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SOME REMARKS ON THE CARMICHAEL
AND ON THE EULER’S ¢ FUNCTION

I. Katai (Budapest, Hungary)

Dedicated to my friend, Professor Antal Jdrai on his 60th anniversary

Abstract. Several theorems on the iterates of the Carmichael and on the
Euler’s ¢ function is presented, some of them without proof.

1. Introduction

We shall formulate several in my opinion new theorems on the divisors of
the Carmichael and Euler’s totient function.

Some of them can be proved by direct application of sieve theorems. We
omit the proof of them. We shall prove only Theorem 6, 10, 11, 12.

1.1. Notations. P = set of primes; p, 7 with and without suffixes always de-
note prime numbers; w(z) = #{p < z}, n(x,k, ) =#{p <z, p=1 (mod k)}.
A(n) = Carmichael function defined for p* by

Ap®) = p*lp—1), ifp>3 ora<?,
202 if p=2and a > 3,

2000 AMS Mathematics Subject Classification: 11N56, 11N64.

Key words and phrases: Iterates of arithmetical functions, Euler’s ¢ function, Carmichael
function.

The Project is supported by the European Union and co-financed by the European Social
Fund (grant agreement no. TAMOP 4.2.1/B-09/1/KMR-2010-0003).
https://doi.org/10.71352/ac.35.163


https://doi.org/10.71352/ac.35.163

164 I. Katai

and for n =p* ... p%" (pi # pj, pi €P)
A(n) = LOM [A(pT*), -, A(p77)] -

Here LCM = least common multiple.

Let w(n) = number of distinct prime factors of n, 2(n) = number of prime
power divisors of n.

T
p(n) = Hp;vrl(pj — 1) the Euler’s totient function.
j=1

P(n) = largest prime divisor of n; p(n) = smallest prime divisor of n.
Let x1 =logz, xo =logxy....

Let A®)(n), »®)(n) be the kth iterate of A(n) and of ¢(n), respectively, i.e.
A0 (n) =n, P (n) = n, and AV (n) = AA® (n)), oV (n) = (™ (n)).

1.2. In this paper we shall formulate some theorems on A, and on their
iterates. Some of these theorems can be proved by known methods which were
applied earlier, and we omit their complete proof.

1.3. Let ¢ > 2 be a fixed prime, 7(n) be that exponent, for which ¢?) || ¢(n).
M. Wijsmuller [3] investigated the completely additive function § defined on
p € P by ¢°P) || p+ 1, and proved a global central limit theorem for 3(n). Her
method can be used to prove central limit theorem for y(n) as well. In [1],
[2] we developed a method by which we can prove local central limit theorem
for v(n) and B(n). We are unable to give the asymptotic of #{p < z, p €
P, v(p+ 1) = k}, and that of {n < z, v(n? + 1) = k}. Global central limit
theorem can be proved for v(p + 1), and vy(n? + 1).

1.4. Let v(n) be defined by ¢ ||[A(n). Let P :={p | p € P, p =1
(mod ¢*)}; P = Pi\Pr+1. Let furthermore

(1.1) wi(n) = Z 1,

p|n
PEPk

(1.2) b= ] (1_1).

p=1 (mod ¢*)
psT



Some remarks on the Carmichael and on the Euler’s ¢ function 165

From the Siegel-Walfisz theorem (Lemma 7) one can obtain that

1 1 T 1
(1.3)  logtu(s) = - +0<> +o<)
pg;p P q* ¢(q") ¢*
p=1(¢")
valid if 1 < ¢* < c .
The following assertion can be proved by routine application of the asymp-
totic sieve.

Theorem 1. Let ¢ > 2 be a fized prime,

(1.4) an(z) = —2

Assume that k = k(z) — oo and that x5 - ¢ % — co. Then

(1 1) #{n<z, (n,q) =1, v(n)=k, wp(n)=r}=
(1.5) q 1

o1 pr)

= (1+ o ())tr(2) )

valid for 0 < r < . The last sum is extended over those p1 < ... < p, for

/\ me‘ 5

which p; € P, p1 . < pr < z. In this range of r we have

L e, @\ 1
(1.6) Zw(p1--~p7~)_(1+ x(l))(qk) rl’

