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A NOTE ON DYADIC HARDY SPACES

P. Simon (Budapest, Hungary)

Dedicated to the 60th birthday of Professor Antal Járai

Abstract. The usual Lp-norms are trivially invariant with respect to mul-
tiplication by Walsh functions. The analogous question will be investigated
in the dyadic Hardy space H. We introduce an invariant subspace H∗ of
H in this sense and show some properties of H∗. For example a function
in H∗ will be constructed the Walsh–Fourier series of which diverges in
L1-norm.

1. Introduction

Let wn (n ∈ N) be the Walsh–Paley system defined on the interval [0, 1). It
is well-known that wn =

∏∞
k=0 r

nk

k , where rk is the k-th Rademacher function
(k ∈ N) and n =

∑∞
k=0 nk2

k (nk = 0 or 1 for all k’s) is the dyadic represen-
tation of n. If n =

∑∞
k=0 nk2

k, m =
∑∞

k=0 mk2
k ∈ N then wnwm = wn⊕m,

where the operation ⊕ is defined by

n⊕m :=
∞∑
k=0

|nk −mk|2k.

Thus it is clear that

2n ⊕m = 2n +m (n ∈ N, m = 0, . . . , 2n − 1),
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i.e. rnwm = w2nwm = w2n+m. (For more details we refer to the book [1].) For
1 ≤ p ≤ ∞ let Lp := Lp[0, 1) and let ‖.‖p denote the usual Lebesgue space
and norm. If f ∈ L1, n ∈ N then let Snf be the n-th Walsh–Fourier partial
sum of f, i.e. Snf = f ∗ Dn, where Dn :=

∑n−1
k=0 wk and ∗ stands for dyadic

convolution. We remark that rnD2n = D2n+1 − D2n (n ∈ N). The next
famous property of D2n ’s plays an important role in the Walsh analysis:

(1) D2n(x) =

{
2n (0 ≤ x < 2−n)

0 (2−n ≤ x < 1).

Therefore

S2nf(x) = 2n
∫

In(x)

f (x ∈ [0, 1)).

Here x ∈ In(x) := [j2−n, (j + 1)2−n) with a proper integer j(x) = j =
= 0, . . . , 2n − 1. Set In := In(0).

We recall that

(2) sup
n

‖Dn‖1
log n

<∞.

The dyadic maximal function f∗ of f ∈ L1 is defined as follows:

f∗ := sup
n
|S2nf |.

Then for all p > 1 we have ‖f‖p ≤ ‖f∗‖p ≤ Cp‖f‖p. (Here and later Cp, C
will denote positive constants depending at most on p, although not always the
same in different occurences.) The so-called dyadic Hardy space H := H[0, 1)
is defined by means of the maximal function as follows:

H := {f ∈ L1 : ‖f‖ := ‖f∗‖1 <∞}.

The atomic structure of H is very useful in many investigations. Namely,

we call a function a ∈ L∞ (dyadic) atom if
∫ 1

0
a = 0 and there exists a dyadic

interval In(z) (n ∈ N, z ∈ [0, 1)) such that a(x) = 0 (x ∈ [0, 1) \ In(z)) and
‖a‖∞ ≤ 2n. Let supp a := In(z). The characterization of H by means of atoms
reads as follows:

f ∈ H ⇐⇒ f =

∞∑
k=0

αkak,

where all ak’s are atoms and the coefficients αk’s have the next property:∑∞
k=0 |αk| <∞. Furthermore,

‖f‖ ∼ inf
∞∑
k=0

|αk|,
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where the infimum is taken over all atomic representations
∑∞

k=0 αkak of f.
(For the martingale theoretic background we refer to [4].)

For example the functions rnD2n (n ∈ N) are trivially atoms by (1). Thus

(3) f :=

∞∑
n=0

αnrνn
D2νn

belongs to H if
∑∞

k=0 |αn| < ∞ and the indices ν0 < ν1 < . . . are choosen
arbitrarily. Moreover, ‖f‖1 ≤ ‖f‖ ≤

∑∞
n=0 |αn|.

