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Abstract. We say that d is an exponential unitary divisor of n =
= pa1

1 · · · par
r > 1 if d = pb11 · · · pbrr , where bi is a unitary divisor of ai, i.e.,

bi | ai and (bi, ai/bi) = 1 for every i ∈ {1, 2, . . . , r}. We survey properties
of related arithmetical functions and introduce the notion of exponential
unitary perfect numbers.

1. Introduction

Let n be a positive integer. We recall that a positive integer d is called a
unitary divisor of n if d | n and (d, n/d) = 1. Notation: d |∗ n. If n > 1 and
has the prime factorization n = pa1

1 · · · par
r , then d |∗ n iff d = pu1

1 · · · pur
r , where

ui = 0 or ui = ai for every i ∈ {1, 2, . . . , r}. Also, 1 |∗ 1.

Furthermore, d is said to be an exponential divisor (e-divisor) of n =
= pa1

1 · · · par
r > 1 if d = pe11 · · · perr , where ei | ai, for any i ∈ {1, 2, . . . , r}.

Notation: d |e n. By convention 1 |e 1.
Let τ∗(n) :=

∑
d|∗n 1, σ

∗(n) :=
∑

d|∗n d and τ (e)(n) :=
∑

d|en 1, σ
(e)(n) :=

:=
∑

d|en d denote, as usual, the number and the sum of the unitary divisors
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of n and of the e-divisors of n, respectively. These functions are multiplicative
and one has

(1) τ∗(n) = 2ω(n), σ∗(n) = (1 + pa1
1 ) · · · (1 + par

r ),

(2) τ (e)(n) = τ(a1) · · · τ(ar), σ(e)(n) =

⎛⎝∑
d1|a1

pd1
1

⎞⎠ · · ·
⎛⎝∑

dr|ar

pdr
r

⎞⎠ ,

where ω(n) :=
∑

p|n 1 is the number of distinct prime divisors of n, and τ(n) :=

:=
∑

d|n 1 stands for the number of divisors of n.

Note that if n is squarefree, then d |∗ n iff d | n, and τ∗(n) = τ(n),
σ∗(n) = σ(n) :=

∑
d|n d.

Closely related to the concepts of unitary and exponential divisors are the
unitary convolution and the exponential convolution (e-convolution) of arith-
metic functions defined by

(3) (f × g)(n) =
∑
d|∗n

f(d)g(n/d), n ≥ 1,

and by (f � g)(1) = f(1)g(1),

(4) (f � g)(n) =
∑

b1c1=a1

· · ·
∑

brcr=ar

f(pb11 · · · pbrr )g(pc11 · · · pcrr ), n > 1,

respectively.

The function I(n) = 1 (n ≥ 1) has inverses with respect to the uni-
tary convolution and e-convolution given by μ∗(n) = (−1)ω(n) and μ(e)(n) =
= μ(a1) · · ·μ(ar), μ(e)(1) = 1, respectively, where μ is the Möbius function.
These are the unitary and exponential analogues of the Möbius function.

Unitary divisors (called block factors) and the unitary convolution (called
compounding of functions) were first considered by R. Vaidyanathaswamy [23].
The current terminology was introduced by E. Cohen [1, 2]. The notions of
exponential divisor and exponential convolution were first defined by M. V.
Subbarao [15]. Various properties of arithmetical functions defined by unitary
and exponential divisors, including the functions τ∗, σ∗, μ∗, τ (e), σ(e), μ(e) and
properties of the convolutions (3) and (4) were investigated by several authors.

A positive integer n is said to be unitary perfect if σ∗(n) = 2n. This
notion was introduced by M. V. Subbarao and L. J. Warren [16]. Until now
five unitary perfect numbers are known. These are 6 = 2 · 3, 60 = 22 · 3 · 5,
90 = 2 · 32 · 5, 87 360 = 26 · 3 · 5 · 7 · 13 and the following number of 24 digits:
146 361 946 186 458 562 560 000 = 218 · 3 · 54 · 7 · 11 · 13 · 19 · 37 · 79 · 109 · 157 · 313.
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It is conjectured that there are finitely many such numbers. It is easy to see
that there are no odd unitary perfect numbers.

