
Annales Univ. Sci. Budapest., Sect. Comp. 35 (2011) 163–187

SOME REMARKS ON THE CARMICHAEL

AND ON THE EULER’S ϕ FUNCTION

I. Kátai (Budapest, Hungary)

Dedicated to my friend, Professor Antal Járai on his 60th anniversary

Abstract. Several theorems on the iterates of the Carmichael and on the
Euler’s ϕ function is presented, some of them without proof.

1. Introduction

We shall formulate several in my opinion new theorems on the divisors of
the Carmichael and Euler’s totient function.

Some of them can be proved by direct application of sieve theorems. We
omit the proof of them. We shall prove only Theorem 6, 10, 11, 12.

1.1. Notations. P = set of primes; p, π with and without suffixes always de-
note prime numbers; π(x) = #{p ≤ x}, π(x, k, l) = #{p ≤ x, p ≡ l (mod k)}.

λ(n) = Carmichael function defined for pα by

λ(pα) =

{
pα−1(p− 1), if p ≥ 3, or α ≤ 2,

2α−2, if p = 2 and α ≥ 3,
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and for n = pα1
1 . . . pαr

r (pi �= pj , pi ∈ P)

λ(n) = LCM [λ(pα1
1 ), . . . , λ(pαr

r )] .

Here LCM = least common multiple.

Let ω(n) = number of distinct prime factors of n, Ω(n) = number of prime
power divisors of n.

ϕ(n) =

r∏
j=1

p
αj−1
j (pj − 1) the Euler’s totient function.

P (n) = largest prime divisor of n; p(n) = smallest prime divisor of n.

Let x1 = log x, x2 = log x1 . . . .

Let λ(k)(n), ϕ(k)(n) be the kth iterate of λ(n) and of ϕ(n), respectively, i.e.
λ(0)(n) = n, ϕ(0)(n) = n, and λ(k+1)(n) = λ(λ(k)(n)), ϕ(k+1)(n) = ϕ(ϕ(k)(n)).

1.2. In this paper we shall formulate some theorems on λ, ϕ and on their
iterates. Some of these theorems can be proved by known methods which were
applied earlier, and we omit their complete proof.

1.3. Let q ≥ 2 be a fixed prime, γ(n) be that exponent, for which qγ(n) ‖ϕ(n).
M. Wijsmuller [3] investigated the completely additive function β defined on
p ∈ P by qβ(p) ‖ p+ 1, and proved a global central limit theorem for β(n). Her
method can be used to prove central limit theorem for γ(n) as well. In [1],
[2] we developed a method by which we can prove local central limit theorem
for γ(n) and β(n). We are unable to give the asymptotic of #{p ≤ x, p ∈
P, γ(p + 1) = k}, and that of {n ≤ x, γ(n2 + 1) = k}. Global central limit
theorem can be proved for γ(p+ 1), and γ(n2 + 1).

1.4. Let ν(n) be defined by qν(n) ‖λ(n). Let Pk := {p | p ∈ P, p ≡ 1
(mod qk)}; P∗

k = Pk\Pk+1. Let furthermore

(1.1) ωk(n) =
∑
p |n
p∈Pk

1,

(1.2) tk(x) :=
∏

p≡1 (mod qk)
p≤x

(
1− 1

p

)
.
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From the Siegel–Walfisz theorem (Lemma 7) one can obtain that

(1.3) log tk(x) = −
∑
p≤x

p≡1(qk)

1

p
+O

(
1

qk

)
= − x2

ϕ(qk)
+O

(
1

qk

)

valid if 1 ≤ qk ≤ c x2.

The following assertion can be proved by routine application of the asymp-
totic sieve.

Theorem 1. Let q ≥ 2 be a fixed prime,

(1.4) αk(x) :=
x2

ϕ(qk)
.

Assume that k = k(x)→∞ and that x2 · q−k →∞. Then

(1.5)

1(
1− 1

q

)
x
#{n ≤ x, (n, q) = 1, ν(n) = k, ωk(n) = r} =

= (1 + ox(1))tk(x)
∑ 1

ϕ(p1 · · · pr)

valid for 0 ≤ r ≤ x

x2
3

. The last sum is extended over those p1 < . . . < pr for

which pi ∈ P∗
k , p1 < . . . < pr ≤ x. In this range of r we have

(1.6)
∑ 1

ϕ(p1 · · · pr)
= (1 + ox(1))

(
x2

qk

)r

· 1
r!
.

Assume that qk/x2 →∞, qk < x1/3. Then

(1.7)
∑
n≤x

ωk(n) = x
∑
p≤x
p∈Pk

1

p
+O(π(x, qk, 1)),

and

(1.8)
∑
n≤x

ωk(n)(ωk(n)− 1) =
∑

p1 �=p2
p1p2≤x

p1,p2∈Pk

x

p1p2
+O

⎛⎜⎜⎝ ∑
p1<

√
x

p1∈Pk

π

(
x

p1
, qk, 1

)⎞⎟⎟⎠ .

By using the Brun–Titchmarsh theorem (Lemma 8), we obtain that the
error term on the right hand side of (1.8) is less than (lix)q−2kx2. From (1.7),
(1.8) we can deduce a Turán–Kubilius type inequality and from that
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Theorem 2. Let q ∈ P be fixed, k = k(x) be such that qk/x2 → ∞ and
that qk < cxA

1 hold with arbitrary constants c, A. Then

(1.9)
1

x
#{n ≤ x | ν(n) ≥ k} = (1 + ox(1))

∑
p≤x
p∈Pk

1

p
,

furthermore

(1.10)
∑
p≤x
p∈Pk

1

p
= αk(x) +O

(
1

qk

)
.

