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A NOTE ON DYADIC HARDY SPACES

P. Simon (Budapest, Hungary)

Dedicated to the 60th birthday of Professor Antal Jdrai

Abstract. The usual LP-norms are trivially invariant with respect to mul-
tiplication by Walsh functions. The analogous question will be investigated
in the dyadic Hardy space H. We introduce an invariant subspace H, of
H in this sense and show some properties of H.. For example a function
in H, will be constructed the Walsh—Fourier series of which diverges in
L'-norm.

1. Introduction

Let w,, (n € N) be the Walsh—Paley system defined on the interval [0, 1). It
is well-known that w,, = H;”;O r;”“, where ry is the k-th Rademacher function
(k€ N)and n =Y 7 ng2¥ (ny =0 or 1 for all k’s) is the dyadic represen-
tation of n. If n = > 7-  n2%, m = Y77 my2% € N then w,wn, = Woam,
where the operation & is defined by

oo
ndm:= Z Ing — my|2F.
k=0

Thus it is clear that

2"em=2"4+m (neN, m=0,...,2" —1),
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Le. rpWy = WanWy = Wan . (For more details we refer to the book [1].) For
1 <p<oolet LP := LP[0,1) and let ||.|, denote the usual Lebesgue space
and norm. If f € L', n € N then let S, f be the n-th Walsh-Fourier partial
sum of f, i.e. S,f = f* D,, where D,, := ZZ;S wg and * stands for dyadic
convolution. We remark that r,Dan = Dant1 — Dan (n € N). The next
famous property of Dsx’s plays an important role in the Walsh analysis:

m (0<a <2
(1) Don(z) = { -
0 (@2m<z<l).

Therefore
Sef@=2 [ § @ebu)

I, (x)
Here © € I,(x) := [j27",(j + 1)27") with a proper integer j(z) = j =
=0,...,2" — 1. Set I, := I,,(0).

We recall that

[ Dn |1

) 1D
n logn

The dyadic maximal function f* of f € L! is defined as follows:
f* :=sup|San f].
n

Then for all p > 1 we have [|f|l, < |[f*l, < Cpllfllp- (Here and later C,,C
will denote positive constants depending at most on p, although not always the
same in different occurences.) The so-called dyadic Hardy space H := HJ0, 1)

is defined by means of the maximal function as follows:
H:={fe L :[f]l:=f[h < oo}

The atomic structure of H is very useful in many investigations. Namely,
we call a function a € L (dyadic) atom if fol a = 0 and there exists a dyadic
interval I,(z) (n € N, z € [0,1)) such that a(z) =0 (z €[0,1)\ I,(z)) and
la]loo < 2™. Let supp a := I,(z). The characterization of H by means of atoms
reads as follows:

(o]
feEH «— f:Zakak,
k=0
where all ax’s are atoms and the coefficients «j’s have the next property:
> o la| < oo. Furthermore,

(o)
]| ~ inf D fevel,
k=0
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where the infimum is taken over all atomic representations ZZOZO agag of f.
(For the martingale theoretic background we refer to [4].)

For example the functions r, Dan (n € N) are trivially atoms by (1). Thus

oo
(3) f= Z oy, Dovn
n=0
belongs to H if Y7 |on| < oo and the indices vy < 11 < ... are choosen

arbitrarily. Moreover, ||f|l1 < |l f]l < 302 laml-

It is not hard to see that the partial sums Sena (n € N) remain atoms
if a € L* is an atom. Indeed, if supp a = In(2) (N € N, z € [0,1)) and
x €[0,1) \ In(z) then for all n € N the intervals I,,(z) and Iy (z) are disjoint

or I,(x) NIn(2) = In(2). Thus
1
2”/ a 2"/ a
IN(Z) 0

2”/ a 2”/ a
In(x) In(x)m[N(Z)

thus Sena(r) = 0. Furthermore, ||Sonalloo < [lallee < 2V, ie. supp Sgna =
= In(z) and fol Sona = fol a=0.

|Sana(x)] = = < =0,

Therefore if f = Z;o:o akak is an atomic representation of f € H then
Sonf = Y peoarSema  (n € N) is an atomic representation of San f. This
means that ||Sonfl| < Ypo g lag|, ie. [[Sanf]| < [If]l- (The last inequality
follows also from the obvious estimation (San f)* < f*.)