Assume that ¢* /xo — 0o, ¢* < z'/3. Then

(1.7) D wr(n) == Z m(z,¢", 1)),
n<x pp€<lpxk

and

(1.8) > wiln) SIS ngngO Zw({i,qﬁl)

n<x P1F#D2 p1</T
p1p2<z P1EPk
P1,p2€Pk

By using the Brun—Titchmarsh theorem (Lemma 8), we obtain that the
error term on the right hand side of (1.8) is less than (liz)g~2*z5. From (1.7),
(1.8) we can deduce a Turdn—Kubilius type inequality and from that
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Theorem 2. Let g € P be fized, k = k() be such that ¢*/zy — co and
that ¢* < cxf hold with arbitrary constants ¢, A. Then

1
(1.9) —#{n <z [ v(n) >k} =(1+0.(1) Z*
p<w
PEPk
furthermore
1 1
(1.10) Y - =@ +0 <k> .
—p q
p<z
PEPk

Remark. By using the Barban-Linnik-Tshudakov theorem (Lemma 9)
(1.9) remains valid up to ¢¥ < x°, where 6 is a suitable positive constant.

We can prove also the following Theorem 3, 4, 5.

Theorem 3. Assume that k = k(z) is such a sequence for which q*/zo —
— 00 and that ¢* < cx{t with arbitrary constants ¢, A. Then

(1.11) S < | v+ 1) 2 B = (14 0 ()one).
Furthermore
(112) <z |vlp+1) 2k vp—1) 21} = (1 +0.(D)ax(a) - au(a)

holds, if additionally ¢'/xs — 0o, ¢' < cait.

Remark. One could prove in general that

A o) 2k = 1B = (o, (1)an (2) -, (0)
if ¢1,...,t, are distinct nonzero integers and qkj/xg — 00, qki < cm‘f‘ (J =
=1,...,h).

—k

Theorem 4. Let q be an odd prime. Assume that k = k(x) — 00, x2¢™ " —

— 00. Then
#p<w (g =1 vp 1) =k, wilp 1) =7} =

xk "
~ 1+ o)) (5)

q

(1.13) .
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fo<r < —=. Here
x3’
(1.14) nw =] (1- ——
. k _— p _ 1 .
p<x
PEPK

Remark. Since

te(@) 1Y _,o(L
log ti(z) _O<pez;‘k p2> _O<q’°>’

(1.13) remains valid with ¢(x) instead of ¢} (z).

Theorem 5. Let g be an odd prime, k = k(z) be such a sequence for which
12q7 % — co. Let p(m) be the number of residue classes n (mod m), for which
n?+1=0 (mod m).

Let
(1.15) se(@) =[] <1 - }f(_p)l).
Pp€<7§k
Then
é# {n <u, (n2 +1,9) =1, u(n2 +1)= k,wk(n2 +1)= r} =
(1.16) _ '
~a+o) (1-20) ot | 22
7r7r€<73xk
if0<r< @

€3

1.5. In their paper [6] W.D. Banks, F. Luca, I.E. Shparlinski investigated some

arithmetic properties of ¢(n), A(n), and that of {(n) = féni Among others
n
they investigated the distribution of P(£(n)). Namely they proved that
1.17 1 log P(&(n)) <2
) ot = L S Plet) <2400
and that
(1.18) (0 <)er < Z PEn) <c (z>1)
n<w

holds with suitable positive constants.
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We can prove that P({(n)) is distributed in limit according to the Poisson
law.

Let
ko)=Y L fy(n)i= ) Ke(n).
pln q>Y
p=1 (mod ¢?)
Since

T 1 CTTo

ILTOEIED DI LI EFD SN S

n<x p=1 (mod ¢?) p p<z p q
p=1 (mod ¢?)

holds with a suitable constant ¢, and

Zi— 4o !
2 YlogY Y(logY)2 )’

v 4

we obtain that

CT Xo
< .
;f‘“(”)— YlogY

If ¢ is an odd prime, ¢* | A(n), then either ¢ | n, or there exists some p | n
for which ¢% | p — 1. We obtain

(1.19) #{n <z | ¢®|A(n) for some ¢ > 23} < °r
T3
Let
f;(’l’b) = Z K’q(n)7
Y <q<ax}
Yo=Y R Y=Y s,
n<lz n<zx