Remark. By using the Barban–Linnik–Tshudakov theorem (Lemma 9)
(1.9) remains valid up to qk < xδ, where δ is a suitable positive constant.

We can prove also the following Theorem 3, 4, 5.

Theorem 3. Assume that k = k(x) is such a sequence for which qk/x2 →
→∞ and that qk < cxA

1 with arbitrary constants c, A. Then

(1.11)
1

lix
#{p ≤ x | ν(p+ 1) ≥ k} = (1 + ox(1))αk(x).

Furthermore

(1.12)
1

lix
#{p ≤ x | ν(p+ 1) ≥ k, ν(p− 1) ≥ l} = (1 + ox(1))αk(x) · αl(x)

holds, if additionally ql/x2 →∞, ql < cxA
1 .

Remark. One could prove in general that

1

lix
#{p ≤ x | ν(p+ tj) ≥ kj , j = 1, . . . , h} = (1 + ox(1))αk1(x) . . . αkh

(x)

if t1, . . . , th are distinct nonzero integers and qkj/x2 → ∞, qkj ≤ cxA
1 (j =

= 1, . . . , h).

Theorem 4. Let q be an odd prime. Assume that k = k(x)→∞, x2q
−k →

→∞. Then

(1.13)

1

lix
#{p ≤ x, (p+ 1, q) = 1, ν(p+ 1) = k, ωk(p+ 1) = r} =

= (1 + ox(1))(lix)t
∗
k(x)

1

r!

(
xk
2

qk

)r
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if 0 ≤ r ≤ x2

x3
. Here

(1.14) t∗k(x) =
∏
p<x
p∈Pk

(
1− 1

p− 1

)
.

Remark. Since

log
t∗k(x)
tk(x)

= O

( ∑
p∈Pk

1

p2

)
= O

(
1

qk

)
,

(1.13) remains valid with tk(x) instead of t∗k(x).

Theorem 5. Let q be an odd prime, k = k(x) be such a sequence for which
x2q

−k →∞. Let ρ(m) be the number of residue classes n (mod m), for which
n2 + 1 ≡ 0 (mod m).

Let

(1.15) sk(x) =
∏
p<x
p∈Pk

(
1− ρ(p)

p− 1

)
.

Then

(1.16)

1

x
#
{
n ≤ x, (n2 + 1, q) = 1, ν(n2 + 1) = k, ωk(n

2 + 1) = r
}
=

= (1 + ox(1))

(
1− ρ(q)

q

)
sk(x)

1

r!

⎛⎜⎝ ∑
π<x
π∈Pk

ρ(π)

π − 1

⎞⎟⎠
r

if 0 ≤ r ≤ x2

x3
.

1.5. In their paper [6] W.D. Banks, F. Luca, I.E. Shparlinski investigated some

arithmetic properties of ϕ(n), λ(n), and that of ξ(n) =
ϕ(n)

λ(n)
. Among others

they investigated the distribution of P (ξ(n)). Namely they proved that

(1.17) 1 + o(1) ≤ 1

x · x3

∑
n≤x

logP (ξ(n)) ≤ 2 + o(1),

and that

(1.18) (0 <)c1 ≤
1

xx3
2

∑
n≤x

P (ξ(n)) ≤ c2 (x ≥ 1)

holds with suitable positive constants.
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We can prove that P (ξ(n)) is distributed in limit according to the Poisson
law.

Let
κq(n) :=

∑
p |n

p≡1 (mod q2)

1; fY (n) :=
∑
q>Y

κq(n).

Since ∑
n≤x

κq(n) =
∑

p≡1 (mod q2)

[
x

p

]
≤ x

∑
p≤x

p≡1 (mod q2)

1

p
≤ cxx2

q2

holds with a suitable constant c, and∑
q≥Y

1

q2
=

1

Y log Y
+O

(
1

Y (log Y )2

)
,

we obtain that ∑
n≤x

fY (n) ≤
c x x2

Y log Y
.

If q is an odd prime, q2 | λ(n), then either q3 | n, or there exists some p | n
for which q2 | p− 1. We obtain

(1.19) #
{
n ≤ x | q2 | λ(n) for some q > x2

2

}
≤ c x

x2x3
.

Let
f∗
Y (n) =

∑
Y≤q≤x2

2

κq(n),

∑
1
:=

∑
n≤x

f∗
Y (n),

∑
2
:=

∑
n≤x

f∗2
Y (n).

From the Siegel–Walfisz theorem one can prove that∑
p≤x

p≡1 (mod k)

1

p
=

1

ϕ(k)
x2 +O

(
x3

ϕ(k)

)
if 1 ≤ k ≤ xA

2 ,

where A is an arbitrary constant, whence we deduce that∑
1
= xx2 AY,x +O

(
xx3

Y log Y

)
,

AY,x :=
∑

Y≤q≤x2
2

1

ϕ(q2)
=

1

Y log Y
+O

(
1

Y (log Y )2

)
.
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Furthermore
∑

2
=
∑

2,1
+
∑

2,2
, where∑

2,1
=

∑
Y≤q≤x2

2

∑
n≤x

κ2
q(n),

∑
2,2

=
∑
q1 �=q2

Y≤q1,q2≤x2
2

∑
n≤x

κq1(n)κq2(n).