It is not hard to see that the partial sums S2na (n ∈ N) remain atoms
if a ∈ L∞ is an atom. Indeed, if supp a = IN (z) (N ∈ N, z ∈ [0, 1)) and
x ∈ [0, 1) \ IN (z) then for all n ∈ N the intervals In(x) and IN (z) are disjoint
or In(x) ∩ IN (z) = IN (z). Thus

|S2na(x)| =
∣∣∣∣∣2n

∫
In(x)

a

∣∣∣∣∣ =
∣∣∣∣∣2n

∫
In(x)∩IN (z)

a

∣∣∣∣∣ ≤
∣∣∣∣∣2n

∫
IN (z)

a

∣∣∣∣∣ =
∣∣∣∣2n ∫ 1

0

a

∣∣∣∣ = 0,

thus S2na(x) = 0. Furthermore, ‖S2na‖∞ ≤ ‖a‖∞ ≤ 2N , i.e. supp S2na =

= IN (z) and
∫ 1

0
S2na =

∫ 1

0
a = 0.

Therefore if f =
∑∞

k=0 αkak is an atomic representation of f ∈ H then
S2nf =

∑∞
k=0 αkS2na (n ∈ N) is an atomic representation of S2nf. This

means that ‖S2nf‖ ≤
∑∞

k=0 |αk|, i.e. ‖S2nf‖ ≤ ‖f‖. (The last inequality
follows also from the obvious estimation (S2nf)

∗ ≤ f∗.)

We remark that H can be defined also in another way. To this end let
f ∈ L1 and

Qf :=

( ∞∑
n=−1

(δnf)
2

)1/2

be its quadratic variation, where δ−1f :=
∫ 1

0
f, δnf := S2n+1f − S2nf =

= f ∗ (rnD2n) (n ∈ N). Then

‖f‖ ∼ ‖Qf‖1 , ill. ‖f‖p ∼ ‖Qf‖p (1 < p <∞).

If f ∈ L1, n ∈ N and k = 0, . . . , 2n − 1, then wk is constant on In(x) (x ∈
∈ [0, 1)), consequently wk(x)

∫
In(x)

f =
∫
In(x)

(fwk). This means that wkS2nf =

= S2n(fwk). Furthermore, if 2n ≤ k ∈ N is arbitrary then let us write k =

=
∑N

j=0 kj2
j (with some N � N ≥ n). It is clear that

δj(wkS2nf) =

{
0 (j �= N)

wkS2nf (j = N)
(j ∈ N).
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From this it follows that Q(wkS2nf) = |S2nf |, i.e. for all k ∈ N we have

(4)
‖wkS2nf‖ = ‖S2n(fwk)‖ (k < 2n) and

‖wkS2nf‖ ≤ C‖S2nf‖1 (k ≥ 2n).

The Walsh–Paley system doesn’t form a basis in L1. Moreover, there exists
f ∈ H such that

sup
n
‖Snf‖1 =∞.

However (see [3]), if f ∈ H then

1

log n

n∑
k=1

‖Skf‖1
k

→ ‖f‖ (n→∞),

or equivalently

1

log n

n∑
k=1

‖f − Skf‖1
k

→ 0 (n→∞).

For the sake of the completeness and in order to demonstrate the usefulness of
the atomic structure we sketch some examples. Namely we take the function
given by (3). If ln = 0, 1, . . . , 2νn − 1 (n ∈ N) then

(∗) ‖S2νn+lnf − S2νn f‖1 = |αn|‖Dln‖1.

It is well-known that kn ∈ {0, 1, . . . , 2νn − 1} can be choosen so that

‖Dkn‖1 ≥ Cνn (n ∈ N)

holds. Then we get

‖S2νn+knf − S2νn f‖1 ≥ C|αn|νn (n ∈ N).

If supn |αn|νn =∞ then ‖S2nf‖1 ≤
∑∞

k=0 |αk| <∞ implies supn ‖Snf‖1 =∞.

It is obvious that αn := 2−n, νn := 2n
2

(n ∈ N) are suitable. (We remark
that infn |αn|νn > 0 is trivially sufficient for the ‖.‖1 divergence of the Walsh–
Fourier series of f.)

