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FUNCTIONAL EQUATIONS RELATED

TO HOMOGRAPHIC FUNCTIONS

Janusz Matkowski (Zielona Góra, Poland)

Dedicated to the sixtieth birthday of Professor Antal Járai

Abstract. A functional equation in two variables related to homographic
functions is introduced. The solutions are established with the aid of some
results on functional equations in a single variable. A conjecture on a
general solution is presented.

1. Introduction

We consider the functional equation

α
(
3x+y

4

)
− α (x)

α
(
x+y
2

)
− α (x)

(
3− 2

α
(
x+y
2

)
− α (x)

α (y)− α (x)

)
= 1,

in two variables where the unknown function α is continuous and strictly mono-
tonic in a real interval. It is easy to verify that any homographic function is a
solution. In section 2 we present some motivation. In section 3 we show that
this equation is a consequence of a more complicated functional equation in
three variables (∗) appearing in connection with the problem of existence of
discontinuous Jensen affine functions in the sense of Beckenbach with respect
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to the two parameter family of functions {bα+ c : b, c ∈ R}, and related to the
invariance of double ratios of four points.

In section 4, applying an M. Laczkovich theorem [4], we prove that if a
continuous function satisfies this equation in any interval (a0,∞) then it is a
homographic function.

In section 5, assuming some local regularity conditions, we consider some
related functional equations in a single variable. A possible application of the
celebrated regularity theorems of A. Járai [1] is mentioned.

2. Some motivations

In order to present a problem leading to the considered equation, take a
continuous and strictly monotonic function α defined on an interval I and
consider a two parameter family of functions defined by

Fα := {bα+ c : a, b ∈ R} .

The family Fα has the property: for every two points (x1, y1) , (x2, y2) ∈ I×R,
x1 �= x2, there is a unique function bα+ c in Fα such that

bα (x1) + c = y1, bα (x2) + c = y2;

more precisely, the real numbers

b =
y1 − y2

α(x1)− α(x2)
, c =

α(x1)y2 − α(x2)y1
α(x1)− α(x2)

are uniquely determined. Following a more general idea due to Beckenbach,
we say that a function f : I → R is convex with respect the family Fα, briefly,
Fα-convex, if for all x1, x2 ∈ I, x1 < x2, we have

f(x) ≤ bα(x) + c, x1 < x < x2,

where

b =
f(x1)− f(x2)

α(x1)− α(x2)
, c =

α(x1)f(x2)− α(x2)f(x1)

α(x1)− α(x2)
,

Fα-concave, if the reversed inequality is satisfied, and Fα-affine if it is both
Fα-convex and Fα-concave.

Note that a function f is Fα-affine iff f ∈ Fα.
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Adopting the idea of Jensen, we say that a function f : I → R is Jensen
Fα-convex if, for all x1, x2 ∈ I,

f

(
x1 + x2

2

)
≤ bα

(
x1 + x2

2

)
+ c,

where b and c are given by the above formula; Jensen Fα-concave if the reverse
inequality is satisfied, and Jensen Fα-affine if it is both Jensen Fα-convex and
Jensen Fα-concave, that is if, for all x1, x2 ∈ I,

f

(
x1 + x2

2

)
=

f(x1)− f(x2)

α(x1)− α(x2)
α

(
x1 + x2

2

)
+

α(x1)f(x2)− α(x2)f(x1)

α(x1)− α(x2)

or, equivalently

f

(
x1 + x2

2

)
=

α
(
x1+x2

2

)
− α(x2)

α(x1)− α(x2)
f(x1) +

α(x1)− α
(
x1+x2

2

)
α(x1)− α(x2)

f(x2).

For α := id |I one gets the classical notions of convex, concave, affine and Jensen
convex, Jensen concave and Jensen affine functions. It is known since Hamel
that there are discontinuous Jensen affine functions and that every Jensen affine
function f : I → R is of the form f(x) = A(x)+a, x ∈ I, where A is an additive
function and a ∈ R which, in general, does not belong to Fα. In this context
a natural question arises: determine all functions α : I → R which admit the
discontinuous Jensen Fα-affine functions.