In this section q, q1, q2 run over the set of primes.

We have∑
2,1

=
∑

1
+

∑
Y≤q≤x2

2

∑
p1 �=p2

q2/pj−1

[
x

p1p2

]
=
∑

1
+x

∑
Y≤q≤x2

2

x2
2

ϕ(q2)2
+

+O

⎛⎝xx2x3

∑
q>Y

1/q4

⎞⎠ =
∑

1
+O

(
xx2

2

Y 3 log Y

)

and∑
2,2

= x
∑
q1 �=q2

qj∈[Y,x2
2]

∑
pj≡1 (mod q2j )

p1p2≤x

1

p1p2
+ x

∑
q1 �=q2

qj∈[Y,x2
2]

∑
p≤x

p≡1 (mod q21q
2
2)

1

p
+O(x)

whence we obtain that

∑
2,2

=

(
1 +O

(
x3

x2

))
xx2

2A
2
y,x +O

⎛⎜⎝xx2

⎛⎝∑
q>Y

1

q2

⎞⎠2
⎞⎟⎠ =

= xx2
2A

2
y,x +O

(
xx3x2 ·

1

Y 2 log2 Y

)
.

After some easy computation we obtain that

(1.20)
1

x

∑
n≤x

(f∗
Y (n)− x2AY,x)

2 � x2

Y log Y
+

x2x3

(Y log Y )2
+

x2
2

Y 3 log Y
.

From (1.20) we can deduce

Theorem 6. Let εx → 0. Then

x−1#

{
n ≤ x | P (λ(n)) ∈

[
εx ·

x2

x3
,
1

εx
· x2

x3

]}
→ 1 (x→∞).

Proof. Indeed, choose first Y = εx ·
x2

x3
, then Y =

1

εx
· x2

x3
and apply

(1.20). �



170 I. Kátai

We can prove also

Theorem 7. Let εx → 0. Then

1

lix
#

{
p ≤ x

∣∣∣∣∣ P (λ(p− 1)) ∈
[
εx ·

x2

x3
,
1

εx
· x2

x3

]}
→ 1 (x→∞).

1.6. Assume that Y = O(x2
2), Y ≥ x

3/2
2 , u(n) := eiτf

∗
Y (n), where τ ∈ R. Then

u is a strongly multiplicative function, for p ∈ P

u(p) :=

{
eiτ if p ≡ 1 (mod q2) for some q ∈ [Y, x2

2],

1 otherwise.

Let h be the Moebius transform of u, i.e.

h(p) =

{
eiτ − 1 if q2 | p− 1 for some q ∈ [Y, x2

2],

0 otherwise,

h(pα) = 0 if p ∈ P, α ≥ 2.

Let
S1(x, τ) :=

∑
n≤x

eiτf
∗
Y (n); S2(x, τ) =

∑
n≤x

u(n).

If f∗
Y (n) �= u(n) for some n, then there exists a prime divisor p of n, and

q1, q2 ∈ P, q1, q2 > Y , q1 �= q2 such that p ≡ 1(mod q21q
2
2).

Then

|S1(x, τ)− S2(x, τ)| ≤ x
∑

q1,q2∈[Y,x2
2]

q1 �=q2

∑
p≡1 (mod q21 ,q

2
2)

p≤x

1

p
�

� xx2

⎛⎝∑
q>Y

1

q2

⎞⎠2

� xx2

(
1

Y log Y

)2

= O

(
x

x2
2

)
.

There are several ways to prove that

(1.21)

S2(x, τ)

x
= (1 + ox(1))

∏
p<x

p≡1 (q2)
q>Y
q∈P

(
1 +

eiτ − 1

p

)
=

= (1 + ox(1)) exp

((
eiτ − 1

) x2

Y log Y

)
.
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One way to prove (1.21) is to copy the argument of the theorem of H. De-
lange
for the arithmetical mean of multiplicative functions of moduli 1. (See [7], or [4]

pp. 331–336.) Another method is to compute the asymptotic of
∑

n≤x
f∗h
Y (n)

for h = 1, 2, . . . and use the Frechlet–Shohat theorem (see J. Galambos [11]).
A relevant paper is written by J. Šiaulys [8]. We can prove

Theorem 8. Let αY = x2

∑
q>Y

1

ϕ(q2)
. Assume that αY ∈ [c1, c2], where

c1 < c2 are arbitrary positive constants. Then

(1.22) lim
x→∞ sup

αY ∈[c1,c2]

sup
k≥0

∣∣∣∣ 1x# {n ≤ x | f∗
Y (n) = k} − αk

Y

k!
exp(−αY )

∣∣∣∣ = 0.

Similarly, we have
(1.23)

lim
x→∞ sup

αY ∈[c1,c2]

sup
k≥0

∣∣∣∣ 1

lix
# {p ≤ x | f∗

Y (p− 1) = k} − αk
Y

k!
exp(−αY )

∣∣∣∣ = 0.

Assume that Q is such a prime for which (Q logQ)/x2 ∈ [c1, c2], where c1, c2
are positive constants. We would like to estimate the number of those integers
n ≤ x for which P (ξ(n)) = Q. By using the asymptotic sieve one can obtain
quite immediately that

1

x
#{n ≤ x | P (ξ(n)) < Q} = (1 + ox(1))

∏
p≤x

q2/p−1
q≥Q

(
1− 1

p

)
.