If f ∈ H is given by (3) then ‖Snf − f‖1 → 0 (n → ∞) if and only if
νnαn → 0 (n → ∞). Indeed, if ln := kn’s are as above then Cνn|αn| ≤
≤ |αn|‖Dkn‖1 and (∗) proves necessity. It is known that ‖S2ng − g‖1 → 0
(n → ∞) for all g ∈ L1. Therefore (see (2)) ‖Dln‖1 ≤ C log ln ≤ Cνn and
νnαn → 0 (n→∞) together with (∗) imply the ‖.‖1 convergence of the series
(3).
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Finally, we cite an example f ∈ L1\H such that ‖Snf−f‖1 → 0 (n→∞).
To this end we take a special function f :=

∑∞
n=0 αnrnD2n in (3) such that

the coefficients αn form a null-sequence of bounded variation, i.e.
∑∞

n=0 |αn −
−αn+1| <∞. It is well-known that this assumption on the coefficients implies
the ‖.‖1-convergence of the series in question. Indeed, for all n,m ∈ N, n < m
it follows by (1) that∥∥∥∥∥

m∑
k=n

αkrkD2k

∥∥∥∥∥
1

=

∥∥∥∥∥
m∑

k=n

αk(D2k+1 −D2k)

∥∥∥∥∥
1

=

=

∥∥∥∥∥
m∑

k=n+1

(αk−1 − αk)D2k + αmD2m − αnD2n

∥∥∥∥∥
1

≤

≤
m∑

k=n+1

|αk−1 − αk|‖D2k‖1 + |αm|‖D2m‖1 + |αn|‖D2n‖1 =

=

m∑
k=n+1

|αk−1 − αk|+ |αm|+ |αn| → 0 (n,m→∞).

Therefore f ∈ L1. Furthermore, if 2−k−1 ≤ x < 2−k (k ∈ N) then

Qf(x) =

√√√√ ∞∑
n=0

α2
nD

2
2n(x) =

√√√√ k∑
n=0

α2
n2

2n ≥ |αk|2k,

and

‖Qf‖1 ≥
∞∑
k=0

∫ 2−k

2−k−1

Qf ≥
∞∑
k=0

∫ 2−k

2−k−1

|αk|2k =
1

2

∞∑
k=0

|αk|.

This means that ‖f‖ = ∞ if
∑∞

k=0 |αk| = ∞. Now, we prove the ‖.‖1 conver-
gence of the sequence Snf. To this end let 1 ≤ n ∈ N and mn = 0, ..., 2n − 1.
Then by (2) we have

‖S2n+mn
f −S2nf‖1 = ‖αnrnDmn

‖1 = |αn|‖Dmn
‖1 ≤ C|αn| log mn ≤ Cn|αn|.

Hence nαn → 0 (n → ∞) is implies to ‖S2n+mn
f − S2nf‖1 → 0 (n → ∞).

Since ‖S2nf −f‖1 → 0 (n→∞) we get ‖Snf −f‖1 → 0 (n→∞). A simple
calculation shows that the sequence

αn :=
1

(n+ 2) log (n+ 2)
(n ∈ N)

satisfies all of the conditions above. By means of similar observations it can
be proved that the assumption

∑∞
n=0 |αn| <∞ in (3) is necessary to f ∈ H in

the general case as well.
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2. Results

It is clear that for all f ∈ Lp (1 ≤ p ≤ ∞) and n ∈ N we have fwn ∈ Lp

and ‖fwn‖p = ‖f‖p. The situation in the case of H is more complicated. For
example if we take the atoms fn := rnD2n ∈ H (n ∈ N) then ‖fn‖ = 1 and

‖rnfn‖ = ‖D2n‖ = ‖D∗
2n‖1 =

∥∥∥∥max
k≤n

D2k

∥∥∥∥
1

,

where by (1)

max
k≤n

D2k(x) =

{
2k (2−k−1 ≤ x < 2−k, k = 0, . . . , n− 1)

2n (0 ≤ x < 2−n).

From this it follows immediately that ‖D2n‖ = n+ 2
2 , i.e.

‖rnfn‖ = ‖w2nfn‖ =
n+ 2

2
‖fn‖.

First we prove that an analogous relation holds in general.

Theorem 1. Let k ∈ N. Then there exists a constant Ck such that for all
f ∈ H the product fwk belongs to H and ‖fwk‖ ≤ Ck‖f‖.

Our example above shows that C2n ≥ n+ 2
2 (n ∈ N), i.e. supk Ck = ∞.

Since all Walsh functions are final products of Rademacher functions, we need
to prove Theorem 1 only for k = 2n (n ∈ N).

In this case let f =
∑∞

k=0 αkak be an atomic representation of f ∈ H. Then

‖fw2n‖ = ‖frn‖ = ‖(frn)∗‖1 ≤
∥∥∥∥∥

∞∑
k=0

|αk|(akrn)∗
∥∥∥∥∥
1

≤

≤
∞∑
k=0

|αk|‖(akrn)∗‖1 =

∞∑
k=0

|αk|‖akrn‖.