From the Siegel-Walfisz theorem one can prove that

1 1 3 . A

:x+0<>lfl<k<$7
I% pooek) T o) ’
p=1 (modk)

where A is an arbitrary constant, whence we deduce that

- T3
21 =ax9 Ay + O <YlogY) ,

1 1 1
Ay, = Z o(?)  YlegY +0 (W) '
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Furthermore ZQ = ZQ ) + ZQ ) where
Zz 1 Z Z 2272 = Z Z Kg, (1)kg, (N

Y <q<zZn<z @1#q2 n<z
Y<q1,q2<x3

In this section ¢, g1, g2 run over the set of primes.
We have

INED DD DD D

_ . a3
] =2t 2 PrOEa

Y <q<wz2 101751)2 pip2 Y <q<a?2
q*/p;—1
+0 S/t =Y 4o 23
TXoX = — T
o a 1 Y3logY

and

1 1
22,2 =7 Z Z D1p2 +z Z Z ]; +O(x)

Q17#q2_ p;=1 (mod ¢?) 917Gz p<z
2, 7 J 21 2 2
q; €[Y,x5] pip2<zx q;€[Y,z3] p=1 (modqigs)

whence we obtain that

_ x3 2 42 1 _
Zz,z B (1 o (@)) v Ay, + O | 222 Z a2 -

2
q>Y q

1
=z A2 +O<xzx >
2 ST Y2002y

After some easy computation we obtain that

i) + T2X3 l‘%
YiogY  (YlogY)? VY3logY'

(1.20) % D (fr(n) = 224y.)? <

n<x
From (1.20) we can deduce

Theorem 6. Let ¢, — 0. Then

To 1 To

m_l#{n§x|P(A(n))€ {gw H—u (z — 00).

T3 €x I3

1
Proof. Indeed, choose first Y = ¢, - @, then ¥ = — - 22 and apply
&3 Ex I3
(1.20). |
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We can prove also

Theorem 7. Let e, — 0. Then

1#{p§m

lix

x3 €y X3

P(\(p—1)) € [5” 1”]}%1 (& = o).

1.6. Assume that Y = O(23), Y > mg/Q, u(n) := /v where 7 € R. Then

u is a strongly multiplicative function, for p € P

e'™ ifp=1 (mod ¢?) for some q € [Y, 23],
u(p) = .
1 otherwise.

Let h be the Moebius transform of u, i.e.

elm —1 if ¢> | p— 1 for some q € [Y, 23],
h(p) = :
0 otherwise,

h(p*)=0ifpe P, a > 2.
Let o
Sy(x,7) = Z eIy (), So(x,7) = Z u(n).
n<x n<x
If f5(n) # u(n) for some n, then there exists a prime divisor p of n, and
q1,q2 €P, q1,q2 > Y, q1 # g2 such that p = 1(mod ¢?¢3).
Then

S, 7) = Sa(w, D <z 3 v le

q1,q2€[Y,@3] p=1 (mod qi,q3)
91792 p<z
2

1 1\’ x

q>Y

There are several ways to prove that

Sz(zﬁ) =(1+0.(1) ] (1 - e”p— 1>

p<x

=1 (¢
(1.21) Ly

qeP

R (L
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One way to prove (1.21) is to copy the argument of the theorem of H. De-
lange
for the arithmetical mean of multiplicative functions of moduli 1. (See [7], or [4]

pp. 331-336.) Another method is to compute the asymptotic of Z - ¥ (n)

for h =1,2,... and use the Frechlet-Shohat theorem (see J. Galambos [11]).
A relevant paper is written by J. Siaulys [8]. We can prove

Theorem 8. Let ay = 25 Y,
q>Y QO( )

¢ < cg are arbitrary positive constants. Then

. Assume that ay € [c1,ca], where

1 ok,
(122)  Jm swp swp| g {n < | fi(n) =k} — T esp(—ay)| =0
z—>oo(xye[cl702] k>0 | T

Similarly, we have

(1.23)
1 ok
lim sup sup|i—#{p<z|fyr(p —1)—k}——exp( =0
T30 oy ey en] k20 | T

Assume that @ is such a prime for which (Qlog Q)/z2 € [c1, ¢2], where ¢1, co
are positive constants. We would like to estimate the number of those integers
n < x for which P(¢(n)) = Q. By using the asymptotic sieve one can obtain
quite immediately that

Lo | Pem) <@ = o) TT (1-3).

p<z P
a*/p—1
7>Q
Let 1
(Qa ) =2 Z D)
55 9(@%)
Then

S{n <o | PEm) < Q) = (14 0(1)) exp(~7(@, ).