We remark that H can be defined also in another way. To this end let
f e L' and

~ 1/2

Qf = < Z (5nf)2>
n=—1

be its quadratic variation, where 6_;f := fol [y Onf = Sont1rf — Sonf =

= f*(rp,D2n) (n € N). Then

LA~ QM i 1l ~ [1@Fl, (1 <p <o)

If feLl'!neNand k=0,...,2" — 1, then wy, is constant on I,,(z) (z €
€ [0, 1)), consequently wy(z) fIn(x) f= f]n(z)(fwk)' This means that wgSon f =
= Son(fwg). Furthermore, if 2" < k € N is arbitrary then let us write k =
= E?’:O k;27 (with some N 3 N > n). It is clear that

0 (4 #N)

;€ N).
wiSef (=) UGN

dj(wpSan f) = {
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From this it follows that Q(wgS2n f) = [San f], i.e. for all £ € N we have
[[wiSon fI| = [1S2n (fwp) |l (K <2") and

(4)
[wpSon fl| < Cl[San fll (k= 2%).

The Walsh—Paley system doesn’t form a basis in L. Moreover, there exists
f € H such that
sup [[Sn fll1 = oc.
n

However (see [3]), if f € H then

n

LS ISy oo

log n —

or equivalently

n

1 Z”filfkf”l —0 (n — o).

log n P

For the sake of the completeness and in order to demonstrate the usefulness of
the atomic structure we sketch some examples. Namely we take the function
given by (3). If I, =0,1,...,2"» — 1 (n € N) then

(%) 1520 41, f = Sovn fllr = len | D1, [l1-
It is well-known that k&, € {0,1,...,2Y» — 1} can be choosen so that
| Dk, |l = Cup, (n € N)
holds. Then we get
[S2vn 4k, f = S2vn fll1 = Clanlvn  (n € N).

If sup,, | |vn = oo then [[San fll1 < 3777 o | < oo implies sup,, ||, f]l1 = oc.
It is obvious that o, = 27", v, = on’ (n € N) are suitable. (We remark
that inf,, |a, |1y, > 0 is trivially sufficient for the ||.||; divergence of the Walsh—
Fourier series of f.)

If f € H is given by (3) then ||S,f — fll1 = 0 (n — o) if and only if
Unoyp — 0 (n — o0). Indeed, if I, := k,’s are as above then Cv,|a,| <
< |an||| Dk, |l and (%) proves necessity. It is known that ||S2ng — g|l1 — O
(n — o00) for all g € L. Therefore (see (2)) ||Dy, |1 < Clogl, < Cv, and
Vpa, — 0 (n — oo) together with (*) imply the ||.||; convergence of the series

(3).
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Finally, we cite an example f € L'\ H such that ||S,f—f|l1 = 0 (n — o0).
To this end we take a special function f := >~ j a,rpDon in (3) such that
the coefficients a;, form a null-sequence of bounded variation, i.e. > 7 |ov, —
—pt1| < 0o. Tt is well-known that this assumption on the coefficients implies
the ||.||1-convergence of the series in question. Indeed, for all n,m € N, n <m
it follows by (1) that

m m
Z Oék'f’k;DQk = Z ak(D2k+1 - D2k) =
k=n 1 k=n 1
m
= Z (ag—1 — ag)Dor + ayy Dom — vy Daon|| <
k=n+1 1

m
< Y law—r = arllDorllr + laml[|Dam |y + e[| Den |11 =
k=n-+1
m
= Z lak—1 — ag| + |am| + Jan| = 0 (n,m — o0).
k=n+1