Let

τ(Q, x) = x2 ·
∑
q≥Q

1

ϕ(q2)
.

Then
1

x
#{n ≤ x | P (ξ(n)) < Q} = (1 + ox(1)) exp(−τ(Q, x)).

Let BQ,r be the set of those n for which P (ξ(n)) = Q, and there exists
exactly r distinct prime divisors p1, p2, . . . , pr of n for which Q2 | pj − 1. Then

1

x
#{n ≤ x | n ∈ BQ,r} = (1 + ox(1)) exp(−τ(Q, x)) · 1

r!

{ ∑
p≡1(Q2)

p≤x

1

p

}r

valid for every fixed r = 0, 1, 2, . . . .
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We can prove furthermore

Theorem 9. We have

1

lix
#{p ≤ x | p−1 ∈ BQ,r} = (1+ox(1)) exp(−τ(Q, x)) · 1

r!

{ ∑
p≡1(modQ2)

p≤x

1/p

}r

for every fixed r = 0, 1, 2, . . . .

1.7. For p1, p2, q ∈ P let

(1.24) fq(p1, p2) =

{
1 if p1 ≡ p2 ≡ 1 (mod q), p1 < p2,

0 otherwise.

Let

(1.25) ΔY (n) :=
∑
q>Y

∑
p1p2|n

f1(p1, p2).

We observe that ΔY (n) �= 0 implies that q2 | ϕ(n) for some q > Y . On
the other hand, if q2 | ϕ(n), then either q3 | n; or q2 | n and p | n with some
p ≡ 1 (mod q), or p | n with some p ≡ 1 (mod q2); or there exist p1 �= p2,
p1 ≡ p2 ≡ 1 (mod q), q > Y , and p1p2 | n.

Thus
(1.26)
1

x
#{n ≤ x | ΔY (n) �= 0} − 1

x
#{n ≤ x | q2|ϕ(n) for some q > Y } � x

Y log Y
.

By using our method developed by De Koninck and myself [1], [2] we can

compute the asymptotic of
∑
n≤x

Δh
Y (n) and from the Frechet–Shohat theorem

deduce

Theorem 10. Let 0 < c1 < c2 < ∞ be fixed constants, α = αx ∈ [c1, c2],

Y = Yx =
1

2α
· x2

2/2x3. Then

(1.27) x−1#{n ≤ x | ΔYx(n) = k} = (1 + ox(1))
αk

k!
e−α (x→∞)

for every fixed k = 0, 1, 2, . . . uniformly as αx ∈ [c1, c2].

Furthermore we obtain that

(1.28)
1

lix
#{p ≤ x | ΔYx(p− 1) = k} = (1 + ox(1))

αk

k!
e−α (x→∞)

for every fixed k = 0, 1, . . . uniformly as αx ∈ [c1, c2].
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We shall prove this theorem in Section 3.

The following theorem can be deduced easily from Theorem 10.

Let κY (n) be the number of those q > Y for which q2 | ϕ(n).

Theorem 11. Let Yx be the same as in Theorem 10.

Then

(1.29) x−1#{n ≤ x | κYx
(n) = k} = (1 + ox(1))

αk

k!
e−α (x→∞),

and

(1.30)
1

lix
#{p ≤ x | κYx

(p− 1) = k} = (1 + ox(n))
αk

k!
e−α (x→∞).

Remark. By using our method we can determine the distribution of

δ
(k,r)
Y (n) = δY (n) = #{q > Y, q ∈ P, qr | ϕk(n)}

and that of δ
(k,r)
Y (p − 1), where Yx = α (xkr

2 /x3)
1/(r−1). We shall prove it in

another paper.

1.8. In a paper of F. Luca and C. Pomerance [17] the conjecture of Erdős,
namely that ϕ(n − ϕ(n)) < ϕ(n) holds on a set of asymptotic density 1 is
proved.

They deduce that

(1.31)

∣∣∣∣ϕ(n− ϕ(n))

n− ϕ(n)
− ϕ(n)

n

∣∣∣∣ < εn

holds for almost all n, with a sequence εn → 0, which implies the conjecture

of Erdős. Namely they prove (1.31) with εn = 2
log log log n

log log n
but this is not

necessary for obtaining Erdős conjecture.

By their method one can prove that

(1.32)

∣∣∣∣fi(n± fj(n))

n± fj(n)
− fi(n)

n

∣∣∣∣ < εn

holds on a set of asymptotic density 1, where εn → 0, and f1(n), f2(n) can take
the values ϕ(n), σ(n) : (f1, f2) = (ϕ,ϕ); (ϕ, σ), (σ, ϕ), (σ, σ).
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We can prove (1.32) also, if n runs over the set of shifted primes. We shall
give a complete proof only in the case f1 = f2 = ϕ, ± = −, and over the set
of prime +1′s.

Theorem 12. There exists a suitable sequence εp → 0 (p ∈ P, p → ∞)
such that ∣∣∣∣ϕ(p− 1− ϕ(p− 1))

p− 1− ϕ(p− 1)
− ϕ(p− 1)

p− 1

∣∣∣∣ < εp

holds for p ∈ P with the possible exception of ox(1)π(x) of p ∈ P up to x.

1.9. J.-M. De Koninck and F. Luca [17] investigated

H(n) :=
σ(ϕ(n))

ϕ(σ(n))
.