Let Bg, be the set of those n for which P({(n)) = @, and there exists
exactly 7 distinct prime divisors py,pa, ..., p, of n for which Q? | p; — 1. Then

é#{ngx\TLGBQW}:(l‘FOa:(l))eXP( m(Q,2)) - 1{ > 1}

r'
p=1(Q*) P
p<z

valid for every fixed r =0, 1, 2,
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We can prove furthermore

Theorem 9. We have

ﬁ#{p <z|p-1€Bg,}=(1+0.(1))exp(—7(Q,))- :'{ 2 1/p}
Q%)

p=1(mod
p<w

for every fixed r =0,1,2,... .

1.7. For p1,p2, g € P let

1 ifpr=p2=1 (modq), p1 < pa,
0 otherwise.

(1.24) fa(p1,p2) = {

Let
(1.25) Ay (n) = Z Z f1(p1,p2).

qa>Y pipz|n

We observe that Ay (n) # 0 implies that ¢? | ¢(n) for some ¢ > Y. On
the other hand, if ¢® | ¢(n), then either ¢® | n; or ¢> | n and p | n with some
p =1 (mod q), or p | n with some p = 1 (mod ¢?); or there exist p; # po,
p1 =p2=1 (mod q), ¢ > Y, and p1ps | n.

Thus
(1.26)
1 1 T
- < - = < 2 .
x#{n <z | Ay(n) #0} x#{n <z | ¢°lp(n) for some ¢ > Y} <« VgV

By using our method developed by De Koninck and myself [1], [2] we can
compute the asymptotic of ZAQ&(n) and from the Frechet—Shohat theorem

n<x
deduce

Theorem 10. Let 0 < ¢; < ¢a < 00 be fized constants, o = a, € [c1, ¢,

1
Y=Y,= % - a3 /2x3. Then
k

(L27) e <a | Ay, (n) =k} = (L+0,(1) 7™ (¢ 00)
for every fized k =0,1,2,... uniformly as ay € [c1,cal.

Furthermore we obtain that
k

(128) L Ap<e| -1 =k =1 +0()0e " (@ o0)

for every fized k = 0,1,... uniformly as oy € [c1,ca].
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We shall prove this theorem in Section 3.
The following theorem can be deduced easily from Theorem 10.

Let ky (n) be the number of those ¢ > Y for which ¢* | ¢(n).

Theorem 11. Let Y, be the same as in Theorem 10.

Then
ok
(1.29) e <z |ky,(n)=k}=(1+ oz(l))ﬁe_o‘ (x — 00),
and
ok
(1.30) ﬁ#{p <zl|ky,(p—1)=k}=(01+ om(n))ﬁe_o‘ (x — o).

Remark. By using our method we can determine the distribution of
57 (n) = by (n) = #{a> Y. ¢ € P, ¢ | pr(n)}

and that of 6§,k’r) (p — 1), where Y, = « (25" /23)"/ "=V, We shall prove it in
another paper.

1.8. In a paper of F. Luca and C. Pomerance [17] the conjecture of Erdés,
namely that ¢(n — ¢(n)) < ¢(n) holds on a set of asymptotic density 1 is
proved.

They deduce that

p(n—p(n)  »n)
n—o(n) n

(1.31) <én

holds for almost all n, with a sequence €, — 0, which implies the conjecture

log log 1
of Erdgs. Namely they prove (1.31) with ¢, = 90808087V 1t this is not
loglogn
necessary for obtaining Erdés conjecture.
By their method one can prove that
i(nxf; i
) finE fin)  fin)| _
n =+ f;j(n) n

holds on a set of asymptotic density 1, where €,, — 0, and f1(n), fo(n) can take
the values ¢(n), o(n) : (f1, f2) = (¢, ¢); (p,0),(0,9),(0,0).
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We can prove (1.32) also, if n runs over the set of shifted primes. We shall
give a complete proof only in the case fi = fo = ¢, £ = —, and over the set
of prime +1’s.