Therefore f € L'. Furthermore, if 271 <z <27% (k € N) then

k
Z a222n > |ay|2F,

n=0

i a2D3.(z) =
n=0

and
oo 9~k 0o 9~k 1 o
QA=Y [ Qr=> [ a2 =53 el
k=0’27F " k=072 "7 k=0

This means that ||f|| = oo if Y7~ |ax| = co. Now, we prove the ||.|[; conver-
gence of the sequence S, f. To this end let 1 < n € N and m,, =0,...,2" — 1.
Then by (2) we have

1527 4, f = S2n fll1 = l|anrn D,

Hence nay, — 0 (n — o00) is implies to ||Sanim, f — Sonfll1 = 0 (n — o).
Since ||Sonf— fll1 = 0 (n — o0) we get ||Snf— flli = 0 (n— o0). A simple
calculation shows that the sequence

1

= (n+2)log (n+ 2) (n€N)

1= |an|[|Dm,, [[1 < Clag|log my < Cnlan|.

Qn

satisfies all of the conditions above. By means of similar observations it can
be proved that the assumption > || < oo in (3) is necessary to f € H in
the general case as well.
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2. Results

It is clear that for all f € LP (1 <p < c0) and n € N we have fw, € LP
and || fwn|lp = || f]lp- The situation in the case of H is more complicated. For
example if we take the atoms f,, :=r,Dan € H (n € N) then || f,|| =1 and

)

Il = 12| = 105 s = |z D
=n 1

where by (1)

28 27kl <o <27® k=0,...,n—1)
max Dox (x) =
k<n 2 (0<x<27").
From this it follows immediately that ||Dan| = 2 '2'_ 2, ie.

n —|— 2
Irnfall = lwan full = —— | full-
First we prove that an analogous relation holds in general.

Theorem 1. Let k € N. Then there exists a constant Cy, such that for all
f € H the product fwy, belongs to H and || fwg] < Ck||f]-

Our example above shows that Con > HTH (n € N), i.e. sup;, C} = 0.
Since all Walsh functions are final products of Rademacher functions, we need

to prove Theorem 1 only for &k =2" (n € N).

In this case let f = Z;O:O ajay be an atomic representation of f € H. Then

Z || (akTn)”

[fwanll = [frall = [1(frn) "l <

1

o0 o0
< D lawll(awra) s =Y lawlllaxra].
k=0 k=0

If we can show that

(%) A, = sup||ary,|| < oo
a
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(where the supremum is taken over all atoms a), then

H(frn)*Hl < A4, Z |04k|a

k=0

Le. [[frall < Anll£]-

Proof of the inequality (x*). Let a be an atom, k € N,z € [0,1). In the
case k > n the n-th Rademacher function r, is constant on the interval Ij(z)

and thus
ar, = 2krn(x)/ a.
I (x)

Sov(ar) () = 2*

I ()
Therefore
(ary)* = sup |Sqr (ary)| < max |Sar (ary,)| + sup |Saral <
k k<n k>n

< max |Sax (ary,)| + sup |Soral = max | Sy (ary )| + a™ =: (ar,)™™ + a™.
k<n k k<n

From this it follows that

llarn|l = ll(arn)*lln < l[(arn)™ L + la®]L =

= l[(arn)™ [[x + llall < [[(arn)™ |1 + 1.
This means that it is enough to show only

sup [|(arp)™ |1 < o0
a

(where the supremum is taken over all atoms a).

To this end let a be an atom. For the sake of simplicity we assume that
supp a = Iy (with some N € N). Then

(arp)™ =: Ji(a) + J2(a).

P~

(@)™l = / (arn)™ +

In 2

Hence by means of the Cauchy inequality and the properties of atoms it follows
that

1/2
Ji(a) < /((m“n)**)2 27 N2 < 2N (ary ) |2 < Co27 N lary | <

N

S 022_N/2||GH002_N/2 S Cg.
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We will show that
sup Ja(a) < oo.

Indeed, if a is the atom as above and n < N, then ar,, = a, i.e.