An integer n is called exponentially perfect (e-perfect) if σ(e)(n) = 2n.
This originates from M. V. Subbarao [15]. The smallest e-perfect number is
36 = 22 · 32. If n is any squarefree number, then σ(e)(n) = n, and 36n is e-
perfect for any such n with (n, 6) = 1. Hence there are infinitely many e-perfect
numbers. Also, there are no odd e-perfect numbers, cf. [14]. The squarefull
e-perfect numbers under 1010 are: 22 · 32, 23 · 32 · 52, 22 · 33 · 52, 24 · 32 · 112,
24 · 33 · 52 · 112, 26 · 32 · 72 · 132, 27 · 32 · 52 · 72 · 132, 26 · 33 · 52 · 72 · 132. It is not
known if there are infinitely many squarefull e-perfect numbers, see [4, p. 110].

For a survey on results concerning unitary and exponential divisors we refer
to the books [10] and [12]. See also the papers [3, 5, 8, 9, 11, 13, 18, 19, 20]
and their references.

M.V. Subbarao [15, Section 8] says: ,,We finally remark that to every given
convolution of arithmetic functions, one can define the corresponding expo-
nential convolution and study the properties of arithmetical functions which
arise therefrom. For example, one can study the exponential unitary convolu-
tion, and in fact, the exponential analogue of any Narkiewicz-type convolution,
among others.”

While such convolutions were investigated by several authors, cf. [7, 6], it
appears that arithmetical functions corresponding to the exponential unitary
convolution mentioned above were not considered in the literature.

It is the aim of this paper to overcome this shortage. Combining the notions
of e-divisors and unitary divisors we consider in this paper exponential unitary
divisors (e-unitary divisors). We review properties of the corresponding τ , σ,
μ and Euler-type functions. It turns out that the asymptotic behavior of these
functions is similar to those of the functions τ (e), σ(e), μ(e) and φ(e) (the latter
one will be given in Section 3). We define the e-unitary perfect numbers, which
were not considered before, and state some open problems.

2. Exponential unitary divisors

We say that d is an exponential unitary divisor (e-unitary divisor) of n =
= pa1

1 · · · par
r > 1 if d = pb11 · · · pbrr , where bi |∗ ai, for any i ∈ {1, 2, . . . , r}.

Notation: d |e∗ n. By convention 1 |e∗ 1.

For example, the e-unitary divisors of n = p12, with p prime, are d =
= p, p3, p4, p12, while its e-divisors are d = p, p2, p3, p4, p6, p12.
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Let τ (e)∗(n) :=
∑

d|e∗n 1 and σ(e)∗(n) :=
∑

d|e∗n d denote the number and
the sum of the e-unitary divisors of n, respectively. It is immediate that these
functions are multiplicative and we have

(5)

τ (e)∗(n) = τ∗(a1) · · · τ∗(ar) = 2ω(a1)+...+ω(ar),

σ(e)∗(n) =

⎛⎝ ∑
d1|∗a1

pd1
1

⎞⎠ · · ·
⎛⎝ ∑

dr|∗ar

pdr
r

⎞⎠ .

If n is e-squarefree, i.e., n = 1 or n > 1 and all the exponents in the prime
factorization of n are squarefree, then d |e∗ n iff d |e n, and τ (e)∗(n) = τ (e)(n),
σ(e)∗(n) = σ(e)(n).

Note that for any n > 1 the values τ (e)∗(n) and σ(e)∗(n) are even.

The corresponding exponential unitary convolution (e-unitary convolution)
is given by

(f �∗ g)(1) = f(1)g(1),

(f �∗ g)(n) =
∑

b1c1=a1

(b1,c1)=1

· · ·
∑

brcr=ar

(br,cr)=1

f(pb11 · · · pbrr )g(pc11 · · · pcrr ),(6)

with the notation n = pa1
1 · · · par

r > 1.

The arithmetical functions form a commutative semigroup under (6) with
identity μ2. A function f has an inverse with respect to the e-unitary convolu-
tion iff f(1) �= 0 and f(p1 · · · pk) �= 0 for any distinct primes p1, . . . , pk.

The inverse of the function I(n) = 1 (n ≥ 1) with respect to the e-unitary
convolution is the function μ(e)∗(n) = μ∗(a1) · · ·μ∗(ar) = (−1)ω(a1)+...+ω(ar),
μ(e)∗(1) = 1.

These properties of convolution (6) are special cases of those of a more gen-
eral convolution, involving regular convolutions of Narkiewicz-type, mentioned
in the Introduction.