Theorem 12. There exists a suitable sequence e, — 0 (p € P,p — 00)

such that
pp—1-9pp-1) ¢p-1|_
€p
p—1—pp-1) p—1

holds for p € P with the possible exception of o,(1)w(x) of p € P up to x.

1.9. J.-M. De Koninck and F. Luca [17] investigated

Hny o 7).
p(o(n))
In particular, they obtain the maximal and minimal orders of H(n), its average
order, and also proved some density theorems.

Since o) o) ol
_o(e(n o(n w(n
H ==y 2lot) o)’
therefore
log H(n) = k1(n) + k2(n) + k3(n),
where

1 1
()= Y log(1+p+~~~+pa>,

Pl v(n)
1
Ka(n) = Z 1Og1_7l’
plo(n) p

1-1
Ky(n) = Z 10g1+l+..p.+i'
p (e

p*|In p

By using a known theorem of P. Erdds one can prove that

1 ;
Hj(”) - Z lo«gﬁ <é&g (] = 172)

p<wma/x3 p

holds for all but at most o(x) integers n < x, where £, — 0 (z — 00). Since
k3(n) is an additive function satisfying the conditions of the Erdés-Wintner
theorem, we obtain immediately that

é#{ngx’ log H(n) — Z loglil <y}:Fr(y)

p<z2/z§ p
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tends to F'(y), where F is the distribution function defined as

F(y) = lim ~#{n < | ka(n) < y}.

T—00 I

Erdés proved that F' is a continuous singular function.

Distribution of H on the set of shifted primes, on polynomial values, and
on prime places of polynomial values can be proved similarly. Let

!
s(z) = H (1 - p) .
Then s(z) = eVz1 (1 + 0,(1)).

Theorem 13. Let k,1 > 0, f,gll)(n) = or(ei(n)), f,izl)(n) = pi(a1(n)).
Then for every n < x dropping at most o(x) integers

(1.33) ) (1t ou(1) (B2 2),
Jk,l(n)
(1.34) o) L4 o0) (k22),

and for k,1 > 1

£l ) 1
. élli)ll,z(n) - s(a:’g“‘l)(l Fo) (=1,
@),
(1.36) J:’;)l(()) =s(zb™ (1 +0.(1)) (k>1).
k—1,\1

Furthermore the relations (1.33), (1.34), (1.35), (1.36) are valid on the set of
shifted primes p+a (a # 0), with the exception of no more than o(lix) integers
p+a up to x.

This theorem is an immediate consequence of the following

Theorem 14. Let k,l > 1. Then, with the exception of at most d,x integers
n < x, for the others

@) p* | pr(n), p* | op(n) if p* < 257, and

Y otcen Y t<en

plex(n) plex(n)
p>m§+€z p>z§+£z
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B) p | f0(n), p* | £ (n) if p < aktimEe
and

> oo<es ¥ s<en

1 2
pIFY, () pIFZ) (n)
p>£];+l+5z p>rl2c+l+am

where £, — 0. Here §, — 0.

The same assertions hold if n Truns over the set of shifted primes, i.e. drop-
ping no more than § liz integers p+ a < z (a fix, a # 0), for the other p+ a
the relations o), B) hold true.

Remark. Theorem 14. «) for k = 1 is due to Erdés [11], for arbitrary
k is given in [12]. The proof of ), can be proved similarly. One can use the
method using in the papers [13], [15], [16].

From Theorem 13, 14 and from Erdés—Wintner theorem (see in [5]) we can
deduce several generalizations of the theorem of De Koninck and Luca [16].

Examples.