If we can show that

(∗∗) An := sup
a
‖arn‖ <∞
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(where the supremum is taken over all atoms a), then

‖(frn)∗‖1 ≤ An

∞∑
k=0

|αk|,

i.e. ‖frn‖ ≤ An‖f‖.

Proof of the inequality (∗∗). Let a be an atom, k ∈ N, x ∈ [0, 1). In the
case k > n the n-th Rademacher function rn is constant on the interval Ik(x)
and thus

S2k(arn)(x) = 2k
∫
Ik(x)

arn = 2krn(x)

∫
Ik(x)

a.

Therefore

(arn)
∗ = sup

k
|S2k(arn)| ≤ max

k≤n
|S2k(arn)|+ sup

k>n
|S2ka| ≤

≤ max
k≤n

|S2k(arn)|+ sup
k
|S2ka| = max

k≤n
|S2k(arn)|+ a∗ =: (arn)

∗∗ + a∗.

From this it follows that

‖arn‖ = ‖(arn)∗‖1 ≤ ‖(arn)∗∗‖1 + ‖a∗‖1 =

= ‖(arn)∗∗‖1 + ‖a‖ ≤ ‖(arn)∗∗‖1 + 1.

This means that it is enough to show only

sup
a
‖(arn)∗∗‖1 <∞

(where the supremum is taken over all atoms a).

To this end let a be an atom. For the sake of simplicity we assume that
supp a = IN (with some N ∈ N). Then

‖(arn)∗∗‖1 =

∫
IN

(arn)
∗∗ +

1∫
2−N

(arn)
∗∗ =: J1(a) + J2(a).

Hence by means of the Cauchy inequality and the properties of atoms it follows
that

J1(a) ≤

⎛⎝∫
IN

((arn)
∗∗)2

⎞⎠1/2

· 2−N/2 ≤ 2−N/2‖(arn)∗∗‖2 ≤ C22
−N/2‖arn‖2 ≤

≤ C22
−N/2‖a‖∞2−N/2 ≤ C2.
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We will show that
sup
a

J2(a) <∞.

Indeed, if a is the atom as above and n < N, then arn = a, i.e.

J2(a) ≤ ‖(arn)∗∗‖1 = ‖max
k≤n

|S2ka|‖1 ≤ ‖a∗‖1 = ‖a‖ ≤ 1.

Thus it can be assumed that N ≤ n. Let k = 0, ..., n and 2−N ≤ x < 1. Then

S2k(arn)(x) = 2k
∫

Ik(x)

arn = 2k
∫

Ik(x)∩IN

arn,

where Ik(x)∩ IN �= ∅ exactly if k ≤ N −1 and x < 2−k (in this case Ik(x) = Ik
and Ik(x) ∩ IN = IN ). This means that with the notation k0(x) := max{k =
= 0, ..., N − 1 : x < 2−k} we get

(arn)
∗∗(x) = max

k≤k0(x)
|S2k(arn)(x)| = max

k≤k0(x)
2k

∣∣∣∣∣∣
∫
IN

arn

∣∣∣∣∣∣ ≤
≤ max

k≤k0(x)
2k‖a‖1 ≤ 2k0(x) ≤ 1

x
.

Summarizing the above facts it follows that

J2(a) =

1∫
2−N

(arn)
∗∗ ≤

1∫
2−N

dx

x
≤ C log2 2

N = CN ≤ Cn,

which proves Theorem 1.

Therefore it can be assumed that n+ 2
2 ≤ C2n ≤ C(n + 1) (n ∈ N).

Furthermore, if n =
∑∞

j=0 nj2
j is the dyadic representation of n ∈ N, then

‖fwn‖ ≤ ‖f‖
∞∏
j=0

C
nj

2j ≤ C |n|[n]‖f‖ (f ∈ H),

where |n| :=
∑∞

j=0 nj , and [n] :=
∏∞

j=0(j + 1)nj , and the above estimation

cannot be improved. For example |2k| = 1 and [2k] = k + 1 (k ∈ N).

