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FOURIER TRANSFORM FOR

MEAN PERIODIC FUNCTIONS

László Székelyhidi (Debrecen, Hungary)

Dedicated to the 60th birthday of Professor Antal Járai

Abstract. Mean periodic functions are natural generalizations of periodic
functions. There are different transforms - like Fourier transforms - defined
for these types of functions. In this note we introduce some transforms and
compare them with the usual Fourier transform.

1. Introduction

In this paper C(R) denotes the locally convex topological vector space of
all continuous complex valued functions on the reals, equipped with the linear
operations and the topology of uniform convergence on compact sets. Any
closed translation invariant subspace of C(R) is called a variety. The smallest
variety containing a given f in C(R) is called the variety generated by f and it
is denoted by τ(f). If this is different from C(R), then f is called mean periodic.
In other words, a function f in C(R) is mean periodic if and only if there exists
a nonzero continuous linear functional μ on C(R) such that

(1) f ∗ μ = 0
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holds. In this case sometimes we say that f is mean periodic with respect to μ.
As any continuous linear functional on C(R) can be identified with a compactly
supported complex Borel measure on R, equation (1) has the form

(2)

∫
f(x− y) dμ(y) = 0

for each x in R. The dual of C(R) will be denoted byMC(R). As the convolu-
tion of two nonzero compactly supported complex Borel measures is a nonzero
compactly supported Borel measure as well, all mean periodic functions form
a linear subspace in C(R). We equip this space with the following topology.
For each nonzero μ from the dual of C(R) let V (μ) denote the solution space
of (1). Clearly, V (μ) is a variety and the set of all mean periodic functions is
equal to the union of all these varieties. We equip this union with the inductive
limit of the topologies of the varieties V (μ) for all nonzero μ from the dual of
C(R). The locally convex topological vector space obtained in this way will be
denoted by MP(R), the space of mean periodic functions.

An important class of mean periodic functions is formed by the exponential
polynomials. We call a function of the form

(3) ϕ(x) = p(x) eλx

an exponential monomial, where p is a complex polynomial and λ is a complex
number. If p ≡ 1, then the corresponding exponential monomial x �→ eλx is
called an exponential. Exponential monomials of the form

(4) ϕk(x) = xk eλx

with some natural number k and complex number λ, are called special expo-
nential monomials.

Linear combinations of exponential monomials are called exponential poly-
nomials. To see that the special exponential monomial in (3) is mean periodic
one considers the measure

(5) μk = (eλ δ1 − δ0)
k+1 ,

where δy is the Dirac–measure concentrated at the number y for each real y,
and the k + 1-th power is meant in convolution-sense. It is easy to see that

ϕk ∗ μk = 0

holds. Sometimes we write 1 for δ0.

Exponential polynomials are typical mean periodic functions in the sense
that any mean periodic function f in V (μ) is the uniform limit on compact sets
of a sequence of linear combinations of exponential monomials, which belong
to V (μ), too. More precisely, the following theorem holds (see [9]).
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Theorem 1 (L. Schwartz, 1947). In any variety of C(R) the linear hull of all
exponential monomials is dense.

A similar theorem in C(Rn) fails to hold for n ≥ 2 as it has been shown
in [4] by D. I. Gurevich. Moreover, he gave examples for nonzero varieties in
C(R2) which do not contain nonzero exponential monomials at all. However,
as it has been shown by L. Ehrenpreis in [1], Theorem 1 can be extended to
varieties of the form V (μ) in C(Rn) for any positive integer n.

Another important result in [9] is the following (Théorème 7, on p. 881.):

Theorem 2. In any proper variety of C(R) no special exponential monomial
is contained in the closed linear hull of all other special exponential monomials
in the variety.

In other words, if a variety V �= {0} in C(R) is given, then for each special
exponential monomial ϕ0 in V there exists a measure μ in MC(R) such that
μ(ϕ0) = 1 and μ(ϕ) = 0 for each special exponential monomial ϕ �= ϕ0 in V .

2. A mean operator for mean periodic functions

Based on Theorems 1 and 2 by L. Schwartz we introduced a mean operator
on the space MP(R) in the following way (see also [10], pp. 64–65.).

