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SYMMETRIC DEVIATIONS AND

DISTANCE MEASURES

Wolfgang Sander (Braunschweig, Germany)

Dedicated to Professor Antal Járai on his 60th birthday

Abstract. In this paper we characterize measurable information measures
depending upon two probability distributions in a unified manner in order
to get most of the existing information measures. Moreover it turns out
that our characterization contains new, unexpected information measures.

1. Introduction

In this paper we investigate information measures on the open domain de-
pending upon two probability distributions which are also called deviations (or
similarity, affinity or divergence measures). Thus a deviation is a sequence
(Mn) of functions, where

Mn : Γ2
n → R, n ∈ N, n ≥ 2.

Here

Γn =

{
P = (p1, . . . , pn)

∣∣∣ pi ∈ I,

n∑
i=1

pi = 1

}
(1.1)
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denotes the set of all discrete n-ary complete positive probability distributions
and I denotes the open interval (0,1).

In Shore and Johnson [11] it is shown that each deviation (Mn) which
satisfies the four desirable conditions of uniqueness, invariance, system inde-
pendency and subset independency has a sum form representation

Mn(P,Q) =

n∑
i=1

f(pi, qi)(1.2)

for some generating function f : I2 → R. This result underlines the fact that
each known deviation has a sum form, and it is thus natural to assume that a
deviation has the sum form property (1.2) for some generating function f .

Many known deviations have a symmetric generating function f that is,
f(p, q) = f(q, p) for all p, q ∈ I. If a deviation (Mn) is not symmetric then going
over to M ′

n(P,Q) = Mn(P,Q) + Mn(Q,P ) means that M ′
n has a symmetric

generating function f ′(p, q) = f(p, q) + f(q, p).

The problem of how to characterize all sum form deviations, that is to
find some natural conditions which imply the explicite form of the generating
function, arises.

In Ebanks et al [3] (see chapter 5) two results were proven for information
measures (Mn) depending upon two probability distributions P,Q ∈ Γn satisfy-
ing a sufficient “fullness” of the range of (Mn) (the range {Mn(Γ

2
n)|n = 2, 3, ...}

has infinite cardinality):

1. For P,Q ∈ Γn, U, V ∈ Γm we introduce P ∗ U,Q ∗ U,P ∗ V,Q ∗ V ∈ Γnm,
where

(P ∗ U,Q ∗ V ) =

= ((p1u1, ..., p1um, ..., pnu1, ..., pnum), (q1v1, ..., q1vm, ..., qnv1, ..., qnvm))).

Now, if (Mn) has the sum form property with some generating function f
and if Mnm(P ∗U,Q∗V ) = h(Mn(P,Q),Mm(U, V )) for some polynomial
h : R2 → R and for all m,n ≥ 2, then it is shown that h is a symmetric
polynomial of degree at most one so that

(1.3)
Mnm(P ∗ U,Q ∗ V ) =

= Mn(P,Q) +Mm(U, V ) + λMn(P,Q)Mm(U, V )

for some λ ∈ R.

2. If (Mn) has the sum form property with some generating function f , and
there are distributions P ′, Q′ ∈ Γn, U

′, V ′ ∈ Γm such that In(P
′, Q′) �= 0,
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respectively Im(U ′, V ′) �= 0 and

(1.4)
Mnm(P ∗ U,Q ∗ V ) =

= A(U, V )Mn(P,Q) +B(P,Q)Mm(U, V )

for some “weights” A and B, then A and B have the sum form

A(U, V ) =
m∑
j=1

M(uj , vj) , B(P,Q) =

n∑
i=1

M ′(pi, qi)(1.5)

for some generating multiplicative functions M,M ′ : R2
+ → R .

We remark that in Ebanks et al [3] the results in 1. and 2. were proven
for information measures depending upon k probability distributions, but the
special case k = 2 with the notation (P,Q) ∗ (U, V ) = (P ∗ U,Q ∗ V ) leads
exactly to the above (nontrivial) results given in (1.3)–(1.5).

We now assume that the generating function f is symmetric in (1.3) and
(1.4) and that M = M ′ is symmetric so that M(p, q) = M ′(p, q) = M1(p)M1(q)
for some multiplicative function M1 : I → R (since a multiplicative function of
two variables is the product of two multiplicative functions in one variable).