In particular, they obtain the maximal and minimal orders of H(n), its average
order, and also proved some density theorems.

Since

H(n) =
σ(ϕ(n))

ϕ(n)
· σ(n)

ϕ(σ(n))
· ϕ(n)
σ(n)

,

therefore
logH(n) = κ1(n) + κ2(n) + κ3(n),

where

κ1(n) =
∑

pα ‖ϕ(n)

log

(
1 +

1

p
+ · · ·+ 1

pα

)
,

κ2(n) =
∑

p|σ(n)
log

1

1− 1
p

,

κ3(n) =
∑
pα ‖n

log
1− 1

p

1 + 1
p + · · ·+ 1

pα

.

By using a known theorem of P. Erdős one can prove that∣∣∣∣∣∣κj(n)−
∑

p<x2/x2
3

log
1

1− 1
p

∣∣∣∣∣∣ < εx (j = 1, 2)

holds for all but at most o(x) integers n ≤ x, where εx → 0 (x → ∞). Since
κ3(n) is an additive function satisfying the conditions of the Erdős–Wintner
theorem, we obtain immediately that

1

x
#
{
n ≤ x

∣∣∣ logH(n)−
∑

p<x2/x2
3

log
1

1− 1
p

< y
}
= Fx(y)
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tends to F (y), where F is the distribution function defined as

F (y) = lim
x→∞

1

x
#{n ≤ x | κ3(n) < y}.

Erdős proved that F is a continuous singular function.

Distribution of H on the set of shifted primes, on polynomial values, and
on prime places of polynomial values can be proved similarly. Let

s(x) =
∏
p<x

(
1− 1

p

)−1

.

Then s(x) = eγx1 (1 + ox(1)).

Theorem 13. Let k, l ≥ 0, f
(1)
k,l (n) := σk(ϕl(n)), f

(2)
k,l (n) = ϕk(σl(n)).

Then for every n ≤ x dropping at most o(x) integers

(1.33)
σk(n)

σk−1(n)
= s(xk−1

2 )(1 + ox(1)) (k ≥ 2),

(1.34)
ϕk(n)

ϕk−1(n)
=

1

s(xk−1
2 )

(1 + ox(1)) (k ≥ 2),

and for k, l ≥ 1

(1.35)
f
(1)
k,l (n)

f
(1)
k−1,l(n)

=
1

s(xk+l−1
2 )

(1 + ox(1)) (k ≥ 1),

(1.36)
f
(2)
k,l (n)

f
(2)
k−1,l(n)

= s(xk+l−1
2 )(1 + ox(1)) (k ≥ 1).

Furthermore the relations (1.33), (1.34), (1.35), (1.36) are valid on the set of
shifted primes p+a (a �= 0), with the exception of no more than o(lix) integers
p+ a up to x.

This theorem is an immediate consequence of the following

Theorem 14. Let k, l ≥ 1. Then, with the exception of at most δxx integers
n ≤ x, for the others

α) pα | ϕk(n), pα | σk(n) if p
α ≤ xk−εx

2 , and∑
p|ϕk(n)

p>xk+εx
2

1

p
< εx;

∑
p|ϕk(n)

p>xk+εx
2

1

p
< εx,
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β) pα | f (1)
k+l(n), pα | f (2)

k+l(n) if p
α ≤ xk+l−εx

2 ,

and

∑
p|f(1)

k+l(n)

p>xk+l+εx
x

1

p
< εx;

∑
p|f(2)

k+l(n)

p>xk+l+εx
2

1

p
< εx,

where εx → 0. Here δx → 0.

The same assertions hold if n runs over the set of shifted primes, i.e. drop-
ping no more than δxlix integers p + a ≤ x (a fix, a �= 0), for the other p + a
the relations α), β) hold true.

Remark. Theorem 14. α) for k = 1 is due to Erdős [11], for arbitrary
k is given in [12]. The proof of β), can be proved similarly. One can use the
method using in the papers [13], [15], [16].

From Theorem 13, 14 and from Erdős–Wintner theorem (see in [5]) we can
deduce several generalizations of the theorem of De Koninck and Luca [16].

Examples.

1. The function

νk(n) =
ϕk(n)

n
· (k − 1)!(log log log n)k−1 · e(k−1)γ

has a limit distribution, which is the same as the limit distribution of
ϕ(n)

n
.

2. The function

μk(n) =
σk(n)

n

(log log log n)−(k−1)

(k − 1)!
e−(k−1)γ

is distributed in limit as
σ(n)

n
.

3. The function

νk(p+ a) is distributed in limit as
ϕ(p+ a)

p+ a
;

μk(p+ a) is distributed in limit as
σ(p+ a)

p+ a
.

Here a �= 0, p runs over the set of primes.
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4. The function

ρ
(1)
k,l (n) :=

f
(1)
k,l (n)

n
(log log log n)l−1−k (l − 1)!

l(l + 1) . . . (l + k − 1)
el−1−kγ

is distributed in limit as
ϕ(n)

n
;

the function

ρ
(2)
k,l (n) =

f
(2)
k,l (n)

n
· l(l + 1) . . . (l + k − 1)

(l − 1)!
e(k−l+1)γ · (log log log n)k−l+1

is distributed in limit as
σ(n)

n
.