Remark. It is possible to define ,,unitary exponential divisors” (in the
reverse order) in the following way. An integer d is a unitary exponential
divisor (unitary e-divisor) of n = pa1

1 · · · par
r > 1 if d | n and the integers d and

n/d are exponentially coprime. This means that, denoting d = pb11 · · · pbrr , we
require d and n/d to have the same prime factors as n, i.e., 1 ≤ bi < ai, and
(bi, ai − bi) = 1 for any i ∈ {1, 2, . . . , r}. This is fulfilled iff n is squarefull, i.e.,
ai ≥ 2 and (bi, ai) = 1 for every i ∈ {1, 2, . . . , r}. Hence the number of unitary
e-divisors of n > 1 is φ(a1) · · ·φ(ar) (φ is Euler’s function) or 0, depending
on whether n is squarefull or not. We do not go into other details here. For
exponentially coprime integers cf. [18].
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3. Arithmetical functions defined by exponential unitary divisors

As noted before, the functions τ (e)∗ and σ(e)∗ are multiplicative. Also,
for any prime p, τ (e)∗(p) = 1, τ (e)∗(p2) = 2, τ (e)∗(p3) = 2, τ (e)∗(p4) = 2,
τ (e)∗(p5) = 2, ..., σ(e)∗(p) = p, σ(e)∗(p2) = p+p2, σ(e)∗(p3) = p+p3, σ(e)∗(p4) =
= p + p4, σ(e)∗(p5) = p + p5, .... Observe that the first difference compared
with the functions τ (e) and σ(e) occurs for p4 (which is not e-squarefree).

The function τ (e)∗(n) is identical with the function t(e)(n), defined as the
number of e-squarefree e-divisors of n and investigated by L. Tóth [20]. Ac-
cording to [20, Th. 4],

(7)
∑
n≤x

τ (e)∗(n) = C1x+ C2x
1/2 +O(x1/4+ε),

for every ε > 0, where C1, C2 are constants given by

(8) C1 :=
∏
p

(
1 +

1

p2
+

∞∑
a=6

2ω(a) − 2ω(a−1)

pa

)
,

(9) C2 := ζ(1/2)
∏
p

(
1 +

∞∑
a=4

2ω(a) − 2ω(a−1) − 2ω(a−2) + 2ω(a−3)

pa/2

)
.

The error term of (7) was improved to O(x1/4) by Y.-F. S. Pétermann [11,
Th. 1] showing that

(10)

∞∑
n=1

t(e)(n)

ns
=

ζ(s)ζ(2s)

ζ(4s)
H(s), Re s > 1,

where H(s) =
∑∞

n=1
h(n)
ns is absolutely convergent for Re s > 1/6.

For the maximal order of the function τ (e)∗ we have

(11) lim sup
n→∞

log τ (e)∗(n) log log n
log n

=
1

2
log 2,

this is proved (for t(e)(n)) in [20, Th. 5]. (11) holds also for the function τ (e)

instead of τ (e)∗, cf. [15].
For the maximal order of the function σ(e)∗ we have

Theorem 1.

(12) lim sup
n→∞

σ(e)∗(n)
n log log n

=
6

π2
eγ ,

where γ is Euler’s constant.
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Proof. This is a direct consequence of the following general result of
L. Tóth and E. Wirsing [22, Cor. 1]: Let f be a nonnegative real-valued multi-
plicative function. Suppose that for all primes p we have �(p) := supν≥0 f(p

ν) ≤
≤ (1 − 1/p)−1 and that for all primes p there is an exponent ep = po(1) such
that f(pep) ≥ 1 + 1/p. Then

(13) lim sup
n→∞

f(n)

log log n
= eγ

∏
p

(
1− 1

p

)
�(p).

Apply this for f(n) = σ(e)∗(n)/n. Here f(p) = 1, f(p2) = 1 + 1/p and for
a ≥ 2, f(pa) ≤ σ(e)(pa)/pa ≤ 1+1/p. Hence �(p) = 1+1/p and we can choose
ep = 2 for all p. �

(12) holds also for the function σ(e) instead of σ(e)∗. For the function μ(e)∗

one has:

Theorem 2. (i) The Dirichlet series of μ(e)∗ is of the form

(14)

∞∑
n=1

μ(e)∗(n)
ns

=
ζ(s)

ζ2(2s)
W (s), Re s > 1,

where W (s) :=
∑∞

n=1
w(n)
ns is absolutely convergent for Re s > 1/4.