1. The function

vi(n) = SOkT(lTL) - (k —1)!(logloglogn)f=1t . (k=17

has a limit distribution, which is the same as the limit distribution of M
n

2. The function
_ o(n) (logloglogn)~t—1)
me(n) = = (k—1)! ¢

is distributed in limit as

3. The function
vi(p + a) is distributed in limit as w;
p+a
uk(p + a) is distributed in limit as M.
p+a

Here a # 0, p runs over the set of primes.
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4. The function
(1)

(1) Tk (n) log log 1 -1k (=1 I-1—k
pri(n) i= == (logloglog n)™ gy i mye
is distributed in limit as @;
the function
(2)
n) J(I+1)...(l+k—-1
Pl(czz)(”) _ i ( )_ ((+1)...(0+ )e(k—l-&-l)'y.(logloglogn)k—l-H
n (-1
o(n)

is distributed in limit as —=.
n
5. Let a # 0, fixed integer. The functions
1 2
dﬂp+®; éﬂp+®

pp+a) olp+a)
p+a ’ p+ta

are distributed in limit as respectively. Here p runs over

the set of primes
2. Lemmata

We shall use Selberg’s sieve theorem as it is formulated in Elliott ([4], Chap-
ter 2, Lemma 2.1).

Lemma 1. Let a, (n = 1,...,N) be integers, f(n) > 0. Letr >0, and
p1 < P2 < ...<ps <7t be rational primes. Set Q =p1...ps. If d | Q then let

N
Y. f(n)=n(d)X + R(N,d),

n=1
anp=0 (modd)

where X, R are real numbers, X >0, and n(didz) = n(dy1) - n(d2) whenever dy
and do are coprime divisors of Q.
Assume that for each prime p, 0 < n(p) < 1. Let

IN,Q) = > f(n).

n=1
(an,Q)=1
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Then the estimate

I(N,Q) = {1+20:H} x [J(1 = n(p) +202 Y 3°@W|R(N,d)]

plQ dlQ
d<z®
1
holds uniformly for r > 2, max(logr, S) < glogz, where |01 < 1, |05] <1

and

H = exp _logz log log = ~loglog logz) 25
logr S S logz ) )’

B n®)
S%l—n(p)l &P

The next lemma can be found in Halberstam and Richert [5], Corollary
2.4.1.

Lemma 2. Let k be a positive integer, I, a,b be nonzero integers, k < x.

Then
#{p<z|p=l (modk), ap+beP, peP}<

where ¢ is an absolute constant.

Lemma 3 (E. Bombieri and A.I. Vinogradov). For fized A > 0, there exists
B = B(A) > 0 such that

< T
zf

max max
e (Lk)=1 2<y<=z
x
R<E

’/T(yv kvl) -

liy ‘
(k)
For a proof see [4].

Lemma 4. Let f be a multiplicative non-negative function which for suit-
able A and B satisfies

(i) > fp)logp< Ay (y>0),
(ii) sgpz f;zi”) logp” < B.

v>2
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Then, for xz > 1,

xr TL
> fn) A+B+1;§§:

n<z

This assertion is Theorem 5 in Tenenbaum [4], Part III. Chapter 5.

Lemma 5. We have forl=1,2,1<k<zx

> e
= p ek)
p=l(modk)

(See [5].)

Lemma 6 (Frechet and Shohat [9]). Let F,,(u) (n=1,2,...) be a sequence
of distribution functions. For each non-negative integer | let

o0
lim ul dF, (u)
n—oo
—0o0
exist. Then there exists a subsequence F,, (u), ny < mng < ... which converges
weakly to the limiting distribution F(u) satisfying
o0
o = / u' dF(u), (1=0,1,...).
— 00
Moreover, if the sequence of moments «y determines F(u) uniquely, then the
sequence Fy,(u) converges to F(u) weakly.

Lemma 7 (Siegel and Walfisz). We have

lix

wle kD) = 2o (1+0( —e T))

uniformly as (k,1) =1, 1 <k < axf'. A is an arbitrary constant.
(See in [4].)

Lemma 8 (Brun-Titchmarsh). We have

cx
(k) log 2/
if 1l <k<uz (ki1)=1. cis an absolute constant.
(See in [18].)

m(x, k1) <
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Lemma 9 (Barban, Linnik and Tshudakov [10]). Let g be an odd prime.
Then

m(x,q", 1) = (pl(zq:i) (1 +0 (efc‘/ﬂ))

uniformly as (1,q) = 1, ¢" < x'/3.
3. Proof of Theorem 10 and Theorem 11

First we prove the relation (1.27). Let

(3.1) dq(n) = Z fq(p1,p2),

p1p2|n

(3.2) Aym)= > > folpr.p2)

Y <q<a3 pip2|n
We observe that

#{n <w | AL (n) #0} < ) Ap(n) <

n<z

L ¥ [l emn o)

q>z3 pip2<z q>x3
p;=1(q)

(3.3)

Let r > 1, and
(B4)  m() = A () (A% () — 1)... (Ap, () — (r = 1))
If 21, 29,...,20 € {0,1}, then
(3.5) Z Zilziz...zirzT(T_l)'”(T_(r_l)),

7!
11 <t <...<ip

(3.6) T=z1+204+ ...+ 2m.