In [7] it was shown that this problem leads to the following, quite compli-
cated, functional equation of three variables

(∗)

α
(
x+2y+z

4

)
− α (y)

α
(
x+z
2

)
− α (y)

·
α
(
x+z
2

)
− α (z)

α (x)− α (z)
=

=
α
(
x+2y+z

4

)
− α

(
y+z
2

)
α
(
x+y
2

)
− α

(
y+z
2

) ·
α
(
x+y
2

)
− α (y)

α (x)− α (y)

for all x, y, z ∈ I, (x+ z − 2y)(x− z)(x− y) �= 0.

Note that this equation can be written as the equality of the following two
double ratios:

α
(
x+2y+z

4

)
− α (y)

α
(
x+z
2

)
− α (y)

:
α
(
x+2y+z

4

)
− α

(
y+z
2

)
α
(
x+y
2

)
− α

(
y+z
2

) =

=
α
(
x+y
2

)
− α (y)

α (x)− α (y)
:
α
(
x+z
2

)
− α (z)

α (x)− α (z)
.
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Taking into account that for all admissible x, y, z ∈ I,

x+2y+z
4 − y

x+z
2 − y

:
x+2y+z

4 − y+z
2

x+y
2 − y+z

2

=
1

4
=

x+y
2 − y

x− y
:

x+z
2 − z

x− z

we conclude that any homographic function α satisfies equation (∗).
In [7] it was proved that a continuous and monotonic function satisfies (∗)

if, and only if α is any homographic function. This fact implies that a family
Fα admits discontinuous Jensen affine functions in the Beckenbach sense iff
α is a homographic function. In [7], as an application, an answer to a more
general question posed by Zs. Páles [8] is given.

3. A functional equation related to equation (∗)

We prove the following

Theorem 1. Let I ⊂ R be an interval. If a continuous function α : I → R
satisfies equation (∗), then it is strictly monotonic and

(1)
α
(
3x+y

4

)
− α (x)

α
(
x+y
2

)
− α (x)

(
3− 2

α
(
x+y
2

)
− α (x)

α (y)− α (x)

)
= 1, x, y ∈ I, x �= y.

Proof. Equation (∗) implies that α is one-to-one. The continuity of α
implies that it is strictly monotonic. By the continuity of α, letting x → y in
(∗), we infer that, for every y ∈ I, the limit

(2) ϕ(y) := lim
x→y

α
(
x+y
2

)
− α (y)

α (x)− α (y)

exists and, for all y �= z,

(3)
α
(
3y+z

4

)
− α (y)

α
(
y+z
2

)
− α (y)

α
(
y+z
2

)
− α (z)

α (y)− α (z)
=

α
(
3y+z

4

)
− α

(
y+z
2

)
α (y)− α

(
y+z
2

) ϕ(y).

Similarly, letting y → x in (∗), we infer that, for every x ∈ I, the limit

(4) ψ(x) := lim
y→x

α
(
x+y
2

)
− α (y)

α (x)− α (y)
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exists and, for all x �= z,

α
(
3x+z

4

)
− α (x)

α
(
x+z
2

)
− α (x)

α
(
x+z
2

)
− α (z)

α (x)− α (z)
=

α
(
3x+z

4

)
− α

(
x+z
2

)
α (x)− α

(
x+z
2

) ψ(x).

Thus

(5) ψ = ϕ.

Hence, letting x → z in (∗), making use of the definitions of ϕ and ψ and the
identity

α

(
x+ 2y + z

4

)
= α

(
x+y
2 + y+z

2

2

)
we get

α
(
y+z
2

)
− α (y)

α (z)− α (y)
ϕ(z) = ϕ

(
y + z

2

)
α
(
z+y
2

)
− α (y)

α (z)− α (y)
,

for y �= z, whence

ϕ(z) = ϕ

(
y + z

2

)
, y �= z,

and, consequently, ϕ is a constant function in I.

Letting x→ y in the identity

α
(
x+y
2

)
− α (y)

α (x)− α (y)
+

α(x)− α
(
x+y
2

)
α (x)− α (y)

= 1

and making use of (2), (4) we get ϕ+ ψ = 1, whence by (5),

ϕ =
1

2
.