Theorem 1 involves the next concept: if f ∈ H then let

‖f‖∗ := sup
n
‖fwn‖.
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It follows immediately that ‖.‖∗ is a norm, ‖.‖ ≤ ‖.‖∗ but (see the above
remarks) ‖.‖∗, ‖.‖ are not equivalent. Moreover, it is not hard to construct
f ∈ H such that ‖f‖∗ = ∞. Indeed, we take the function given in (3). Then
for all k ∈ N we get

‖frνk
‖ ≥ |αk|‖D2νk ‖ −

∥∥∥∥∥∥
∞∑

k �=n=0

αnrνk
rνn

D2νn

∥∥∥∥∥∥ .
It is clear that all products rνk

rνn
D2νn (k �= n ∈ N) are atoms, which implies∥∥∥∥∥∥

∞∑
k �=n=0

αnrνk
rνnD2νn

∥∥∥∥∥∥ ≤
∞∑

n=0

|αn| = q <∞.

Then

‖f‖∗ ≥ ‖frνk
‖ ≥ |αk|‖D2νk ‖ − q = |αk|

νk + 2

2
− q →∞ (k →∞)

follows by means of a suitable choice of parameters.

F. Schipp (see [2]) introduced the following norms

‖f‖∗p := ‖ sup
n

Q(fwn)‖p , ‖f‖∗p :=

∥∥∥∥sup
m,n

|S2m(fwn)|
∥∥∥∥
p

(f ∈ L1, 1 ≤ p <∞),

and proved the non-trivial equivalence ‖f‖∗p ∼ ‖f‖p (1 < p <∞). It is clear
that these norms are shift invariant, i.e. for all n ∈ N the equalities ‖fwn‖∗p =
= ‖f‖∗p, ‖fwn‖∗p = ‖f‖∗p hold. Furthermore, the inequality ‖.‖∗ ≤ ‖.‖∗1
follows immediately. Moreover, for all k ∈ N we get

‖fwk‖ ≤ C‖Q(fwk)‖1 ≤ C‖ sup
n

Q(fwn)‖1 = C‖f‖∗1,

i.e. ‖f‖∗ ≤ C‖f‖∗1 holds, too. Schipp proved for F :=
∑∞

n=0 2
−n/2r2nD22n

that F ∈ H but ‖F‖∗1 = ∞. (This example is a special case of (3).) Our
example above along with ‖.‖ ≤ ‖.‖∗ ≤ ‖.‖∗1 shows also the existence of f ∈ H
such that ‖f‖∗1 =∞. The question wheter the norm ‖.‖∗1 and the norm ‖.‖∗1
are equivalent or not remains open.

Let us introduce the space H∗ as follows:

H∗ := {f ∈ H : ‖f‖∗ <∞}.
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Then H∗ is a proper subspace of H. For all n, k ∈ N it is clear that 1 = ‖wn‖ =
= ‖wk⊕n‖ = ‖wkwn‖, i.e. ‖wn‖∗ = 1. Thus wn ∈ H∗ and therefore every
Walsh polynomial (finite linear combination of Walsh functions) belongs to
H∗. Furthermore, if f ∈ H∗ then

‖fwn‖∗ = sup
k
‖fwnwk‖ = sup

k
‖fwn⊕k‖ = sup

j
‖fwj‖ = ‖f‖∗.

In other words the norm ‖.‖∗ is also invariant with respect to multiplication
by Walsh functions.

Above we remarked that there exists f ∈ H such that its Walsh–Fourier se-
ries diverges in ‖.‖1 norm. We show that this result can be sharpened. Namely,
the next theorem holds:

Theorem 2. There exists f ∈ H∗ with ‖.‖1-divergent Walsh–Fourier se-
ries.

Proof. We take the function f :=
∑∞

n=0 αnrνnD2νn from (3). It was shown
above (see (∗)) that q :=

∑∞
n=0 |αn| < ∞ and infn |αn|νn > 0 imply the ‖.‖1

divergence of the Walsh–Fourier series of f .

To the proof of f ∈ H∗ let k =
∑∞

j=0 kj2
j be the dyadic representation of

k ∈ N. Then wk =
∏∞

j=0 r
kj

j . Taking into account that

wkrsD2s =

∞∏
j=s

r
kj

j rsD2s (s ∈ N)

is obviously an atom, provided ks = 0 or ks = 1, but there is j ≥ s + 1 such
that kj = 1. Let Ns be the set of such k’s. Then k ∈ Ns := N \ Ns iff

k = 2s +
∑s−1

j=0 kj2
s, i.e. Ns = N ∩ [2s, 2s+1). In this case wkrsD2s = D2s .

If k /∈
⋃∞

n=0 N
νn , then

fwk =

∞∑
n=0

αnwkrνnD2νn

is an atomic representation of fwk and so ‖fwk‖ ≤
∑∞

n=0 |αn| = q.