(ii)

(15)
∑
n≤x

μ(e)∗(n) = C3x+O(x1/2 exp(−c(log x)Δ),

where

(16) C3 :=
∏
p

(
1 +

∞∑
a=2

(−1)ω(a) − (−1)ω(a−1)

pa

)
,

and Δ = 9/25− ε for every ε > 0, where 9/25 = 0.36, and c > 0 are constants

Proof. A similar result was proved for the function μ(e) in [20, Th. 2] (with
the auxiliary Dirichlet series absolutely convergent for Re s > 1/5). The same
proof works out in case of μ(e)∗. The error term can be improved assuming the
Riemann hypothesis, cf. [20]. �

The unitary analogue of Euler’s arithmetical function, denoted by φ∗ is
defined as follows. Let (k, n)∗ := max{d ∈ N : d | k, d |∗ n} and let

(17) φ∗(n) := #{k ∈ N : 1 ≤ k ≤ n, (k, n)∗ = 1},
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which is multiplicative and φ∗(pa) = pa − 1 for every prime power pa (a ≥ 1).
Why do we not consider here the greatest common unitary divisor of k and
n? Because if we do so the resulting function is not multiplicative and its
properties are not so close to those of Euler’s function φ, cf. [21].

Furthermore, for n = pa1
1 · · · par

r > 1 let φ(e)(n) denote the number of
divisors d of n such that d and n are exponentially coprime, i.e., d = pb11 · · · pbrr ,
where 1 ≤ bi ≤ ai and (bi, ai) = 1 for any i ∈ {1, . . . , r}. By convention, let
φ(e)(1) = 1. This is the exponential analogue of the Euler function, cf. [19].
Here φ(e) is multiplicative and

(18) φ(e)(n) = φ(a1) · · ·φ(ar), n > 1.

We define the e-unitary Euler function in the following way: for n =
= pa1

1 · · · par
r > 1 let φ(e)∗(n) denote the number of divisors d of n such that

d = pb11 · · · pbrr , where 1 ≤ bi ≤ ai and (bi, ai)∗ = 1 for any i ∈ {1, . . . , r}. By
convention, let φ(e)∗(1) = 1. Then φ(e)∗ is multiplicative and

(19) φ(e)∗(n) = φ∗(a1) · · ·φ∗(ar), n > 1.

Theorem 3.

(20)
∑
n≤x

φ(e)∗(n) = C4x+ C5x
1/3 +O(x1/4+ε),

for every ε > 0, where C4, C5 are constants given by

(21) C4 :=
∏
p

(
1 +

∞∑
a=3

φ∗(a)− φ∗(a− 1)

pa

)
,

(22)

C5 := ζ(1/3)
∏
p

(
1 +

1

p4/3
+

∞∑
a=5

φ∗(a)− φ∗(a− 1)− φ∗(a− 3) + φ∗(a− 4)

pa/3

)
.

Proof. A similar result was proved for the function φ(e) in [19, Th. 1],
with error term O(x1/5+ε), improved to O(x1/5 log x) by Y.-F. S. Pétermann
[11, Th. 1]. The same proof works out in case of φ(e)∗. �

Theorem 4.

(23) lim sup
n→∞

log φ(e)∗(n) log log n
log n

=
log 4

5
.
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Proof. We apply the following general result given in [17]: Let F be a
multiplicative function with F (pa) = f(a) for every prime power pa, where f
is positive and satisfies f(n) = O(nβ) for some fixed β > 0. Then

(24) lim sup
n→∞

logF (n) log log n

log n
= sup

m≥1

log f(m)

m
.

Let F (n) = φ(e)∗(n), f(a) = φ∗(a), L(m) = (log f(m))/m. Here L(1) =
= L(2) = 0, L(3) = (log 2)/3 ≈ 0.231, L(4) = (log 3)/4 ≈ 0.274, L(5) =
= (log 4)/5 ≈ 0.277, L(6) = (log 5)/6 ≈ 0.268, L(7) = (log 6)/7 ≈ 0.255, and
L(m) ≤ (logm)/m ≤ (log 8)/8 ≈ 0.259 for m ≥ 8, using that (logm)/m is
decreasing. This proves the result. �

(23) holds also for the function φ(e) instead of φ(e)∗, cf. [19].

These results show that the asymptotic behavior of the functions τ (e)∗,
σ(e)∗, μ(e)∗ and φ(e)∗ is very close to those of the functions τ (e), σ(e), μ(e) and
φ(e).