For each x, y in R and f in C(R) let

τyf(x) = f(x+ y) ,

and call τyf the translate of f by y. The continuous linear operator τy on C(R)
is called translation operator. The operator τ0 will be denoted by 1. Clearly,
the continuous function f is a polynomial of degree at most k if and only if

(6) (τy − 1)k+1f(x) = 0

holds for each x, y in R and for k = 0, 1, . . . . The set P(R) of all polynomials
is a subspace of MP(R), which we equip with the topology inherited from
MP(R).

Theorem 3. The subspace P(R) is closed in MP(R).

Proof. First we show that the set of the degrees of all polynomials in any
proper variety is bounded from above. By the Taylor–formula it follows that
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the derivative of a polynomial is a linear combination of its translates, hence if
a polynomial belongs to a variety then all of its derivatives belong to the same
variety, too. Therefore, if the set of the degrees of all polynomials in a proper
variety is not bounded from above, then all polynomials belong to this variety.
But, in this case, by the Stone–Weierstrass–theorem, all continuous functions
must belong to the variety, hence it cannot be proper.

Suppose now that (pi)i∈I is a net of polynomials which converges inMP(R)
to the continuous function f . By the definition of the inductive limit topology
there exists a nonzero μ inMc(R) such that pi belongs to V (μ) for each i in I.
By our previous consideration, for the degrees we have deg pi ≤ k for some
positive integer k. By (6) this means that

(τy − 1)k+1pi(x) = 0

holds for each x, y in R. This implies that the same holds for f , hence f is a
polynomial of degree at most k, too. The theorem is proved. �

Theorem 4. There exists a unique continuous linear operator

M :MP(R)→ P(R)

satisfying the properties

1) M(τyf) = τy M(f),

2) M(p) = p

for each f in MP(R), p in P(R) and y in R.

Proof. First we prove uniqueness. By Theorem 1, it is enough to show
that the properties of M determine M on the set of all special exponential
monomials. Let m �= 1 be any nonzero continuous complex exponential. Then
we have

M(m) = M
[
m(−y)τym

]
= m(−y)M(τym) = m(−y)τyM(m),

which implies that either M(m) = 0 or m is a polynomial. Hence M(m) = 0.
Suppose that we have proved for j = 0, 1, . . . , k − 1 that

M
[
xjm(x)

]
= 0

for any continuous complex exponential m �= 1. Then we have

M
[
(x+ y)km(x+ y)

]
= M

[ k∑
j=0

(
k

j

)
xjyk−jm(x)m(y)

]
=
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=

k∑
j=0

(
k

j

)
yk−jm(y)M

[
xjm(x)

]
= m(y)M

[
xkm(x)

]
,

which implies, as above, that M
[
xkm(x)

]
= 0. This proves the uniqueness.

In order to prove existence, first we notice, that, by Theorem 2, for any
nonzero μ in Mc(R), the exponential 1 is not contained in the closed linear
subspace of C(R) spanned by all special exponential monomials in V (μ) different
from 1. This implies the existence of a measure μ0 inMc(R) such that μ0(1) =
= 1, further μ0(ϕ) = 0 for any special exponential monomial ϕ �= 1 in V (μ).

From this fact it follows, that xkm(x) ∗ μ0 = 0 for each positive integer k
and exponential m �= 1 in V (μ), further xk ∗ μ0 = xk. This shows, that ϕ ∗ μ0

is a polynomial in V (μ) for any exponential polynomial ϕ in V (μ). On the
other hand, as in the proof of Theorem 3, it follows that if a polynomial of
degree n belongs to V (μ), then all the functions 1, x, x2, . . . , xn also belong to
V (μ). Hence, all polynomials in V (μ) have a degree smaller than some fixed
positive integer. Now, if f is arbitrary in V (μ), then by Theorem 1, there
exist exponential polynomials ϕi in V (μ) such that f = limϕi. Then we have
f ∗ μ0 = lim(ϕi ∗ μ0), hence also f ∗ μ0 is a polynomial.