5. Let a �= 0, fixed integer. The functions

ρ
(1)
k,l (p+ a); ρ

(2)
k,l (p+ a)

are distributed in limit as
ϕ(p+ a)

p+ a
,
σ(p+ a)

p+ a
respectively. Here p runs over

the set of primes

2. Lemmata

We shall use Selberg’s sieve theorem as it is formulated in Elliott ([4], Chap-
ter 2, Lemma 2.1).

Lemma 1. Let an (n = 1, . . . , N) be integers, f(n) ≥ 0. Let r > 0, and
p1 < p2 < . . . < ps ≤ r be rational primes. Set Q = p1 . . . ps. If d | Q then let

N∑
n=1

an≡0 (mod d)

f(n) = η(d)X +R(N, d),

where X,R are real numbers, X ≥ 0, and η(d1d2) = η(d1) · η(d2) whenever d1
and d2 are coprime divisors of Q.
Assume that for each prime p, 0 ≤ η(p) < 1. Let

I(N,Q) :=

N∑
n=1

(an,Q)=1

f(n).
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Then the estimate

I(N,Q) = {1 + 2Θ1H} ×
∏
p|Q

(1− η(p)) + 2Θ2

∑
d|Q
d≤z3

3ω(d)|R(N, d)|

holds uniformly for r ≥ 2, max(log r, S) ≤ 1

8
log z, where |Θ1| ≤ 1, |Θ2| ≤ 1

and

H = exp

(
− log z

log r

{
log

(
log z

S

)
− log log

(
log z

S

)
− 2S

log z

})
,

S =
∑
p|Q

η(p)

1− η(p)
log p.

The next lemma can be found in Halberstam and Richert [5], Corollary
2.4.1.

Lemma 2. Let k be a positive integer, l, a, b be nonzero integers, k ≤ x.
Then

#{p ≤ x | p ≡ l (mod k), ap+ b ∈ P, p ∈ P} ≤

≤ c
∏
p|kab

(
1− 1

p

)−1

· x

ϕ(k) log2 x
k

,

where c is an absolute constant.

Lemma 3 (E. Bombieri and A.I. Vinogradov). For fixed A > 0, there exists
B = B(A) > 0 such that∑

k≤
√

x

xB
1

max
(l,k)=1

max
2≤y≤x

∣∣∣∣π(y, k, l)− li y

ϕ(k)

∣∣∣∣� x

xA
1

.

For a proof see [4].

Lemma 4. Let f be a multiplicative non-negative function which for suit-
able A and B satisfies

(i)
∑
p≤y

f(p) log p ≤ Ay (y ≥ 0),

(ii) sup
p

∑
ν≥2

f(pν)

pν
log pν ≤ B.
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Then, for x > 1, ∑
n≤x

f(n) ≤ (A+B + 1)
x

x1

∑
n≤x

f(n)

n
.

This assertion is Theorem 5 in Tenenbaum [4], Part III. Chapter 5.

Lemma 5. We have for l = 1, 2, 1 ≤ k ≤ x∑
p≤x

p≡l(mod k)

1

p
≤ c

x2

ϕ(k)
.

(See [5].)

Lemma 6 (Frechet and Shohat [9]). Let Fn(u) (n = 1, 2, . . . ) be a sequence
of distribution functions. For each non-negative integer l let

lim
n→∞

∞∫
−∞

ul dFn(u)

exist. Then there exists a subsequence Fnk
(u), n1 < n2 < . . . which converges

weakly to the limiting distribution F (u) satisfying

αl =

∞∫
−∞

ul dF (u), (l = 0, 1, . . .).

Moreover, if the sequence of moments αl determines F (u) uniquely, then the
sequence Fn(u) converges to F (u) weakly.

Lemma 7 (Siegel and Walfisz). We have

π(x, k, l) =
lix

ϕ(k)

(
1 +O

(
e−c

√
x1

))
uniformly as (k, l) = 1, 1 ≤ k ≤ xA

1 . A is an arbitrary constant.

(See in [4].)

Lemma 8 (Brun–Titchmarsh). We have

π(x, k, l) ≤ cx

ϕ(k) log x/k
,

if 1 ≤ k < x, (k, l) = 1. c is an absolute constant.

(See in [18].)



180 I. Kátai

Lemma 9 (Barban, Linnik and Tshudakov [10]). Let q be an odd prime.
Then

π(x, qr, l) =
lix

ϕ(qr)

(
1 +O

(
e−c

√
x1

))
uniformly as (l, q) = 1, qr ≤ x1/3.

3. Proof of Theorem 10 and Theorem 11

First we prove the relation (1.27). Let

(3.1) δq(n) =
∑

p1p2|n
fq(p1, p2),

(3.2) Δ∗
Y (n) =

∑
Y <q≤x2

2

∑
p1p2|n

fq(p1, p2).

We observe that

(3.3)

#{n ≤ x | Δ2
x2
(n) �= 0} ≤

∑
n≤x

Δx2
2
(n) ≤

≤
∑
q≥x2

2

∑
p1p2≤x
pj≡1(q)

[
x

p1p2

]
≤ cxx2

2

∑
q≥x2

2

1

q2
= O

(
x

x3

)
.

Let r ≥ 1, and

(3.4) τr(n) = Δ∗
Yx
(n)

(
Δ∗

Yx
(n)− 1) . . . (Δ∗

Yx
(n)− (r − 1)

)
.