This is confirmed also by the next result.

Theorem 5.

(25)

∑
n≤x

τ (e)∗(n)
τ (e)(n)

=

= x
∏
p

(
1 +

∞∑
a=4

2ω(a)/τ(a)− 2ω(a−1)/τ(a− 1)

pa

)
+O

(
x1/4 log x

)
.

A similar asymptotic formula, with the same error term, is valid also for
the quotients σ(e)∗(n)/σ(e)(n) and φ(e)(n)/φ(e)∗(n) (in the reverse order for the
last one).

Proof. This follows from the following general result, which may be
known. Let g be a complex valued multiplicative function such that |g(n)| ≤ 1
for every n ≥ 1 and g(p) = g(p2) = g(p3) = 1 for every prime p. Then

(26)
∑
n≤x

g(n) = x
∏
p

(
1 +

∞∑
a=4

g(pa)− g(pa−1)

pa

)
+O

(
x1/4 log x

)
.

In order to obtain (26), which is similar to [20, Th. 1], let h = g∗μ in terms of
the Dirichlet convolution. Then h is multiplicative, h(p) = h(p2) = h(p3) = 0,
h(pa) = g(pa) − g(pa−1) and |h(pa)| ≤ 2 for every prime p and every a ≥ 4.
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Hence |h(n)| ≤ �4(n)2
ω(n) for every n ≥ 1, where �4(n) stands for the charac-

teristic function of the 4-full integers. Note that

(27) �4(n)2
ω(n) =

∑
d4e=n

τ(d)v(e),

where the function v is given by

(28)

∞∑
n=1

v(n)

ns
=
∏
p

(
1 +

2

p5s
+

2

p6s
+

2

p7s
− 1

p8s
− 2

p9s
− 2

p10s
− 2

p11s

)
,

absolutely convergent for Re s > 1/5. We obtain (26) by usual estimates, cf.
the proof of [20, Th. 1]. �

Note also, that μ(e)(n)/μ(e)∗(n) = |μ(e)(n)| is the characteristic function of
the e-squarefree integers n. Asymptotic formulae for |μ(e)(n)| were given in
[24, Th. 2], [20, Th. 3].

4. Exponential unitary perfect numbers

We call an integer n exponential unitary perfect (e-unitary perfect) if
σ(e)∗(n) = 2n.

If n is e-squarefree, then n is e-unitary perfect iff n is e-perfect. Consider
the squarefull e-unitary perfect numbers. The first three such numbers given
in Introduction, that is 36 = 22 ·32, 1 800 = 23 ·32 ·52 and 2 700 = 22 ·33 ·52 are
e-squarefree, therefore also e-unitary perfect. It follows that there are infinitely
many e-unitary perfect numbers.

The smallest number which is e-perfect but not e-unitary perfect is 17 424 =
= 24 · 32 · 112.

Theorem 6. There are no odd e-unitary perfect numbers.

Proof. Let n = pa1
1 · · · par

r be an odd e-unitary perfect number. That is

(29) σ(e)∗(pa1
1 ) · · ·σ(e)∗(par

r ) = 2pa1
1 · · · par

r .

We can assume that a1, . . . , ar ≥ 2, i.e. n is squarefull (if ai = 1 for an i,
then σ(e)∗(pi) = pi and we can simplify in (29) by pi).

Now each σ(e)∗(pai
i ) =

∑
d|∗ai

pdi is even, since the number of terms is 2ω(ai),
which is even.
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From (29) we obtain that r = 1 and

(30) σ(e)∗(pa1
1 ) = 2pa1

1 .

Using that a1 ≥ 2 we have

(31) 2 =
σ(e)∗(pa1

1 )

pa1
1

≤ σ(e)(pa1
1 )

pa1
1

≤ 1 +
1

p1
≤ 1 +

1

3
< 2,

which is a contradiction, and the proof is complete. �

We state the following open problems.

Problem 1. Is there any e-unitary perfect number which is not e-squarefree,
therefore not e-perfect?

Problem 2. Is there any e-unitary perfect number which is not divisible
by 3?
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[22] Tóth, L. and E. Wirsing, The maximal order of a class of multiplicative
arithmetical functions, Annales Univ. Sci. Budapest., Sect. Comp., 22
(2003), 353–364, available at
http://front.math.ucdavis.edu/0610.5360



216 N. Minculete and L. Tóth
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