Suppose now, that f belongs also to some V (ν) with some nonzero ν. Then
f ∗ μ0 also belongs to V (ν), and it is a polynomial. Hence we have f ∗ μ0 =
= f ∗ μ0 ∗ ν0. Similarly, f ∗ ν0 = f ∗ ν0 ∗ μ0. Hence f ∗ μ0 does not depend on
the special choice of μ0. On the other hand, each f in MP(R) is contained in
some V (μ) with μ �= 0, and we can define

M(f) = f ∗ μ0

with any μ0 in Mc(R) satisfying the previous properties. The continuity and
linearity of M follows from the definition, 1) follows from the properties of
convolution, and 2) has been proved. �

3. The Fourier transform

For each f in C(R) we define f̌ by the formula

(7) f̌(x) = f(−x)

for any x in R. It is obvious, that fm̌ is mean periodic for any f inMP(R) and
for any continuous complex exponential m. Hence we may define f̂ as follows:

(8) f̂(m) = M(fm̌)

for any nonzero continuous exponential m.
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Theorem 5. The map f �→ f̂ defined above is linear and has the following
properties:

1) p̂(m) = 0 for m �= 1 and p̂(1) = p ,

2) (p f )̂ (m) = pf̂(m) ,

3) (τyf )̂ (m) = m(y)τy
(
f̂(m)

)
,

4) (f̌ )̂ (m) =
[
f̂(m̌)

]̌
for any f in MP(R), for any p in P(R) and for each y in R, whenever p f is
mean periodic.

Proof. In the proof of Theorem 4 we have seen that M(pm) = 0 for
each polynomial p and exponential m �= 1. This means that if the exponential
polynomial ϕ has the form

(9) ϕ(x) = p0(x) +

k∑
i=1

pi(x)mi(x)

for each real x, where k is a nonnegative integer, p0, p1, . . . , pk are polynomials
and m1,m2, . . . ,mk are different exponentials, then we have

(10) M(ϕ) = p0 .

Clearly, this implies 1) − 4) for any exponential polynomial f = ϕ. Then, by
Theorem 1, our statements follow for any mean periodic f . �

Theorem 6 (”Uniqueness Theorem”). For any f in MP(R), if f̂ = 0, then
f = 0.

Proof. From the previous theorem it follows by linearity and continuity,
that ϕ̂ = 0 for all ϕ in τ(f). In particular, ϕ̂ = 0 for any exponential polynomial
ϕ in τ(f), hence, by (9), we have that the only exponential polynomial in τ(f)
is 0. Now our statement is a consequence of Theorem 1. �

As the exponentials of the additive group of R can be identified with com-
plex numbers, there is a one to one mapping between C and the set of all expo-
nentials. Hence, instead of f̂(m) we can write f̂(λ), where λ is the unique com-
plex number corresponding to the exponential m. By Theorem 5 the Fourier
transform of the mean periodic function f is a polynomial-valued mapping f̂ ,
which is defined on C, the set of complex numbers, having the properties listed
in 5. On the other hand, the Fourier transformation f �→ f̂ is an injective,
linear mapping ofMP(R) into the set of all polynomial-valued mappings of C
into P(R), having the properties listed in 5. If f is a bounded mean periodic
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function, then τ(f) consists of bounded functions, in particular, each expo-
nential is a character and each polynomial in τ(f) is constant. Hence, in this

case M(f) is a constant, and f̂(m) is constant, for each character m of R. In
particular, using the results in [8] we have the following theorem.

Theorem 7. For any almost periodic f in MP(R), the function f̂ coincides
with the Fourier transform of f as an almost periodic function in the sense of
Bohr.

For exponential polynomials we have the following immediate ”Inversion
Theorem”.

Theorem 8. Let f be an exponential polynomial. Then

(11) f(x) =
∑
λ∈C

f̂(λ)(x) eλx

holds for each x in R.

For any mean periodic f we call the spectrum of f the set sp(f) of all
complex numbers λ for which the exponential x �→ eλx belongs to the variety
τ(f) generated by f . The following theorem is easy to prove.