Then we form the expression Mnm(P ∗ U,Q ∗ V ) +Mnm(P ∗ V,Q ∗ U) to
get

Mnm(P ∗ U,Q ∗ V ) +Mnm(P ∗ V,Q ∗ U) =

= 2Mn(P,Q) + 2Mm(U, V ) + λ′Mn(P,Q)Mm(U, V )(1.6)

and

Mnm(P ∗ U,Q ∗ V ) +Mnm(P ∗ V,Q ∗ U) =

= 2A(U, V ) ·Mn(P,Q) + 2A(P,Q) ·Mm(U, V ),(1.7)

from (1.3) and (1.4) respectively, where λ′ = 2λ and where

(1.8) 2A(P,Q) =

n∑
i=1

2M1(pi)M1(qi) , 2A(U, V ) =

m∑
j=1

2M1(uj)M1(vj).

Thus a common generalization of the deviations given in (1.6) and (1.7) leads
to the following class of deviations:

Definition 1.1. A deviation (Mn) is a symmetrically weighted compositive
sum form deviation of additive-multiplicative type if (Mn) satisfies

(1.9)
Mnm(P ∗ U,Q ∗ V ) +Mnm(P ∗ V,Q ∗ U) =

= Gm(U, V )Mn(P,Q) +Gn(P,Q)Mm(U, V ) + λMn(P,Q)Mm(U, V ),
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for some λ ∈ R, for all m,n ≥ 2 and for all P,Q ∈ Γn, U, V ∈ Γm with
P ∗ U,Q ∗ U,P ∗ V,Q ∗ V ∈ Γnm, where Mn and Gn have the sum form

(1.10) Mn(P,Q) =

n∑
i=1

f(pi, qi), Gn(P,Q) =

n∑
i=1

g(pi, qi), P,Q ∈ Γn

for some symmetric functions f, g : I2 → R, and where g satisfies

g(pu, qv) + g(pv, qu) = g(p, q)g(u, v) , p, q, u, v ∈ I.(1.11)

We say that (Mn) is measurable if f and g are measurable in each variable.
Moreover, every symmetric deviation (Mn) satisfying Mn(P, P ) = 0 is called a
distance measure.

Note that (1.9) and (1.10) with g(p, q) = p+ q and g(p, q) = 2M1(p)M1(q)
lead to (1.6) and (1.7), respectively, and that both functions g satisfy (1.11).

Thus the deviations (Mn) given by (1.9) and (1.10) satisfy the following
fundamental functional equation

(1.12)

n∑
i=1

m∑
j=1

[ f(piuj , qivj) + f(pivj , qiuj)−

−g(uj , vj)f(pi, qi)− g(pi, qi)f(uj , vj)− λf(pi, qi)f(uj , vj) ] = 0,

where g satisfies (1.11).

In this paper we will present the measurable solutions of (1.11) and (1.12),
generalizing the result in Chung et al [2] where the measurable solutions of
functional equation (1.6) were given.

Let us finally consider some examples in this introduction.

Kerridge’s inaccuracy Kn or the directed divergence Fn is given by

(1.13) Kn(P,Q) = −
n∑

i=1

pi log qi, Fn(P,Q) =

n∑
i=1

pi log
pi
qi

.

Note that Kn(P, P ) = Hn(P ) and Fn(P,Q) = Kn(P,Q) − Kn(P, P ), where
Hn is the well-known Shannon-entropy. Kn and Fn are indeed errors or devi-
ations due to using Q = (q1, . . . , qn) as an estimation of the true probability
distribution P = (p1, . . . , pn).

A 1-parametric generalization of (Fn) is given by (Fα
n ), the directed diver-

gence of degree α,

Fα
n (P,Q) =

⎧⎪⎨⎪⎩
Fn(P,Q) α = 1

1

2α−1 − 1

(
n∑

i=1

pαi q
1−α
i − 1

)
α ∈ R \ {1}.(1.14)
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We see immediately that limα→1 F
α
n = F 1

n = Fn. F
α
n is not symmetric in P

and Q, but Fα
n can be symmetrized by going over to

Jα
n (P,Q) = Fα

n (P,Q) + Fα
n (Q,P ) P,Q ∈ Γn(1.15)

so that we arrive at the J-divergence (Jα
n ) of degree α, α ∈ R , which satisfies

Jα
n (P,Q) = Jα

n (Q,P ). Again we have limα→1 J
α
n = J1

n (because of limα→1 F
α
n =

= F 1
n).