The relation (3.5) can be proved by using induction on r.
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We can write

(3.7) O || PR )

’ ) —
Tj,T;5,9;5 J=1
’
mimi|n

where 7rj,7r;-,qj €P, qj € [Ya, 23]

Let 7.(n) = ﬂgl)( )—1—7',@( ), where in Tﬁl)(n) we sum over those 7;, 7 (j =

=1,...,r) for which {m,, 7} N {my, 7} =0 if u # v, and in 7\*(n) we sum
over the others.
We have
— Ay < S f’f
Y= X A< Y e
n<z J,TK'JJT

where * indicates that no more than (2r — 1) distinct primes occur among
/ /
Ty Ty e ooy Ty Tt
By using Lemma 3 we obtain that

1 1
2r—1 2r—1
IV ey L L)
vl q (YzlogYy)"
Let
21 = ZTT(l)(n)'
n<x

Then
3.8 -1,
33 O Sl

77]77"]7(13

7rj<7rJ
where in the right hand side my, 7] ..., 7, 7. are distinct primes g¢;|m; — 1,

gj|m5 — 1 and g; € [Va, 23).
By using our method in [1] one can obtain that

1 1 1 L
(3.9) *Z =1 +o0,(1))5: Z .t Z o
o 2 pipspensa P1P2T P2 | S (A7)

Since
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and

P1-P2r<T

we obtain that

(3.10) = Z 1+ 0z(1))a”,

and so

S m) = Wt ()a (@ o)

n<lz

uniformly as o = a, € [e1,¢2], 0 < ¢ < ¢ < 00.
r

e
By the Frechet—Shohat theorem and that —y are the factorial moments
T

of the Poisson-distribution, furthermore taking into consideration (1.26), we
obtain (1.27).

The proof of (1.28) is similar, somewhat more complicated.
Let » > 1 be fixed. Count those primes p < x for which there exists such

a couple of primes m < 7’ for which 77’ | p— 1 and 7 = 1 (mod q), 7’ =
(mod q), ¢ > Y, furthermore 7’/ > /4. We shall apply Lemma 2. We write
p—1 as ann’. Let a,7,q be fixed, 7 = 1 (mod q). Since ©’ > z'/*", therefore

am < z'~1/4" We have
#{p<zlp—-l=anrn;pr eP,p=1 (modq)}<c #
arqlog? aTq
Let us sum over g < z/8"

this sum is

,a, =1 (mod q). Since arq < z'~1/3" therefore

(i
<y TR 1”2 = oy(D)liz.

q>Y,

The contribution of those 7,7’ for which ¢ > z1/8" is

)OS qigzoam).

q>xl/8r wrw' <z q>azl/8r

n) = Z Z fq(p1,p2)-

Y<q  pipz2|n
p1<p2 <zl/4r

Let

By using the Brun—Titchmarsh inequality (Lemma 8), we obtain that

é#{]? <z Azg(p —1)#£0} =o(liz).
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Let A% (n) = Ay (n) — A%( ), and
(3.11) 7r(n) = Ay (n) (A3 (n) = 1) -+ (A (n) — (r = 1)).

Let 7-(n) = %7(1)(n) + ﬁgz)(n). Arguing as earlier, we deduce that

> mPp-1) =o(liz),

p<z
and that
1 / /
E TMp-1)= E w(x, mmy .. T, 1),
p<z 7rj771';-7qj
7rj<7r;v<;c1/8"'

By using the Bombieri-Vinogradov theorem (Lemma 3) we can continue
the proof as we did in the proof of (1.27).

Now we prove Theorem 11.