Theorem 9. A mean periodic function is a polynomial if and only if its spec-
trum is {0}. It is an exponential monomial if and only if its spectrum is a
singleton and it is an exponential polynomial if and only if its spectrum is
finite.

4. The Carleman transform

As we have seen in the previous section it is possible to introduce a Fourier–
like transform for mean periodic functions on R which enjoys several useful
properties similar to the classical Fourier transform. However, this transform
yields a polynomial-valued function, hence the role of classical Fourier coeffi-
cients are played by polynomials. The existence of this transform depends on
the mean operator, which is a kind of mean value, but it takes polynomials as
values, instead of numbers. The most important property of this mean — be-
sides linearity and continuity — is that it commutes with translations: instead
of translation invariance we have translation covariance, which — obviously —
reduces to translation invariance in case of constant functions. The Fourier
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transform, based on this mean operator, can be realized in case of exponential
polynomials as follows: if the exponential polynomial ϕ has the canonical rep-
resentation (9) for each real x, where k is a nonnegative integer, p0, p1, . . . , pk
are polynomials and m1,m2, . . . ,mk are different exponentials, then the mean
operator M takes the value p0 on ϕ, and, more generally, the Fourier trans-
form of ϕ at λ is the polynomial pλ, which is the coefficient of the exponential
x �→ eλx in the canonical representation of ϕ. As spectral analysis and spec-
tral synthesis hold in R by [9], heuristically, the support of f̂ consists of those
λ’s which take part in the spectral analysis of f in the sense, that the corre-
sponding exponentials x �→ eλx belong to the spectrum of f , and the value
f̂(λ) = M

[
f(x) · e−λx], which is a polynomial, shows, to what content this

exponential takes part in the reconstruction process of f from its spectrum: in
the spectral synthesis of f .

As the existence of the Fourier transform introduced above is a result of
a transfinite procedure, depending on Hahn–Banach-theorem, it is not clear
how to determine the value of f̂ at some complex number λ, how to compute
it, if a general mean periodic function f is given, which is not necessarily an
exponential polynomial. In other words, it is not clear how to compute the
coefficients of the polynomial f̂(λ) for a general mean periodic function f . On
the other hand, an ”Inversion Theorem”-like result would be highly welcome,
for which, as usual, different estimates on the ”Fourier–like coefficients” were
necessary.

In his fundamental work [6] (see also [5]) J. P. Kahane used another trans-
form based on the Carleman transform (see [3]). Here we present the details.

Let f be a mean periodic function in MP(R) and we put

(12) f−(x) =
{

0, x ≥ 0
f(x), x < 0 .

As f is mean periodic, there exists a nonzero compactly supported Borel
measure in Mc(R) such that

(13) f ∗ μ = 0

holds. Denote μ any of such measures and we put

(14) g = f− ∗ μ .

It is easy to see, that the support of g is compact (see [6], Lemma on p. 20).
The Carleman transform of f is defined as

(15) C(f)(w) = ĝ(w)

μ̂(w)
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for each w in C which is not a zero of μ̂. By the Paley–Wiener-theorem (see
e.g. [11]) ĝ and μ̂ are entire functions of exponential type, hence C(f) is mero-
morphic. Originally Carleman in [3] introduced this transform for functions
which are not very rapidly increasing at infinity, but Kahane observed that it
works also for mean periodic functions.

We present a simple example for the computation of this transform. Let

f(x) = x

for each x in R. Then f is mean periodic and τ(f) is annihilated by the measure

μ = (δ1 − 1)2 .

The Fourier transform of μ is as follows:

μ̂(w) =

∫
e−iwx dμ(x) =

∫
e−iwx d(δ1−1)2(x) =

∫
e−iwx d(δ2−2δ1+1)(x) =

= e−2iw − 2e−iw + 1 = (e−iw − 1)2

for each w in C. The next step is to form the function f− (see (12)). Hence,
we have, by (14)

g(x) =
(
f− ∗ μ

)
(x) =

∫
f−(x− y) dμ(y) =

∫
f−(x− y) d(δ2 − 2δ1 + 1)(y) =

= f−(x− 2) + 2f−(x− 1) + f−(x) =

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, x ≥ 2

x− 2, 2 > x ≥ 1

−x, 1 > x ≥ 0

0, 0 > x .