Ja(a) < [[(arn)™ [l = [|max[Saeallly < [la™[ly = [la]| < 1.
Thus it can be assumed that N < n. Let k=0, ...,n and 2=~ < 2z < 1. Then

Sor (arp)(z) = 2k / ar, = 2F / ary,

I (z) I (x)NIn

where Iy () NIy # () exactly if k < N —1 and z < 27F (in this case Iy (x) = I
and I (x) N Iy = Iy). This means that with the notation kg(x) := max{k =
=0,..,N—1:2<27%} we get

(arp)*™(x) = max |Sor(ar,)(z)| = max 2F /arn <

k<ko(z) k<ko(z)
N
1
< max 2F||al|; < 2k®) < =
k<ko(z) x
Summarizing the above facts it follows that
1 1
dx
/ ary)* / — 10g2 =CN < Chn,
x
N —N

2-

which proves Theorem 1. W

Therefore it can be assumed that ”"2"2 < C;m < C(n+1) (n e N).
Furthermore, if n = Z?io nj2j is the dyadic representation of n € N, then

Ifwall < IFIT] G < CMllfll - (F € B,
§=0

where [n| := Y277 n;, and [n] := [[72((j + 1)™, and the above estimation
cannot be improved. For example [2¥| =1 and [2¥] =k +1 (k € N).

Theorem 1 involves the next concept: if f € H then let

[£]l+ == sup [ fwn]].
n
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It follows immediately that ||.||. is a norm, |.|| < ||.||« but (see the above
remarks) ||.||«, |||l are not equivalent. Moreover, it is not hard to construct
f € H such that ||f||. = co. Indeed, we take the function given in (3). Then
for all k € N we get

oo
[frucll = ||| Do || — Z T T, Davn
k#n=0

It is clear that all products 7,7y, Dave (k # n € N) are atoms, which implies

oo oo
E Ty, Ty, Dovn || < E lan| = g < oc.
k#n=0 n=0

Then

v +2

£l = L frdl 2 lewll Dol = g = lan]—

—q— 0 (k — o0)

follows by means of a suitable choice of parameters.

F. Schipp (see [2]) introduced the following norms

£l 2= llsup QUfwa)ly . 17 o=

sup [Som (fwn)|
m,n p
(felL', 1<p< o),

and proved the non-trivial equivalence || f|l«p ~ || fllp, (1 <p < 00). It is clear
that these norms are shift invariant, i.e. for all n € N the equalities || fwy||+«p =
= | fllsps Il fwnl*® = || f]*" hold. Furthermore, the inequality ||.|l. < [.|[*!
follows immediately. Moreover, for all &k € N we get

IFwill < ClQ(fwr)ll < Clisup Q(fwn)ly = Clf[l1,

ie. ||f[l« < C|fll«1 holds, too. Schipp proved for F := 307 27/ 2r5 Dyon
that F € H but ||F|.1 = oco. (This example is a special case of (3).) Our
example above along with ||.]| < ||.]|+ < ||.||** shows also the existence of f € H
such that || f||*! = co. The question wheter the norm ||.|[,; and the norm ||.|**
are equivalent or not remains open.

Let us introduce the space H, as follows:

H.:={feH:|f|l<oc}
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Then H, is a proper subspace of H. For all n, k € N it is clear that 1 = ||w, ]| =
= Jwgenl| = |lwgwn], ie. |Jwy|l+ = 1. Thus w, € H, and therefore every
Walsh polynomial (finite linear combination of Walsh functions) belongs to
H.. Furthermore, if f € H, then

| fwnll = sup | fwnwg|l = Sup | fwnerll = sup || fw;]l = [ f]]+
J

In other words the norm ||.||. is also invariant with respect to multiplication
by Walsh functions.

Above we remarked that there exists f € H such that its Walsh—Fourier se-
ries diverges in |.||; norm. We show that this result can be sharpened. Namely,
the next theorem holds:

Theorem 2. There exists f € H, with |.||1-divergent Walsh-Fourier se-
ries.