A further generalization of Jα
n is given by

(1.16) Lα,γ
n (P,Q) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
21−α

n∑
i=1

(pαi − qαi ) log
pi
qi

α = γ

1

2α−1 − 2γ−1

n∑
i=1

(pαi − qαi )
(
qγ−α
i − pγ−α

i

)
α �= γ,

the J-divergence of degree (α, γ). We get Lα,1
n = Jα

n and limγ→αL
α,γ
n = Lα,α

n ,
therefore Lα,γ

n can be considered as a 2-parametric generalization of J1
n.

The sequences (Jα
n ) and (Lα,γ

n ) satisfy (1.9) and (1.10) indeed: In the first
case we choose λ = 2α−1 − 1 and g(p, q) = p + q and in the second case λ =
2α−1 − 2γ−1 and g(p, q) = pγ + qγ , respectively (and the obvious choices for f
(see (1.13) and (1.14)). Moreover, Lα,γ

n is a distance measure since Lα,γ
n (P, P ) =

= 0.

Note that for example (for λ �= 0 and γ = 2α)

(1.17)
22α−1 − 2α−1

λ
Lα,2α
n (P,Q) =

1

λ

n∑
i=1

(pαi − qαi )
2
=:

1

λ
Dα

n(P,Q),

i.e. for α = 1
2 we arrive at Jeffreys distance in Jeffreys [5].

In the following Lemma we finally cite for the convenience of the reader
Lemma 2 and Lemma 4 of Riedel and Sahoo [10] which are needed in the proof
of Lemma 2.1.

Lemma 1.2. (1) Let M : I2 → C be a given multiplicative function. The
function f : I2 → C satisfies the functional equation

f(pu, qv) + f(pv, qu) = 2M(uv)f(p, q) + 2M(pq)f(u, v)(1.18)

if and only if

f(, p, q) = M(p)M(q)
[
L(p) + L(q) + l(

p

q
.
p

q
)
]
,(1.19)
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where L : I → C is an arbitrary logarithmic map and l : I2 → C is a biloga-
rithmic function.

(2) Let M1,M2 : I → C be any two nonzero multiplicative maps with M1 �=
�= M2. Then the function f : I2 → C satisfies the functional equation

f(pu, qv) + f(pv, qu) = [M1(u)M2(v) +M1(v)M2(u)]f(p, q)+

+ [M1(p)M2(q) +M1(q)M2(p)]f(u, v)
(1.20)

if and only if

(1.21)
f(p, q) =

= M1(p)M2(q)[L1(p) + L2(q)] +M1(q)M2(p)[L1(q) + L2(p)],

where L1, L2 : I → C are logarithmic functions.

2. Symmetrically weighted compositive sum form deviations

In order to solve the functional equation (1.11) and (1.12) we first deter-
mine the general solution of (1.11) and the corresponding “functional equation
without the sums”

(2.1) f(pu, qv) + f(pv, qu) = g(u, v)f(p, q) + g(p, q)f(u, v) + λf(p, q)f(u, v)

for all p, q, u, v ∈ I.

Lemma 2.1. The functions f, g : I2 → R, f �= 0 satisfy (1.11) and (2.1)
for all p, q ∈ I if and only if for all p, q ∈ I:
in the case λ = 0

f(p, q) = M1(p)M2(q)[L1(p) + L2(q)] +M1(q)M2(p)[L1(q) + L2(p)],

g(p, q) = M1(p)M2(q) +M1(q)M2(p), M1 �= M2

(2.2)

or

f(p, q) = M(p)M(q)[L3(p) + L3(q) + l(p, p) + l(q, q)− 2l(p, q)],

g(p, q) = 2M(p)M(q);
(2.3)

and in the case λ �= 0

f(p, q) =
1

λ
([M3(p)M4(q) +M3(q)M4(p)]−

− [M5(p)M6(q) +M5(q)M6(p)]),

g(p, q) = M5(p)M6(q) +M5(q)M6(p),

(2.4)
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where c �= 0, M : R+ → R and Mi : R+ → C, 1 ≤ i ≤ 6 are multiplicative
functions, L1, L2, L3 : R+ → R are logarithmic functions and l : R+ → R
is a bilogarithmic function, i.e. l is logarithmic in both variables. Moreover,
M2i−1 and M2i are both real-valued or M2i is the complex conjugate of M2i−1,
i = 1, 2, 3.