The Fourier transform of g is

ĝ(w) =

∫
g(x)e−iwx dx =

2∫
0

g(x)e−iwx dx =

=

2∫
1

(x− 2)e−iwx dx−
1∫

0

xe−iwx dx =

= − 1

iw
e−iw − 1

(iw)2

(
e−2iw − e−iw

)
+

1

iw
e−iw +

1

(iw)2

(
e−iw − 1

)
=

= − 1

(iw)2
(e−iw − 1)2 .
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From this we have

C(f)(w) =
− 1

(iw)2 (e
−iw − 1)2

(e−iw − 1)2
= − 1

(iw)2

for each w in C which is not a zero of μ̂.

At this moment one cannot see any relation between C(f) and f̂ . Consider
another easy example. Let

f(x) = x3 eλx ,

where x is real and λ is a complex number. In this case we can take

μ = (eλ − 1)4 ,

and
μ̂(w) =

(
e−(iw−λ) − 1

)4
,

further

ĝ(w) = − 3!

(iw − λ)4
(
e−(iw−λ) − 1

)4
,

and finally

C(f)(w) = ĝ(w)

μ̂(w)
= − 3!

(iw − λ)4
.

We shall see that there is an intimate relation between the Carleman trans-
form and the Fourier transform of exponential monomials. First we need the
following theorem.

Theorem 10. For each x in R let

(16) f(x) = p(x)eλx ,

where p is a polynomial and λ is a complex number. Then we have

(17) C(f)(w) = −
∞∑
k=0

p(k)(0)

(iw − λ)k+1
,

where the sum is actually finite.

Proof. Let
fk(x) = xkeλx

for each nonnegative integer k and complex number λ. Then fk is mean periodic
and τ(f) is annihilated by the finitely supported measure

μk = (eλδ1 − 1)k+1 .
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Indeed, we have for each x in R

fk ∗ μk(x) =

∫
fk(x− y) dμ(y) =

k+1∑
j=0

(
k + 1

j

)
(−1)k+1−jeλj(x− j)keλx−λj =

= eλx
k+1∑
j=0

(
k + 1

j

)
(−1)k+1−j(x− j)k = eλx (τ−1 − 1)k+1ϕk(x) = 0

by (6), where
ϕk(x) = xk

for x in R.

Let w be a complex number. For the sake of simplicity set

T = iw − λ .

The Fourier transform of μk at w in C is

μ̂k(w) =

∫
e−iwx dμk(x) =

k+1∑
j=0

(
k + 1

j

)
(−1)k+1−jeλje−iwj =

(
e−T − 1

)k+1
.

As

f−
k (x) =

{
0, x ≥ 0
fk(x), x < 0

it follows for l = 0, 1, . . . , k

gk(x) = f−
k ∗ μk(x) =

∫
f−
k (x− y) dμk(y) =

=

⎧⎨⎩
0, k + 1 ≤ x;

eλx
∑k+1

j=l+1

(
k+1
j

)
(−1)k+1−j(x− j)k, l ≤ x < l + 1;

0, x < 0.

By definition, the Fourier transform of gk at w in C is

ĝk(w) =

∫
e−iwxgk(x) dx =

k∑
l=0

l+1∫
l

e−iwxgk(x) dx =

=

k∑
l=0

k+1∑
j=l+1

(
k + 1

j

)
(−1)k+1−j

l+1∫
l

(x− j)ke−Tx dx .
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Using the fact, like above, that