Now, from (3), we get

α
(
3y+z

4

)
− α (y)

α
(
y+z
2

)
− α (y)

α
(
y+z
2

)
− α (z)

α (y)− α (z)
=

1

2

α
(
3y+z

4

)
− α

(
y+z
2

)
α (y)− α

(
y+z
2

)
for y �= z. Since

α
(
3y+z

4

)
− α

(
y+z
2

)
α (y)− α

(
y+z
2

) = 1−
α
(
3y+z

4

)
− α (y)

α
(
y+z
2

)
− α(y)

we get

α
(
3y+z

4

)
− α (y)

α
(
y+z
2

)
− α (y)

α
(
y+z
2

)
− α (z)

α (y)− α (z)
=

1

2

(
1−

α
(
3y+z

4

)
− α (y)

α
(
y+z
2

)
− α(y)

)
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that is, for y �= z,

α
(
3y+z

4

)
− α (y)

α
(
y+z
2

)
− α (y)

(
α
(
y+z
2

)
− α (z)

α (y)− α (z)
+

1

2

)
=

1

2
.

Since
α
(
y+z
2

)
− α (z)

α (y)− α (z)
= 1−

α (y)− α
(
y+z
2

)
α (y)− α (z)

we get, for all y, z ∈ I, y �= z,

α
(
3y+z

4

)
− α (y)

α
(
y+z
2

)
− α (y)

(
3

2
−

α
(
y+z
2

)
− α (y)

α (z)− α (y)

)
=

1

2
,

which was to be shown. �

Remark 1. Let A : R→ R be an arbitrary additive function and a, b, c, d ∈
∈ R be such that ad − bc �= 0. Then it is easy to check that the function α
given by

α(x) :=
aA(x) + b

cA(x) + d

is a solution of equation (1) (as well as of equation (∗)).

Remark 2. A function α : I → R satisfies equation (1) iff so does the
function h ◦ α, where h is an arbitrary nonconstant homographic function.

Remark 3. Let k,m, p, q ∈ R, kp �= 0 be arbitrarily fixed. A function
α : I → R satisfies equation (1) iff the function β(x) = kα(px + q) + m
satisfies equation (1) with α replaced by β and the interval I replaced by
J := {x ∈ R : px+ q ∈ I} .

Remark 4. Interchanging x and y in (1) and then eliminating α
(
y+z
2

)
from both equations we obtain the functional equation

[α (x)− α (x)]

[
α

(
3x+ y

4

)
− α

(
x+ 3y

4

)]
=

= 8

[
α (y)− α

(
3x+ y

4

)][
α

(
3x+ y

4

)
− α (x)

]
,

x, y ∈ I,

which can be written in the form

8α (x)α (y) + α (x)α

(
3x+ y

4

)
+ α (y)α

(
x+ 3y

4

)
+

+8α

(
3x+ y

4

)
α

(
x+ 3y

4

)
= 9α (x)α

(
x+ 3y

4

)
+ 9α (y)α

(
3x+ y

4

)
,
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whence

8α (x)α (y)

α
(
x+3y

4

)
α
(
3x+y

4

) +
α (x)− 9α (y)

α
(
x+3y

4

) +
α (y)− 9α (x)

α
(
3x+y

4

) + 8 = 0.

Remark 5. Interchanging x and y in (1) we obtain the simultaneous system
of functional equations

α

(
3x+ y

4

)
=

α
(
x+y
2

)
[3α (x)− α (y)]− 2α (x)α (y)

2α
(
x+y
2

)
+ α (x)− 3α (y)

α

(
x+ 3y

4

)
=

α
(
x+y
2

)
[3α (y)− α (x)]− 2α (x)α (y)

2α
(
x+y
2

)
+ α (y)− 3α (x)

,

which can be iterated.

4. Main result

In this section we need the following result which is a special case of
M. Laczkovich theorem [4].

Lemma 1. (M. Laczkovich [4]) Let p, q, A,B be positive and such that log p
log q

is irrational. If λ1, λ2 are the roots of the equation

Apλ +Bqλ = 1

then every nonnegative measurable solution f : (0,∞) → (0,∞) of the func-
tional equation

f(x) = Af(px) +Bf(qx), x > 0,

is of the form
f(x) = rxλ1 + sxλ2 , x > 0.

Remark 6. If A + B = 1 then the condition of positivity of the solution
can be replaced by a weaker condition of the boundedness below.

Lemma 2. Let p,A be positive numbers and p < 1. If for some δ > 0, a
function f : (0,∞)→ R is strictly increasing and positive in an interval (0, δ)
and satisfies the functional equation

f(x) = (1 +A)f(px)−Af(p2x), x > 0,

then f is positive in (0,∞).
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Proof. Suppose that f satisfies the assumptions of the lemma. Putting
ϕ(x) := f(x)− f(px) for x > 0 we get

ϕ(x) = f(x)− f(px) = A
[
f(px)− f(p2x)

]
= Aϕ(px),

whence, by induction,

ϕ(x) = Anϕ(pnx), n ∈ N, x > 0.