It is clear that Ay, (n) > Ky, (n). It is enough to prove that

(3.12) s ' # <z | ky,(n) #Ay,(n)} =0 (z = o0),
and that
(313) <zl # A1} 50 (@ oo)

If Ky, (n) # Ay, (n), then there exists ¢ > Y, and m < mo < 73, m; € P,
g|mj—1(j=1,2,3) such that mymoms | n. Thus (3.12) is less than

>

g>Y mimams
qlmi—1

< e I .
T3 vt q; Y2 IOg Y O(SU)

(3.14) can be proved similarly. We have to overestimate the size of those p < z
for which there exists ¢ > Y, and primes m < 7g < 73 such that mymems | p—1,
andg |7 —1(j=1,2,3).

We can drop the contribution of those primes p < z for which ¢ > 3,
say. Now we may assume that ¢ < z%. By using the Brun-Titchmarsh
inequality, we can drop also the contribution of those primes p for which
mmemy < 2170, where ¢ is a fixed positive constant. It remains the case when
p—1=ammams, mmamy > 270, 7; =1 (mod q), ; € [V, 23]. From Lemma
5 we obtain that the number of these primes is o(lix)
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4. Proof of Theorem 12

Let e(n) = @, log % =t(n) = Zlog

Let 0, — 0 slowly, t(n) = t1(n) + ta(n) + ts(n) + ta(n) where

hm = Y te) )= Y )

1
T

1—
qln q

qln w;_5$<q<w;+5w
q<ay 0" qln
ts(n) = Y ta); ta(n)=) t)
q|n q>z1
z;+5<q<x1 aln

It is clear that max t3(n) = 0,(1), max t4(n) = 0,(1).
n<x n<lx

By using sieve theorems one can prove that for all but o(liz) of primes
p <z, q|elp—1) holds for all ¢ < x%f‘sﬂ”, if 0, — 0 sufficiently slowly. This
implies that t1(p—1) = t1(p—1—¢(p—1)) for all but o(x(z)) of primes p < z.

Since
4D Y ts-D< D (/g rl@gl) <z > 1/¢* =o(liz)
p<z x12q>x;+5m q>:c;+5“”

we obtain that t3(p — 1) = 0,(1) holds for all but o(w(z)) primes p < x.

Now we shall prove that ¢t3(p—1—¢@(p—1)) = 0,(1) holds for all but o(w(x))
of primes p < z.

Let us write each p — 1 as @m, where @ is the largest prime factor of p — 1.
The size of those p < z for which P(p—1) < 2% or P(p—1) > 21 7% is o(liz).
This is wellknown, easy consequence of sieve theorems. We shall drop all these
primes. Starting from (4.1) it is enough to prove that

> t5(p—1—p(p—1)) = oliz),

p<z
P(p—l)e[m5x7r175w]

where
t5p—1—pp—1)) = > 1/q.

p—1—p(p—1)=0(q)
qfp—1
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Let Qe P, Sg={p<z, p—1=Qm, Plp—1) =Q}. Observe that if
p—1=Qm, q|p—1—¢(p—1), then Q(m — ¢(m)) + ¢(m) =0 (mod q). If
q | m — ¢(m), then the above equation has a solution @ only if ¢ | ¢(m), and
so if ¢ | m. Such kind of ¢’s are excluded in ¢3.

Hence

>oi= >, t3p—1-¢p-1) <

P(p=1)€la’s at=%]

< Y ! > #{QeP.@m<

w12q>w}+5’” m<a! %
atm
< z,Q(m —¢(m)) +¢(m) = 0(q)} <

< Y o X #pQeP p=Qmil Qum-plm)t

w;+6“§q<x1 mgxé_ém
qtm

+eo(m)=0 (mod q)}.

x
Let us apply Lemma 1 with substituting in it xt — —, p = @, k — ¢. We have
n

2 Z 2 x
mlog® -+
x;+‘sw<q<x1 q m<zgl=0z g mq

The right hand side is clearly o(liz).
We are almost ready. Let e;(n) := e%("). Then e(n) = e1(n)ez(n)es(n)es(n).
We have to consider

up—1:=e(p—1—p(p—-1))—e(p-1).

We proved that ej(p—1—¢@(p—1)) =1+ 0.(1), ej(p—1) =1+ 0,(1) hold
for all but o(liz) primes p < z, for j = 2,3,4, and claimed that e;(p — 1) =
=e1(p—1—¢(p—1)) is satisfied for all but o(liz) primes p < z.

The proof of the theorem is completed. |
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