k+1∑
j=0

(
k + 1

j

)
(−1)k+1−j(x− j)k = 0 ,

we have

ĝk(w) =

k∑
l=0

k+1∑
j=l+1

(
k + 1

j

)
(−1)k+1−j

l+1∫
l

(x− j)ke−Tx dx =

=
k∑

l=0

k+1∑
j=0

(
k + 1

j

)
(−1)k+1−j

l+1∫
l

(x− j)ke−Tx dx−

−
k∑

l=0

l∑
j=0

(
k + 1

j

)
(−1)k+1−j

l+1∫
l

(x− j)ke−Tx dx =

=
k∑

l=0

l+1∫
l

[ k+1∑
j=0

(
k + 1

j

)
(−1)k+1−j(x− j)k

]
e−Tx dx−

−
k∑

l=0

l∑
j=0

(
k + 1

j

)
(−1)k+1−j

l+1∫
l

(x− j)ke−Tx dx =

−
k∑

l=0

l∑
j=0

(
k + 1

j

)
(−1)k+1−j

l+1∫
l

(x− j)ke−Tx dx =

= (−1)k
k∑

j=0

(
k + 1

j

)
(−1)j

k∑
l=j

l+1∫
l

(x− j)ke−Tx dx =

= (−1)k
k∑

j=0

(
k + 1

j

)
(−1)j

k+1∫
j

(x− j)ke−Tx dx =

= −
k+1∑
j=0

(
k + 1

j

)
(−1)k+1−j

k+1∫
j

(x− j)ke−Tx dx .
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Integration by parts yields

k+1∫
j

(x− j)ke−Tx dx =

[
(x− j)ke−Tx

−T

]k+1

j

+
k

T

k+1∫
j

(x− j)k−1e−Tx dx =

=
(k + 1− j)ke−(k+1)T

−T +
k

T

k+1∫
j

(x− j)k−1e−Tx dx ,

for k ≥ 1. Continuing this process we arrive at

ĝ(w) =

k+1∑
j=0

(
k + 1

j

)
(−1)k+1−j

k∑
i=0

k!

(k − i)!

(k + 1− j)k−ie−(k+1)T

T i+1
−

−
k+1∑
j=0

(
k + 1

j

)
(−1)k+1−j k!

T k+1
e−jT =

=

k∑
i=0

k!

(k − i)!

1

T i+1
e−(k+1)T

k+1∑
j=0

(
k + 1

j

)
(−1)k+1−j(k + 1− j)k−i−

− k!

T k+1

k+1∑
j=0

(
k + 1

j

)
(−1)k+1−j

(
e−T

)j
= − k!

T k+1

(
e−T − 1

)k+1
.

Here we used again, that by (6)

k+1∑
j=0

(
k + 1

j

)
(−1)k+1−j(k + 1− j)k−i = 0 .

Returning to the original notation we have that

(18) C(fk)(w) = −
k!

(iw − λ)k+1
,

and this implies our statement. The theorem is proved. �

5. Relation between the Carleman transform and
the Fourier transform

Using the initial of the name of Kahane here we introduce the K-mean of a
mean periodic function f . In [6] it is proved that for a complex number λ the
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exponential monomial x �→ p(x)eλx belongs to τ(f) if and only if λ is a pole of
order at least n of C(f), where n is the degree of the polynomial p. As C(f) is
meromorphic, each pole of it is of finite order. Consider the case λ = 0. If 0 is
not a pole of C(f), then no nonzero polynomial belongs to τ(f). In particular,
the function 1 does not belong to τ(f). In this case let K(f) = 0, the zero
polynomial. Suppose now that 0 is a pole of C(f). Let n ≥ 1 denote the order
of this pole, and define the polynomial K(f) of degree n−1 as follows: for each
real x let

(19) K(f)(x) = −
n−1∑
k=0

ik+1 ck+1

k!
xk ,

where ck denotes the coefficient of w−k in the polar part of the Laurent series
expansion of C(f) around w = 0 (k = 0, 1, . . . , n− 1).

By Theorem 10. we have the following basic result.

Theorem 11. For each polynomial p we have

(20) K(p) = p .

Proof. Formula (18) gives the result with λ = 0 for the polynomial
x �→ xk for each natural number k. The general case follows by linearity. �

Using again equation (18) and linearity we have the extension of the previ-
ous theorem.

Theorem 12. Let ϕ be an exponential polynomial of the form (9). Then we
have

(21) K(ϕ) = p0 .

Another basic property of the K-transform is expressed by the following
theorem.