Take an arbitrary x > 0. Since p < 1, there is an n0 ∈ N such that pnx ∈ (0, δ)
for all n ∈ N, n ≥ n0. Since f is increasing in (0, δ), we get

ϕ(x) = Anϕ(pnx) = An
[
f(pnx)− f(pn+1x)

]
> 0, n ≥ n0,

whence
ϕ(x) > 0, x > 0,

and, consequently,
f(x) > f(px), x > 0.

Hence, by induction,

f(x) > f(pnx), x > 0, n ∈ N.

Since f is strictly increasing and positive in (0, δ), letting n → ∞ we get
f(x) > 0 for all x > 0 which was to be shown. �

The main result reads as follows.

Theorem 2. Let a0 ∈ R be fixed. A continuous function α : (a0,∞) → R
satisfies equation (1) if and only if, α is a homographic function, i.e.

α(x) =
ax+ b

cx+ d
, x > a0,

for some a, b, c, d ∈ R, ad �= bc.

Proof. Suppose that a continuous function α : (a0,∞)→ R satisfies equa-
tion (1). By (1) it must be strictly monotonic in (a0,∞). Without loss of
generality we can assume that α is strictly increasing. Take arbitrary x0 > 0
and define β : (0,∞)→ R, β(x) := α(x+x0)−α(x0). Of course β is continuous,
strictly increasing, β(0) = 0 and, by Remarks 2 and 3, β satisfies equation (1),
that is

β
(
3x+y

4

)
− β (x)

β
(
x+y
2

)
− β (x)

(
3− 2

β
(
x+y
2

)
− β (x)

β (y)− β (x)

)
= 1, x, y > 0, x �= y.
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Setting y = 0 we get

β
(
3x
4

)
− β (x)

β
(
x
2

)
− β (x)

(
3− 2

β
(
x
2

)
− β (x)

−β (x)

)
= 1, x > 0,

which, after simple calculation, can be written in the equivalent form

3

β
(
3x
4

) =
1

β
(
x
2

) +
2

β (x)
, x > 0.

It follows that the function f : (0,∞)→ (0,∞),

f(x) :=
1

β (x)
, x > 0,

is decreasing and satisfies the functional equation

f(x) = 1
3f

(
2
3x
)
+ 2

3f
(
4
3x
)
, x > 0.

Put p = 2
3 , q = 4

3 , A = 1
3 , B = 2

3 . Note that log p
log q is irrational and the only

solutions of the equation Apλ +Bqλ = 1, that is

1

3

(
2

3

)λ

+
2

3

(
4

3

)λ

= 1

are the numbers λ1 = 0 and λ2 = −1. By Lemma 1 there are r, s ∈ R, such
that

f(x) = rx0 + sx−1 = r +
s

x
, x > 0.

Thus, by the definition of f,

β(x) =
1

f(x)
=

x

rx+ s
, x > 0,

where, obviously, s �= 0. Now the definition of β implies that

α(x+ x0) = α (x0) +
x

rx+ s
, x > 0.

It follows that α is a homographic function in the interval (x0,∞), i.e.

α(x) =
ax+ b

cx+ d
, x > x0,

for some a, b, c, d ∈ R, ad �= bc. Since x0 > a0 is arbitrarily chosen, the proof is
completed. �
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5. Some related functional equations

Assume that a one-to-one function α satisfies equation (1) in the interval
I. Take an x0 ∈ I and define a function β by

(6) β(x) = α(x+ x0)− α(x0), x ∈ J := I − x0.

In view of Remark 3 the function β satisfies equation (1) in the interval J, i.e.

(7)
β
(
3x+y

4

)
− β (x)

β
(
x+y
2

)
− β (x)

(
3− 2

β
(
x+y
2

)
− β (x)

β (y)− β (x)

)
= 1, x, y ∈ J, x �= y.

Since β(0) = 0, setting here x = 0 and then replacing y by x we get

β
(
x
4

)
β
(
x
2

) (3− 2
β
(
x
2

)
β (x)

)
= 1, x ∈ J, x �= 0.