If k ∈
⋃∞

n=0 N
νn , then there is a unique m ∈ N such that k ∈ Nνm :

fwk = αmD2νm +

∞∑
m �=n=0

αnwkrνn
D2νn =: αmD2νm + f0.
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The above observations lead to ‖f0‖ ≤
∑∞

n=0 |αn| = q <∞ and

‖fwk‖ ≤ |αm|‖D2νm ‖+ ‖f0‖ ≤ C|αm|νm + q.

We see that the assumption supn |αn|νn <∞ is sufficient to

sup
k
‖fwk‖ ≤ C sup

n
|αn|νn + q <∞.

In this case f ∈ H∗. For example if αn := 2−n, νn := 2n (n ∈ N), then the
function f =

∑∞
n=0 2

−nr22nD22n proves Theorem 2.

If f ∈ H then Qf ∈ L1, i.e. Qf =
(∑∞

k=−1(δkf)
2
)1/2

< ∞ a.e. Thus(∑∞
k=n(δkf)

2
)1/2 → 0 (n→∞) a.e. and we get by Lebesgue’s theorem that

‖f − S2nf‖ ≤ C‖Q(f − S2n)‖1 = C

∥∥∥∥∥∥
( ∞∑

k=n

(δkf)
2

)1/2
∥∥∥∥∥∥
1

→ 0 (n→∞).

However, this last convergence property doesn’t hold true if the norm ‖.‖ will
be replaced by ‖.‖∗. Indeed, taking the function f ∈ H∗ from the proof of
Theorem 2 we get analogously that

‖f − S2νn f‖∗ =

∥∥∥∥∥
∞∑

k=n

αkrνk
D2νk

∥∥∥∥∥
∗
≥ C inf

k≥n
|αk|νk − q (n ∈ N).

Let αk := 2−k, νk := 2k+s (k ∈ N), where s ∈ N is defined by 2sC > 2. Then
q =

∑∞
k=0 |αk| = 2 and ‖f − S2νn f‖∗ ≥ 2sC − 2 (n ∈ N), i.e. ‖f − S2nf‖∗

doesn’t tend to zero if n→∞.

We recall that ‖S2nf‖1 ≤ ‖f‖1 (f ∈ L1), ‖S2nf‖ ≤ ‖f‖ (f ∈ H, n ∈ N).
Applying (4) it is not hard to prove that an analogous inequality holds if we
replace the norm ‖.‖ by ‖.‖∗. Indeed,

‖S2nf‖∗ = sup
k
‖wkS2nf‖ = max

{
sup
k<2n

‖wkS2nf‖, sup
k≥2n

‖wkS2nf‖
}
≤

≤ max

{
sup
k<2n

‖fwk‖, C‖S2nf‖1
}
≤ max

{
sup
k
‖fwk‖, C‖f‖1

}
≤ C‖f‖∗.

Hence if f ∈ L1 then

‖f‖∗ = sup
n
‖(fwn)

∗‖1 = sup
n
‖ sup

m
|S2m(fwn)|‖1.
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Let p > 1 and f ∈ Lp. Then for arbitrary n ∈ N we can write

‖fwn‖ = ‖(fwn)
∗‖1 ≤ ‖(fwn)

∗‖p ≤ Cp‖fwn‖p = Cp‖f‖p,

i.e. ‖f‖∗ ≤ Cp‖f‖p. Thus Lp ⊂ H∗. In other words
⋃

p>1 L
p ⊂ H∗. We will

show that the next statement holds:

Theorem 3. H∗ \
(⋃

p>1 L
p
)
�= ∅.

Proof. Let 1 < p < ∞ and take the function f =
∑∞

n=0 2
−nr22nD22n =:

=:
∑∞

n=0 αnrνn
D2νn as in the proof of Theorem 2. Then f ∈ H∗. On the other

hand

‖f‖pp ≥ Cp‖Qf‖pp ≥ Cp

∥∥∥∥∥∥
√√√√ ∞∑

n=0

α2
nD

2
2νn

∥∥∥∥∥∥
p

p

≥ Cp

∞∑
k=0

2−νk∫
2−νk−1

(
k∑

n=0

α2
nD

2
2νn

)p/2

=

= Cp

∞∑
k=0

2−νk

(
k∑

n=0

α2
n2

2νn

)p/2

≥ Cp

∞∑
k=0

αp
k2

(p−1)νk =∞.
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