Theorem 13. The K-transformation is a continuous linear mapping from
MP(R) into P(R), which commutes with all translations.

Proof. By the definition of C(f) the K-transformation is clearly linear.

For the proof of continuity we remark that the mapping f �→ f− and
hence also f �→ g and f �→ C(f) are continuous on MP(R). Finally, the
coefficients ck of the Laurent expansion of C(f) can be expressed — by Cauchy’s
integral formulas — by path integrals which can be interchanged with taking
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uniform limits over compact sets. Hence the K-transformation is continuous
from MP(R) into P(R).

Let ϕ be an exponential polynomial of the form (9) and y be real number.
Then, by Theorems 11. and 12., we have

τy K(ϕ)(x) = K(ϕ)(x+ y) = p0(x+ y) = K(τyϕ)(x)

for each real x. Hence the K-transformation commutes with all translations
on the exponential polynomials. By the spectral synthesis result Theorem 1,
exponential polynomials form a dense subset in τ(f) for each mean periodic f ,
hence, by continuity, the theorem is proved. �

Our main theorem follows.

Theorem 14. For each mean periodic function f we have

(22) K(f) = M(f) .

Proof. In [10] we have shown (see Theorem 4.2.5 on p. 64) that linearity
and continuity together with the property of commuting with translations and
leaving polynomials fixed characterize the operator M among the mappings
fromMP(R) into P(R). As we have seen in the previous theorems the operator
K shares these properties with M , hence they are identical. �

6. Fourier series and convergence

In (11) we have seen that if f is an exponential polynomial, then we have
the representation

(23) f(x) =
∑
λ∈C

f̂(λ)(x) eλx .

This is a finite sum because f̂(λ) = 0 if λ does not belong to the spectrum of
f , and the spectrum is finite. The question arises: if f is an arbitrary mean
periodic function, does a similar - not necessarily finite - sum converge to f in
some sense? The answer is clearly negative even in the case of periodic functions
but still we can get a kind of convergence in a special class of measures.

The measure (or compactly supported distribution) μ is called slowly de-
creasing if there are constants A,B, ε > 0 such that

max{|μ̂(y)| : y ∈ R, |x− y| ≤ A ln(2 + |x|)} ≥ ε(1 + |x|)−B .
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For instance, if μ̂ is a nonzero exponential polynomial, then μ is slowly decreas-
ing.

We shall formulate a convergence theorem for another class of mean periodic
functions, namely for C∞-mean periodic functions. Let E(R) denote the space
C∞(R) with the usual topology of uniform convergence of all derivatives over
compact subsets. This is a locally convex topological vector space and its
dual is the space of all compactly supported distributions. If μ is a compactly
supported distribution and f is in E(R) satisfying

f ∗ μ = 0 ,

then f is called mean periodic with respect to μ, or simply mean periodic. Now
we can formulate a convergence theorem for Fourier series.

Theorem 15 (L. Ehrenpreis, 1960). Let μ be a slowly decreasing compactly
supported distribution and let f be a mean periodic function with respect to μ
in E(R). Then there are finite disjoint subsets Vk (k = 1, 2, . . . ) of sp(f) such
that

⋃
k Vk = sp(f) and the series

∞∑
k=1

∑
λ∈Vk

f̂(λ)(x) eλx

converges to f in E(R).

We note that continuous mean periodic functions can be approximated very
well by mean periodic functions in E(R). Indeed, let

χε(x) =
1

ε
χ
(x
ε

)
,

where χ is a compactly supported C∞ function. Then fε = χε ∗ f tends to f
in E(R). Further fε satisfies the same equation as f :

fε ∗ μ = (χε ∗ f) ∗ μ = χε ∗ (f ∗ μ) = 0 .

Hence the theory of continuous mean periodic functions can be reduced to the
theory of C∞-mean periodic functions.
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[10] Székelyhidi, L., Convolution Type Functional Equations on Topological
Abelian Groups, World Scientific Publishing Co. Pte. Ltd., Singapore, New
Jersey, London, Hong Kong, 1991.

[11] Yosida, K., Functional Analysis, Academic Press, New York, London,
1968.
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