It follows that ϕ : J → R defined by

(8) ϕ(x) :=
β
(
x
2

)
β (x)

, x �= 0,

satisfies the functional equation

ϕ
(x
2

)
[3− 2ϕ (x)] = 1, x ∈ J, x �= 0.

If the limit η := limx→0 ϕ (x) exists then, obviously, η �= 0. Setting ϕ(0) := η,
we see that ϕ satisfies the functional equation

(9) ϕ (x) =
3

2
− 1

2ϕ
(
x
2

) , x ∈ J.

Theorem 3. Let J ⊂ R be an interval such that 0 ∈ J. Suppose that
ϕ : J → R satisfies equation (9). Then either ϕ(0) = 1 or ϕ(0) = 1

2 . Moreover,

1. if ϕ(0) = 1 and
ϕ(x) = 1 + 0(x), x→ 0,

then ϕ satisfies (9) iff ϕ ≡ 1 in J ;

2. if ϕ(0) = 1
2 and, for some p ∈ R,

ϕ(x) =
1

2
+ px+ 0(x2), x→ 0,
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then ϕ satisfies (9) iff

(10) ϕ(x) =
4px+ 1

4px+ 2
, x ∈ J.

Proof. Setting x = 0 in (9) we get η = 3
2 −

1
2η for η := ϕ(0), whence either

η = 1 or η = 1
2 .

Putting f(x) = x
2 for x ∈ J and H(y) := 3

2 −
1
2y for all y ∈ R we can write

equation (9) in the form

ϕ(x) = H(ϕ[f(x)]), x ∈ J.

In the case when η = 1 we have H ′(η) = 1
2 , whence, by the continuity of H ′

at the point η = 1 we infer that there exists a θ ∈ [ 12 , 1) and δ > 0 such that

(11) |H(y1)−H(y2)| ≤ θ |y1 − y2|

for all y ∈ (η − δ, η + δ). Since 0 ≤ f(x) ≤ sx for all x ∈ J with s = 1
2 and

sθ < 1, by applying a general uniqueness theorem [5, Theorem 1] (cf. also [4],
p. 200-201), we conclude that there exists at most one continuous solution ϕ
such that ϕ(0) = 1. Since the constant function ϕ ≡ 1 satisfies equation (9),
the first part of the theorem is proved.

In the case when η = 1
2 we have H ′(η) = 2. By the continuity of H ′ there

exists θ ∈ [2, 4) and δ > 0 such that (11) is fulfilled for all y ∈ (η − δ, η + δ)
and s2θ = 1

2 < 1. Since the function (10) is a solution of (9) and

ϕ(x) =
1

2
+ px− 4px2

4px+ 1
=

1

2
+ px+ 0(x2), x→ 0,

the uniqueness of ϕ follows from the already cited theorem in [5]. This com-
pletes the proof. �

Now applying this result we prove

Theorem 4. Let I ⊂ R be an interval. Suppose that the function α : I → R
satisfies equation (1). If for some x0 ∈ I there exists the limit

η := lim
x→0

α
(
x
2 + x0

)
− α(x0)

α (x+ x0)− α(x0)
,

then η = 1
2 . If moreover, for some p ∈ R,

α
(
x
2 + x0

)
− α(x0)

α (x+ x0)− α(x0)
=

1

2
+ px+ 0(x2), x→ 0,
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and α is continuous at least at one point x1 ∈ I, x1 �= x0, then

α(x) =
ax+ b

cx+ d
, x ∈ I,

for some a, b, c, d ∈ R, ad �= bc.

Proof. Suppose that α : I → R satisfies equation (1). Take an x0 ∈ I,
put J := I − x0 and define the function β : J → R by (6). By Remark 3, β
satisfies equation (7). According to what we have observed at the beginning of
this section, the function ϕ defined by (8) satisfies equation (9) and

ϕ(x) :=
α
(
x
2 + x0

)
− α(x0)

α (x+ x0)− α(x0)
x ∈ J.

By the first statement of Theorem 3 either η = 1 or η = 1
2 . Assume first that

η = 1. Then
β
(
x
2

)
β (x)

= 1, x ∈ J,

would imply that β and, consequently α, would be constant function. This is
a contradiction, as every function satisfying (1) must be one-to-one.