Finally, if f and g are measurable then M,Mi, L and Li are measurable,
too.

Proof. We start with the case λ �= 0 in (2.1). By substituting

h(p, q) = g(p, q) + λf(p, q)

we obtain from (2.1) that

h(pu, qv) + h(pv, qu) = h(p, q)h(u, v),(2.5)

that is, g and h both satisfy (1.11).

Thus we get from the general solution of (1.11) (see Chung et al [2]) that

g(p, q) = M5(p)M6(q) +M5(q)M6(p) p, q ∈ I,

h(p, q) = M3(p)M4(q) +M3(q)M4(p) p, q ∈ I,(2.6)

where Mi : R+ → C, 3 ≤ i ≤ 6, M2i−1 and M2i are both real-valued or M2i is
the complex conjugate of M2i−1, i = 2, 3. Using now the substitution for h we
arrive at (2.4).

Now we treat the case λ = 0. Then we have to solve (1.11) and

f(pu, qv) + f(pv, qu) = g(u, v)f(p, q) + g(p, q)f(u, v).(2.7)

The idea is to extend f and g simultaneously to functions f̄ , ḡ : R+ → R,
where f̄ , ḡ satisfy (1.11) and (1.2), too. Then it is possible to solve (1.11) and
(2.7). It turns out that indeed it is only important to have the point (1,1) in
the domain of f and g : putting q = v = 1 in (1.11) and (2.7) we get

g(p, u) = g(p, 1)g(u, 1)− g(pu, 1),

f(p, u) = g(u, 1)f(p, 1) + g(p, 1)f(u, 1)− f(pu, 1),

respectively (so that it is sufficient to determine the functions p→ g(p, 1) and
p→ f(p, 1)).

Let us define

M : I → R by M(t) :=
1

2
g(t, t) , t ∈ I and(2.8)

ḡ : R+ → R , ḡ(p, q) =
g(tp, tq)

M(t)
, p, q ∈ R+(2.9)
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(here (2.9) means that for given p, q ∈ R+ there is t ∈ I such that (tp, tq) ∈ I2).
Then M is a multiplicative function which is different from zero everywhere.
Moreover ḡ is well-defined, is uniquely determined, is a continuation of g and
satisfies (1.11) on R2

+ (see Chung et al [2]).

Before we define f̄ we need to do some calculations first. Putting u = v = t
into (2.7) we obtain (with G(t) := g(t, t) = 2M(t) and F (t) := 1

2f(t, t))

2f(tp, tq) = g(t, t)f(p, q) + g(p, q)f(t, t) = G(t)f(p, q) + 2F (t)g(p, q)

or

f(tp, tq) = M(t)f(p, q) + F (t)g(p, q), p, q ∈ I.(2.10)

Substituting p = q = t and u = v = w into (2.7) we arrive at

F (tw) = F (t)M(w) +M(t)F (w), t, w ∈ I.

Then we get, defining L(t) := F (t)
M(t) and dividing the last equation by M(tw),

L(tw) = L(t) + L(w), t, w ∈ I.(2.11)

Thus L is logarithmic. We now define the continuation f̄ : R+ → R by

f̄(p, q) =
f(tp, tq)

M(t)
− L(t)ḡ(p, q), p, q ∈ R+ ,(2.12)

where for each p, q ∈ R+ we choose t ∈ I such that tp, tq ∈ I.

In order to show that f̄ is well-defined, we choose (for given p, q ∈ R+) t, w ∈
∈ I, t �= w such that tp, tq, wp, wq ∈ I. We have to prove that

f(tp, tq)

M(t)
− L(t)ḡ(p, q) =

f(wp,wq)

M(w)
− L(w)ḡ(p, q)

or, equivalently

M(w)f(tp, tq)− F (t)M(w)ḡ(p, q) = M(t)f(wp,wq)− F (w)M(t)ḡ(p, q),

M(w)f(tp, tq) + F (w)g(tp, tq) = M(t)f(wp,wq) + F (t)g(wp,wq).

