| ≥ c|yk,n − ν|.

Indeed, this is obvious if x ≥ ν. Moreover if x ∈ [yn,n, ν] then by (4.2) and
(4.3) we have

|yk,n − ν| = |x− yk,n|+ |x− ν| ≤ |x− yk,n|+ c1
3
√
n ≤

≤ |x− yk,n|+ c2|x− yn−1,n| ≤ c3|x− yk,n|.

Therefore

E(2)
n (x) ≤ C1

∑
ν
2≤yk,n<yn,n

1

n

n|yk,n − ν|2
n+ |x− yk,n|2|yk,n − ν|

1
3
√
n
×

× 1
4
√
n|yk,n − ν|

√
yk,n

4n− yk,n
+ C2

1

n

nn2/3

n

1
3
√
n

1
4
√
nn1/3

3
√
n ≤

≤ C3n
−7/12

∑
ν
2≤yk,n

!yk,n
|yk,n − ν|5/4 + C4 ≤

≤ C5n
−7/12

∫ yn,n

ν/2

1

(ν − t)5/4
dt+ C6 ≤ C7.

From the above relations it follows that there exists a constant C > 0
independent of x and n such that

(4.22) E(1)
n (x) + E(2)

n (x) ≤ C
(
x ∈ [yn,n, bn], n ∈ N

)
, if r ≤ 7

6 .

Combining (4.12)–(4.22) we get (4.11) so Lemma 4.1 is proved. �
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4.3. Finishing the proof. For the proof of the Theorem we use the
Banach–Steinhaus theorem.

Lemma 4.1 states that the sequence of the norm of operators Fn (n ∈ N)
is uniformly bounded.

Now we show that (3.2) holds for every polynomial. It is enough to prove
that for all fixed j = 0, 1, 2, . . .

(4.23) lim
n→+∞

∥∥∥(pj(wα)− σn(pj(wα), Un(wα), ·)
)√

wγ

∥∥∥
∞

= 0.

Using the quadrature formula for {pj := pj(wα)} (see [12, Section 3.1]) we have

cl,n(pj) =

n∑
k=1

pj(yk,n)pl(yk,n)λk,n = δl,j(
l, j = 0, 1, 2, . . . , n− 1, n ∈ N

)
.

Thus

pj − σn

(
pj , Un(wα)

)
=

(
1− j

n

)
pj ,

which proves (4.23).

Since the polynomials are dense in the Banach space
(
C√

wγ
, ‖ · ‖√wγ

)
(see

Section 2.2) thus the conditions of the Banach–Steinhaus theorem hold, so the
Theorem is proved. �
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Basic Theory and Applications, Springer Monographs in Mathematics,
Springer-Verlag, Berlin, 2008.

[6] Mastroianni, G. and D. Occorsio, Lagrange interpolation at Laguerre
zeros in some weighted uniform spaces, Acta Math. Hungar., 91(1–2)
(2001), 27–52.

[7] Muckenhoupt B. and D.W. Webb, Two-weight norm inequalities for
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