Proof. We take the function f := > a7, Dovs from (3). It was shown
above (see (x)) that ¢ := > ° |ay| < 0o and inf,, |, [v, > 0 imply the |y
divergence of the Walsh—Fourier series of f.

To the proof of f € H, let k = Z;io k;27 be the dyadic representation of

k € N. Then wy, = H;io r;-cj. Taking into account that

oo
wiTsDos = H rfjrngs (s € N)
Jj=s

is obviously an atom, provided ks = 0 or ks = 1, but there is j > s+ 1 such
that k; = 1. Let Ny be the set of such k’s. Then k € N° := N\ Ny iff
k=2%+ Zj;(l) k;2%, i.e. N® = NN [2%2°T1). In this case wyrsDas = Das.

If k¢ U,y N”, then
oo
Jwg = Z anwiry, Dovy
n=0
is an atomic representation of fwy and so || fwg| < 307 lan| = q.
If k € U,y N, then there is a unique m € N such that k € N"m :

o0
fwi = o Dovm + E anWiTy, Davn =1 0ty Dovin + fo.
m#n=0
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The above observations lead to || fo|| < >0 |an| = ¢ < oo and
[fwill < e[| Davm || + | foll < Clam|vm + g-
We see that the assumption sup,, |, |V, < oo is sufficient to

sup || fwg|| < Csup|ap|v, + ¢ < oo.
k n

In this case f € H,. For example if a,, := 27" v, := 2" (n € N), then the
function f = Y07 27 "rgan Dyon proves Theorem 2. W

If f € Hthen Qf € L', ie. Qf = (221_1(5kf)2)1/2 < o0 a.e. Thus
(2 (00)2)

— 0 (n— o00) a.e. and we get by Lebesgue’s theorem that

oo

1/2
1f = Son fIl < ClQMf = S2n) |1 = C (Z(5kf)2> =0 (n—o0).

k=n 1

However, this last convergence property doesn’t hold true if the norm ||.|| will
be replaced by ||.||«. Indeed, taking the function f € H, from the proof of
Theorem 2 we get analogously that

o0
E Ty, Dove

k=n

If = Savn flls =

chgf lok|ve — q (n e N).

*

Let ay := 27% vy := 28 (k € N), where s € N is defined by 2°C > 2. Then
q=37"0lar] =2 and ||f — Sovn f|l« > 2°C -2 (n € N),ie. |f— Sonf
doesn’t tend to zero if n — co.

We recall that |50 f < [If1 (f € LY), 192 fIl < If] (f € Hyn € N).
Applying (4) it is not hard to prove that an analogous inequality holds if we
replace the norm ||.|| by |.||«. Indeed,

|«

[|San f]l. = sup [[wgSan f|| = maX{ sup [|wgSan f||, sup wkSanll} <
k k<2n k>2n

< max {ksu; | fwnl, Cl1San f } < max{s%p ||fwk||,0|f||1} <clfl..
< mn

Hence if f € L' then

[£[l+ = sup [|(fwn)*[lx = sup || sup [Sam (fwn)|[l1-
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Let p > 1 and f € LP. Then for arbitrary n € N we can write

[fwnll = [(fwn) [l < |(fwn)"llp < Cpll fronllp = Coll Flp,

Le. [[flls < Cpllfllp- Thus LP C H,. In other words (., L C H.. We will
show that the next statement holds:

Theorem 3. H, \ (Up>1 LP) £ 0.

Proof. Let 1 < p < co and take the function f = Y07 27 "rgen Dyon =:
=Y > QnTy, Dovn as in the proof of Theorem 2. Then f € H,. On the other

hand
P 00 27k k p/2
1718 > GyllQfl > G, 26y | (Z agpgun> _
» k:OQ,Uk,1 n=0
o0 k p/2 o0
=Cpy 27 <Z ai?”n) >Cp Y k2 = o m
k=0 n=0 k=0
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