But the last equation is equivalent with the obvious identity (see (2.10))

f(w(tp), w(tq)) = f(t(wp), t(wq)).

The function f̄ is indeed a continuation of f : Choose t = p ∈ I to get

f̄(p, q) =
f(p2, pq)

M(p)
− L(p)ḡ(p, q) =

=
1

M(p)
(M(p)f(p, q) + F (p)g(p, q))− F (p)

M(p)
ḡ(p, q) = f(p, q)

from (2.12) and (2.10) for q ∈ I
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We show that f̄ and ḡ satisfy (2.7) for all p, q ∈ R+. For p, q, u, v ∈ R+

choose t ∈ I such that tp, tq, tu, tv ∈ I. Using (2.10) and (2.7) we get (using
M(t2) = M(t)2 and L(t2) = 2L(t))

f̄(pu, qv) + f̄(pv, qu) =

=
f(tptu, tqtv)

M(t2)
− L(t2)ḡ(pu, qv) +

f(tptv, tqtu)

M(t2)
− L(t2)ḡ(pv, qu) =

= ḡ(u, v)(
f(tp, tq)

M(t)
− L(t)ḡ(p, q)) + ḡ(p, q)(

f(tu, tv)

M(t)
− L(t)ḡ(u, v)) =

= ḡ(u, v)f̄(p, q) + ḡ(p, q)f̄(u, v).

In order to prove, that f is uniquely determined, let us assume that
f̃ : R2

+ → R is an extension of f satisfying also (2.7) for all p, q, u, v ∈ R+.
Now choose for p, q ∈ R+ an element t ∈ I such that tp, tq ∈ I and put
u = v = t in (2.7). We get (since f̃ = f on I)

2f̃(tp, tq) = 2M(t)f̃(p, q) + 2f̃(t, t)g(p, q)

or, solving the last equation for f̃(p, q) we see that

f̃(p, q) =
f̃(tp, tq)

M(t)
− g(p, q)

F (t)

M(t)
=

f(tp, tq)

M(t)
− L(t)g(p, q) = f̄(p, q).

Simplifying the notation we don’t distinguish f and f̄ , and g and ḡ and
suppose that f satisfies (2.7) for all p, q, u, v ∈ R+ and assume that g has the
form

g(p, q) = M1(p)M2(q) +M1(q)M2(p), p, q ∈ R+ ,(2.13)

for some multiplicative functions M1,M2 : R+ → C+, where M1 and M2 are
both real-valued or M2 is the complex conjugate of M1.

Now we consider two cases: M1 �= M2 and M1 = M2 = M ′ in (2.13),
respectively.

In the first case we get the solution (2.2) from Lemma 4 in Riedel and Sahoo
[10] and in the second case we get the solution (2.3) from Lemma 2 in Riedel
and Sahoo [10] (in these Lemmas the domain of the functions f,M,M1,M2 is
(0, 1] or (0, 1]2 and the range is C, but the proofs can be taken over directly for
our domains and ranges).

Moreover the proofs of the two Lemmas show that the measurability of f
and g imply the measurability of the functions M,L,Li and Mi. �

Note that f and g are both symmetric although it was not supposed.
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Theorem 2.2. All measurable, symmetrically weighted compositive sum
form deviations (Mn) of additive-multiplicative type are given as follows:
in the case λ = 0 by

(2.14) Mn(P,Q) =

n∑
i=1

[pγi q
δ
i (a log pi + b log qi) + pδi q

γ
i (a log qi + b log pi)]

or

(2.15) Mn(P,Q) =

n∑
i=1

pρi q
ρ
i

[
c log(piqi) + d

(
log

pi
qi

)2
]
,

and in the case λ �= 0 by

(2.16) Mn(P,Q) = − 1

λ

n∑
i=1

(
pγi q

δ
i + pδi q

γ
i

)
or

(2.17) Mn(P,Q) = − 1

λ

n∑
i=1

2pρi q
ρ
i cos

(
σ log

pi
qi

)
or

(2.18) Mn(P,Q) =
1

λ

n∑
i=1

[(
pαi q

β
i + pβi q

α
i

)
−
(
pγi q

δ
i + pδi q

γ
i

)]
or

(2.19) Mn(P,Q) =
1

λ

n∑
i=1

[
2pρi q

ρ
i cos

(
σ log

pi
qi

)
−
(
pγi q

δ
i + pδi q

γ
i

)]
,

where a, b, c, d, α, β, γ, δ, ρ, σ are arbitrary real constants with α �= β and γ �= δ.