Consider the case when η = 1
2 . Now from Theorem 3 we get

β
(
x
2

)
β (x)

=
4px+ 1

4px+ 2
, x ∈ J,

or equivalently, setting q := 4p,

(12) β
(x
2

)
=

qx+ 1

qx+ 2
β (x) , x ∈ J,

for some q ∈ R, q �= 0, which can be written in the form

(13)
(x
2
+ 1

)
β
(x
2

)
=

1

2
(x+ 1)β (x) , x ∈ J.

Setting y = 0 in (1) we get

β
(
3x
4

)
− β (x)

β
(
x
2

)
− β (x)

(
3 + 2

β
(
x
2

)
− β (x)

β (x)

)
= 1, x ∈ J, x �= 0.

Applying here (12) we obtain

β
(
3x
4

)
− β (x)

qx+1
qx+2β (x)− β (x)

(
3 + 2

qx+1
qx+2β (x)− β (x)

β (x)

)
= 1, x ∈ J, x �= 0,
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which reduces to the equation

(14)

(
q
3

4
x+ 1

)
β

(
3

4
x

)
=

3

4
(qx+ 1)β (x) , x ∈ J.

By (13) and (14) the function γ : J → R defined by

γ(x) = (qx+ 1)β (x) , x ∈ J,

the simultaneous system of functional equations

γ
(x
2

)
=

1

2
γ (x) , γ

(
3

4
x

)
=

3

4
γ (x) , x ∈ J.

It is easy to show (taking into account that γ(0) = 0), that the function γ
can be uniquely extended to the function satisfying this system of equations,
respectively in [0,∞) or (−∞, 0] or in R depending on whether x0 is the left
end point of I, the right endpoint of I or the interior point of I. Assume for
instance that x0 is the left end point of I and, for convenience, denote this
extension by γ. Since (log 1

2 )/(log
3
4 ) is irrational and γ is continuous at a point

in the interval (0,∞), we infer that (cf. [6]),

γ(x) = γ(1)x, x ≥ 0.

By the definition of γ we get

β(x) =
γ(1)x

qx+ 1
, x ∈ J,

whence, by the definition of β we get the result. In the case when x0 is the right
end point of I the argument is analogous. In the case when x0 is an interior
point of I, then, according to the previous cases, α must be a homographic
function at least at one of the intervals I ∩ [x0,∞) and I∩ (−∞, x0]. In this
case equation (1) easily implies that α is a homographic function in the interval
I. This completes the proof. �

For the discussion the question if the regularity conditions assumed in The-
orems 3 and 4 can be omitted consider

Remark 7. Equation (1) is equivalent to the functional equation

(15)
α(y) =

α (x)
[
3α

(
x+y
2

)
− α

(
3x+y

4

)]
− 2α

(
x+y
2

)
α
(
3x+y

4

)
2α (x) + α

(
x+y
2

)
− 3α

(
3x+y

4

)
x, y ∈ I, x �= y.
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Proof. Assume that α is one-to-one and satisfies equation (1). From (1),
for all x, y ∈ I, x �= y, we have

α(y)

[
2α (x) + α

(
x+ y

2

)
− 3α

(
3x+ y

4

)]
=

= α (x)

[
3α

(
x+ y

2

)
− α

(
3x+ y

4

)]
− 2α

(
x+ y

2

)
α

(
3x+ y

4

)
.

Suppose that 2α (x) + α
(
x+y
2

)
− 3α

(
3x+y

4

)
= 0, that is

α

(
3x+ y

4

)
=

2

3
α (x) +

1

3
α

(
x+ y

2

)
for some x, y ∈ I, x �= y. Setting this to the right-hand side of the above equality

we get
[
α (x)− α

(
x+y
2

)]2
= 0, whence y = x, as α is one-to-one. Thus equation

(1) implies (15). The converse implication is obvious. �

Remark 8. Thus equation (15) is of the form

α(y) = h

(
α(x), α

(
x+ y

2

)
α

(
3x+ y

4

))
,

where

h (z1, z2, z3) =
z1z3 − 3z1z2 + 2z2z3

3z3 − z2 + 2z1

and one could try to employ the celebrated regularity theory due to Antal
Járai [1] by the assumption that the unknown function α is monotonic, so it
is a.e. differentiable. To get its differentiability one could apply Theorem 17.6
in [1], and then, to get higher regularity, Theorem 15.2. At this background a
question arises if the lack of regularity of h at the points (z1, z2, z3) such that
3z3 − z2 + 2z1 = 0 is a serious difficulty.

References
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