If z1, z2, . . . , zM ∈ {0, 1}, then

(3.5)
∑

i1<i2<...<ir

zi1zi2 . . . zir =
T (T − 1) . . . (T − (r − 1))

r!
,

(3.6) T = z1 + z2 + . . .+ zm.

The relation (3.5) can be proved by using induction on r.
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We can write

(3.7) τr(n) =
∑

πj ,π
′
j ,qj

πjπ
′
j |n

r∏
j=1

fqj (πj , π
′
j),

where πj , π
′
j , qj ∈ P, qj ∈ [Yx, x

2
2].

Let τr(n) = τ
(1)
r (n)+τ

(2)
r (n), where in τ

(1)
r (n) we sum over those πj , π

′
j (j =

= 1, . . . , r) for which {πu, π
′
u} ∩ {πv, π

′
v} = ∅ if u �= v, and in τ

(2)
r (n) we sum

over the others.

We have∑
2
:=

∑
n≤x

τ (2)r (n) ≤
∑∗

qj ,πj ,π′
j

[
x

LCM(π1, π′
1, . . . , πr, π′

r)

]

where ∗ indicates that no more than (2r − 1) distinct primes occur among
π1, π

′
1, . . . , πr, π

′
r.

By using Lemma 3 we obtain that

1

x

∑
2
� x2r−1

2

⎧⎨⎩∑
q>Yx

1

q2

⎫⎬⎭
r

� x2r−1
2 · 1

(Yx log Yx)r
= ox(1).

Let ∑
1
:=

∑
n≤x

τ (1)r (n).

Then

(3.8)
∑

1
=

∑
πj ,π

′
j ,qj

πj<π′
j

[
x

π1π′
1 · · ·πrπ′

r

]
,

where in the right hand side π1, π
′
1 . . . , πr, π

′
r are distinct primes qj |πj − 1,

qj |π′
j − 1 and qj ∈ [Yx, x

2
2].

By using our method in [1] one can obtain that

(3.9)
1

x

∑
1
= (1 + ox(1))

1

2r

∑
p1p2···p2r≤x

1

p1p2 · · · p2r

⎧⎨⎩ ∑
Yx≤q≤x2

2

1

(q − 1)2

⎫⎬⎭
r

.

Since ∑
Yx≤q≤x2

2

1

(q − 1)2
= (1 + ox(1))

1

Yx log Yx
= (1 + ox(1))

2α

x2
2

,
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and ∑
p1···p2r≤x

1

p1 · · · p2r
= (1 + ox(1))x

2r
2 ,

we obtain that

(3.10)
1

x

∑
1
= (1 + ox(1))α

r,

and so
1

x

∑
n≤x

τr(n) = (1 + ox(1))α
r (x→∞)

uniformly as α = αx ∈ [c1, c2], 0 < c1 < c2 <∞.

By the Frechet–Shohat theorem and that
αr

r!
are the factorial moments

of the Poisson-distribution, furthermore taking into consideration (1.26), we
obtain (1.27).

The proof of (1.28) is similar, somewhat more complicated.

Let r ≥ 1 be fixed. Count those primes p ≤ x for which there exists such
a couple of primes π < π′ for which ππ′ | p − 1 and π ≡ 1 (mod q), π′ ≡ 1
(mod q), q > Yx, furthermore π′ > x1/4r. We shall apply Lemma 2. We write
p− 1 as aππ′. Let a, π, q be fixed, π ≡ 1 (mod q). Since π′ > x1/4r, therefore
aπ < x1−1/4r. We have

#{p ≤ x | p− 1 = aππ′; p, π′ ∈ P, p′ ≡ 1 (mod q)} ≤ c
x

aπq log2 x
aπq

.

Let us sum over q < x1/8r, a, π ≡ 1 (mod q). Since aπq ≤ x1−1/8r, therefore
this sum is

≤
∑
q≥Yx

c(lix)x2

q2
= ox(1)lix.

The contribution of those π, π′ for which q ≥ x1/8r is

≤
∑

q≥x1/8r

∑
ππ′≤x

[ x

ππ′
]
≤ xx2

2

∑
q≥x1/8r

1

q2
= o(lix).

Let
Δ̃Y (n) =

∑
Y <q

∑
p1p2|n

p1<p2<x1/4r

fq(p1, p2).

By using the Brun–Titchmarsh inequality (Lemma 8), we obtain that

1

lix
#{p ≤ x | Δ̃x2

2
(p− 1) �= 0} = o(lix).
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Let Δ̃∗
Y (n) = Δ̃Y (n)− Δ̃x2

2
(n), and

(3.11) τ̃r(n) = Δ̃∗
Y (n)(Δ̃

∗
Y (n)− 1) · · · (Δ̃∗

Y (n)− (r − 1)).

Let τ̃r(n) = τ̃
(1)
r (n) + τ̃

(2)
r (n). Arguing as earlier, we deduce that∑
p≤x

τ (2)r (p− 1) = o(lix),

and that ∑
p≤x

τ (1)r (p− 1) =
∑

πj ,π
′
j ,qj

πj<π′
j<x1/8r

π(x, π1π
′
1 . . . πrπ

′
r, 1).

By using the Bombieri–Vinogradov theorem (Lemma 3) we can continue
the proof as we did in the proof of (1.27).

Now we prove Theorem 11.