Proof. We start from the fundamental equation (1.12) and substitute

h(p, q) = g(p, q) + λf(p, q)(2.20)

in the case λ �= 0 into (1.12). Then (using (2.5)) equation (1.12) turns into∑n
j=1 F (uj , vj) = 0 for all U, V ∈ Γm and for all m,n ≥ 2 where for fixed

P,Q ∈ Γn

F (u, v) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n∑
i=1

(f(piu, qiv) + f(piv, qiu)− g(u, v)f(pi, qi)− g(pi, qi)f(u, v))

if λ = 0,
n∑

i=1

[
h(piu, qiv) + h(piv, qiu)− h(u, v)h(pi, qi)

]
if λ �= 0.
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The fact that F : I2 → R is measurable and satisfies
∑n

j=1 F (uj , vj) = 0
for all U, V ∈ Γn and for all n ≥ 2 implies

F (u, v) = a(u− v), u, v ∈ I2for some real constant a.

Indeed, for n = 2 we get with U = (u, 1− u), V = (v, 1− v) ∈ Γ2

F (u, v) + F (1− u, 1− v) = 0 for all u, v ∈ I.

For n = 3 we get with U = (u1, u2, 1−(u1+u2)), V = (v1, v2, 1−(v1+v2)) ∈ Γ3

that
F (u1, v1) + F (u2, v2) + F (1− (u1 + u2), 1− (v1, v2)) = 0.

But from last two equations result we obtain the 2-dimensional Cauchy-functi-
onal equation

F (u1, v1) + F (u2, v2) + F (u1 + u2, v1 + v2),

u1, u2, u1 + u2, v1, v2, v1 + v2 ∈ I.

Thus F (u, v) = au+ bv for some constants a, b ∈ R. But then we obtain

n∑
j=1

F (uj , vj) =

n∑
j=1

(auj + bvj) = a+ b = 0.

Thus a = −b and F has the form F (u, v) = a(u − v). Since F is measurable
and symmetric (since f and g are symmetric) we get F (u, v) = a(u − v) =
= F (v, u) = −a(u − v) for some constant a. Letting P,Q vary again we see
that a(P,Q) = −a(P,Q) = 0 and so F = 0 , too.

Now for fixed u, v ∈ Γn we define

(2.21) G(p, q) =

⎧⎪⎪⎨⎪⎪⎩
f(pu, qv) + f(pv, qu)− g(u, v)f(p, q)− g(p, q)f(u, v)
if λ = 0,

h(pu, qv) + h(pv, qu)− h(u, v)h(p, q) if λ �= 0.

Again, G is measurable, symmetric and satisfies

n∑
i=1

G(pi, qi) = F (u, v) = 0,(2.22)

and so that like above G = 0 . This means that f satisfies

1. (2.7) (that is, g is given by (2.13)) and (1.11), or

2. G(p, q) = 0, where h satisfies (1.11) and g is given by (2.13) (see (2.20)).
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Case 1. From (2.2) in Lemma 2.1 we obtain (using that L1 and L2 are
measurable)

(2.23) f(p, q) = pγqδ(a log p+ b log q) + pδqγ(a log q + b log p) p, q ∈ I

for some constants a, b, γ, δ, γ �= δ.

From (2.2) in Lemma 2.1 we get for arbitrary, but fixed p, q that

(2.24) L3(p) = c log p, c ∈ R, l(p, q) = d(q) log p = l(q, p) = d(p) log q

which implies d(p) = d log p for some d ∈ R. Using this we arrive at

(2.25) f(p, q) = pρqρ
(
c log(p · q) + d

(
log2 p+ log2 q− 2 log p log q

))
, ρ ∈ R.

Thus we get (2.14) and (2.15) by using the sum form of (Mn).

Case 2. From (2.20) we get f(p, q) = 1
λ (h(p, q) − g(p, q)), so Lemma 2.1

implies the representation (2.4) for f . Like in Chung et al [2] we get

g(p, q) = pαqβ + qαpβ or g(p, q) = 2pρqρ cos(σ log
pi
qi
),(2.26)

h(p, q) = pγqδ + qγpδ or h(p, q) = 2pμqμ cos(ν log
pi
qi
)(2.27)

for some constants α, β, (α �= β), γ, δ, (γ �= δ), ρ, σ, μ, ν. Then the cases h = 0
and h �= 0 lead to the solutions in (2.16) - (2.19).

Reversely, all solutions, given by (2.14)–(2.19) satisfy (1.9). �

Theorem 2.3. A deviation (Mn) fulfills the conditions of Theorem 2.2 and
satisfies Mn(P, P ) = 0 iff

(2.28) Mn(P,Q) = a

n∑
i=1

(
pγi q

δ
i − pδi q

γ
i

)
log

pi
qi

, γ �= δ, λ = 0

or

(2.29) Mn(P,Q) = b

n∑
i=1

(
log

pi
qi

)2

, λ = 0

or

(2.30) Mn(P,Q) =
1

λ

n∑
i=1

(
pαi q

δ
i − qαi p

δ
i

)(
qγ−α
i − pγ−α

i

)
, λ �= 0
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or
(2.31)

Mn(P,Q) =
1

λ

n∑
i=1

(
2p

γ+δ
2

i q
γ+δ
2

i cos

(
σ log

pi
qi

)
−
(
pγi q

δ
i + pδi q

γ
i

))
, λ �= 0,

where a, b, α, γ, δ, σ are arbitrary constants.

Proof. We put P = Q into (2.14)–(2.19) to obtain

Mn(P, P ) =

n∑
i=1

2(a+ b)pγ+δ
i log pi,(2.32)

Mn(P, P ) =

n∑
i=1

2c · p2ρi log pi,(2.33)

Mn(P, P ) = − 2

λ

n∑
i=1

pγ+δ
i �= 0,(2.34)

Mn(P, P ) = − 2

λ

n∑
i=1

p2ρi �= 0,(2.35)

Mn(P, P ) =
2

λ

n∑
i=1

(
pα+β
i − pγ+δ

i

)
,(2.36)

and Mn(P, P ) =
2

λ

n∑
i=1

(
p2ρi − pγ+δ

i

)
,(2.37)

respectively. Now we consider Mn(P, P ) = 0 in all cases. We get b = −a
in (2.32) and c = 0 in (2.33), which imply (2.28) and (2.29), respectively.
Moreover, (2.34) and (2.35) lead to no solution, whereas (2.36) leads to α+β =
= γ+δ. Putting β = γ+δ−α into (2.18) we have (2.30). Finally, Mn(P, P ) = 0
in (2.37) implies 2ρ = γ + δ which gives (2.31). �

The above distance measures contain many known measures as special case.
Let us mention the following examples:

(a) δ = 0 in (2.28) gives

Mn(P,Q) = a2γ−1Lγ,γ
n (P,Q).

(b) δ = 0 in (2.29) results in

Mn(P,Q) =
2α−1 − 2γ−1

λ
Lα,γ
n (P,Q).
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(c) α = 0 in (2.30) leads to

Mn(P,Q) = − 1

λ

n∑
i=1

(√
pγi q

δ
i −

√
pδi q

γ
i

)2

.

(d) (γ, δ) ∈ (1, 0), (0, 1) in (c) yields

Mn(P,Q) =
1

λ

n∑
i=1

(√
pi −

√
qi

)2

=
1

λ
D

1
2
n (P,Q) (see (1.17)).

(e) Note that

D
1
2
n (P,Q) =

2

λ

[
1−Bn(P,Q)

]
,

where Bn(P,Q) =

n∑
i=1

√
piqi is the Hellinger coefficient (see Hellinger [4]).

(f) If γ = 2α and δ = 1 in (c) then we get

Mn(P,Q) =
1

λ

n∑
i=1

(
pαi − qαi

)2

=
22α−1 − 2α−1

λ
Lα,2α
n (P,Q) =

=
1

λ
D

1
2
n (P,Q).
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