It is clear that ΔYx(n) ≥ κYx(n). It is enough to prove that

(3.12) x−1#{n ≤ x | κYx(n) �= ΔYx(n)} → 0 (x→∞),

and that

(3.13)
1

lix
#{p ≤ x | κYx

(p− 1) �= ΔYx
(p− 1)} → 0 (x→∞).

If κYx
(n) �= ΔYx

(n), then there exists q > Yx and π1 < π2 < π3, πj ∈ P ,
q | πj − 1 (j = 1, 2, 3) such that π1π2π3 | n. Thus (3.12) is less than

∑
q>Y

∑
π1π2π3

q|πj−1

x

π1π2π3
� x · x3

2

∑
q>Yx

1

q3
� xx3

2

Y 2
x log Yx

= o(x).

(3.14) can be proved similarly. We have to overestimate the size of those p ≤ x
for which there exists q > Yx and primes π1 < π2 < π3 such that π1π2π3 | p−1,
and q | πj − 1 (j = 1, 2, 3).

We can drop the contribution of those primes p ≤ x for which q > x2
2,

say. Now we may assume that q ≤ x2
2. By using the Brun–Titchmarsh

inequality, we can drop also the contribution of those primes p for which
π1π2π3 < x1−δ, where δ is a fixed positive constant. It remains the case when
p− 1 = aπ1π2π3, π1π2π3 ≥ x1−δ, πj ≡ 1 (mod q), πj ∈ [Yx, x

2
2]. From Lemma

5 we obtain that the number of these primes is o(lix).
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4. Proof of Theorem 12

Let e(n) =
ϕ(n)

n
, log

1

e(n)
= t(n) =

∑
q|n

log
1

1− 1
q

.

Let δx → 0 slowly, t(n) = t1(n) + t2(n) + t3(n) + t4(n) where

t1(n) =
∑
q|n

q<x1−δx
2

t(q); t2(n) =
∑

x1−δx
2 <q<x1+δx

2

q|n

t(q),

t3(n) =
∑
q|n

x1+δ
2 <q<x1

t(q); t4(n) =
∑
q>x1

q|n

t(q).

It is clear that max
n≤x

t2(n) = ox(1), max
n≤x

t4(n) = ox(1).

By using sieve theorems one can prove that for all but o(lix) of primes
p ≤ x, q | ϕ(p − 1) holds for all q < x1−δx

2 , if δx → 0 sufficiently slowly. This
implies that t1(p−1) = t1(p−1−ϕ(p−1)) for all but o(π(x)) of primes p ≤ x.

Since

(4.1)
∑
p≤x

t3(p− 1)�
∑

x1≥q>x1+δx
2

(1/q) π(x, q, 1)� lix ·
∑

q>x1+δx
2

1/q2 = o(lix)

we obtain that t3(p− 1) = ox(1) holds for all but o(π(x)) primes p ≤ x.

Now we shall prove that t3(p−1−ϕ(p−1)) = ox(1) holds for all but o(π(x))
of primes p ≤ x.

Let us write each p− 1 as Qm, where Q is the largest prime factor of p− 1.
The size of those p ≤ x for which P (p−1) < xδx , or P (p−1) > x1−δx is o(lix).
This is wellknown, easy consequence of sieve theorems. We shall drop all these
primes. Starting from (4.1) it is enough to prove that∑

p≤x

P (p−1)∈[xδx ,x1−δx ]

t∗3(p− 1− ϕ(p− 1)) = o(lix),

where
t∗3(p− 1− ϕ(p− 1)) =

∑
p−1−ϕ(p−1)≡0(q)

q�p−1

1/q.
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Let Q ∈ P, SQ = {p ≤ x, p − 1 = Qm, P (p − 1) = Q}. Observe that if
p− 1 = Qm, q | p− 1− ϕ(p− 1), then Q(m− ϕ(m)) + ϕ(m) ≡ 0 (mod q). If
q | m − ϕ(m), then the above equation has a solution Q only if q | ϕ(m), and
so if q | m. Such kind of q’s are excluded in t∗3.

Hence∑
: =

∑
P (p−1)∈[xδx ,x1−δx ]

t∗3(p− 1− ϕ(p− 1))�

�
∑

x1≥q>x1+δx
1

1

q

∑
m≤x1−δx

q�m

#{Q ∈ P, Qm ≤

≤ x,Q(m− ϕ(m)) + ϕ(m) ≡ O(q)} �

�
∑

x1+δx
2 ≤q<x1

1

q

∑
m≤x1−δx

2

q�m

#{p,Q ∈ P, p = Qm+ 1, Q(m− ϕ(m))+

+ ϕ(m) ≡ 0 (mod q)}.

Let us apply Lemma 1 with substituting in it x→ x

n
, p→ Q, k → q. We have

∑
�

∑
x1+δx
2 <q<x1

1

q2

∑
m<x1−δx

x

m log2 x
mq

.

The right hand side is clearly o(lix).

We are almost ready. Let ej(n) := etj(n). Then e(n) = e1(n)e2(n)e3(n)e4(n).
We have to consider

up−1 := e(p− 1− ϕ(p− 1))− e(p− 1).

We proved that ej(p− 1−ϕ(p− 1)) = 1+ ox(1), ej(p− 1) = 1+ ox(1) hold
for all but o(lix) primes p ≤ x, for j = 2, 3, 4, and claimed that e1(p − 1) =
= e1(p− 1− ϕ(p− 1)) is satisfied for all but o(lix) primes p ≤ x.

The proof of the theorem is completed. �
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