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A CHARACTERIZATION OF THE RELATIVE

ENTROPIES
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Dedicated to Professor Antal Járai on his sixtieth birthday

Abstract. In this note we give a characterization of a family of relative
entropies on open domain depending on a real parameter α, which is based
on recursivity and semisymmetry. In cases α = 1 and α = 0 we use a weak
regularity assumption additionally while in the other cases no regularity
assumptions are made at all.

1. Introduction and preliminaries

Throughout this paper N, R, and R+ will denote the sets of all positive in-
tegers, real numbers, and positive real numbers, respectively. For all 2 ≤ n ∈ N
let

Γ◦
n =

{
(p1, . . . , pn) ∈ Rn

∣∣∣∣ pi ∈ R+, i = 1, . . . , n,

n∑
i=1

pi = 1

}
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and

Γn =

{
(p1, . . . , pn) ∈ Rn

∣∣∣∣ pi ≥ 0, i = 1, . . . , n,

n∑
i=1

pi = 1

}
.

Furthermore, for a fixed α ∈ R, define the function Dα
n(·|·) : Γ◦

n × Γ◦
n → R by

(1.1) Dα
n(p1, . . . , pn|q1, . . . , qn) = −

n∑
i=1

pi lnα

(
qi
pi

)
,

where

lnα(x) =

⎧⎪⎨⎪⎩
x1−α − 1

1− α
, if α �= 1

ln(x), if α = 1

(x > 0).

The sequence (Dα
n) is called the Shannon relative entropy (or Kullback–Leibler

entropy or Kullback’s directed divergence) if α = 1, and the Tsallis relative
entropy if α �= 1, respectively. (D1

n) is introduced and extensively discussed in
Kullback [12] and Aczél–Daróczy [2], respectively. For 0 ≤ α �= 1, (Dα

n) was
introduced and discussed in Shiino [15], Tsallis [17], and Rajagopal–Abe [14]
from physical point of view, and in Furuichi–Yanagi–Kuriyama [8] and Furuichi
[7] from mathematical point of view, respectively. In [7] and also in Hobson [9],
several fundamental properties of (Dα

n) are listed and it is proved that some of
them together determine (Dα

n), up to a constant factor.

In this note, we follow the method of the basic references [2] and Ebanks–
Sahoo–Sander [6] of investigating characterization problems of information
measures. We prove a characterization theorem similar to those of [9] and
[7], and we point out that the regularity conditions (say, continuity) can be
avoided if α /∈ {0, 1}, and can essentially be weakened if α ∈ {0, 1}.

In what follows, a sequence (In) of real-valued functions In, (n ≥ 2) on
Γ◦
n × Γ◦

n or on Γn × Γn is called a relative information measure on the open
or closed domain, respectively. In the closed domain case, however, the ex-
pressions 0

0+0 ,
0

0+...+0 , 0
α, 01−α, lnα

0
0 can appear. Therefore, throughout the

paper, the conventions

0

0 + 0
=

0

0 + . . .+ 0
= 0α = 01−α = lnα

0

0
= 0

are always adapted (see also [3]).

Our characterization theorem for the Shannon and the Tsallis relative en-
tropies will be based on the following two properties.
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Definition 1.1. Let α ∈ R. The relative information measure (In) is α–
recursive on the open or closed domain, if for any n ≥ 3 and

(p1, . . . , pn), (q1, . . . , qn) ∈ Γ◦
n or Γn,

respectively, the identity

In (p1, . . . , pn|q1, . . . , qn) =
= In−1 (p1 + p2, p3, . . . , pn|q1 + q2, q3, . . . , qn)+

+(p1 + p2)
α(q1 + q2)

1−αI2

(
p1

p1 + p2
,

p2
p1 + p2

∣∣∣∣ q1
q1 + q2

,
q2

q1 + q2

)
holds. We say that (In) is 3-semisymmetric on the open or closed domain, if

I3 (p1, p2, p3|q1, q2, q3) = I3 (p1, p3, p2|q1, q3, q2)

is fulfilled for all (p1, p2, p3), (q1, q2, q3) ∈ Γ◦
3 or Γ3, respectively.

The following lemma shows how the initial element of an α–recursive relative
information measure (In) determines (In) itself.

Lemma 1.2. Let α ∈ R and assume that the relative information measure
(In) is α–recursive on the open domain and define the function f :]0, 1[2→ R
by

f(x, y) = I2(1− x, x|1− y, y)
(
x, y ∈]0, 1[

)
.

Then, for all n ≥ 3 and for arbitrary, (p1, . . . , pn), (q1, . . . , qn) ∈ Γ◦
n

In(p1, . . . , pn|q1, . . . , qn) =

=
n∑

i=2

(p1 + p2 + . . .+ pi)
α(q1 + q2 + . . .+ qi)

1−α×

×f
(

pi
p1 + p2 + . . .+ pi

,
qi

q1 + q2 + . . .+ qi

)
holds.

Proof. The proof runs by induction on n. If we use the α–recursivity of
(In) and the definition of the function f , we obtain that

I3(p1, p2, p3|q1, q2, q3) =
= I2(p1 + p2, p3|q1 + q2, q3) + (p1 + p2)

α(q1 + q2)
1−α×

×I2
(

p1
p1 + p2

,
p2

p1 + p2

∣∣∣∣ q1
q1 + q2

,
q2

q1 + q2

)
=

=

3∑
i=2

(p1 + . . .+ pi)
α(q1 + . . .+ qi)

1−αf

(
pi

p1 + . . . pi
,

qi
q1 + . . .+ qi

)
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is fulfilled for all (p1, p2, p3), (q1, q2, q3) ∈ Γ◦
3, that is, the statement is true

for n = 3. Assume now that the statement holds for some 3 < n ∈ N.
We will prove that in this case the proposition holds also for n + 1. Let
(p1, . . . , pn+1), (q1, . . . , qn+1) ∈ Γ◦

n+1 be arbitrary. Then the α–recursivity and
the induction hypothesis together imply that

In+1(p1, . . . , pn+1|q1, . . . , qn+1) = In(p1 + p2, . . . , pn+1|q1 + q2, . . . , qn+1)+

+(p1 + p2)
α(q1 + q2)

1−αI2

(
p1

p1 + p2
,

p2
p1 + p2

∣∣∣∣ q1
q1 + q2

,
q2

q1 + q2

)
=

=

n+1∑
n=3

((p1 + p2) + p3 . . .+ pi)
α((q1 + q2) + p3 + . . .+ qi)

1−α×

×f
(

pi
(p1 + p2) + . . .+ pi

,
qi

(q1 + q2) + . . .+ qi

)
+

+(p1 + p2)
α(q1 + q2)

1−αI2

(
p1

p1 + p2
,

p2
p1 + p2

∣∣∣∣ q1
q1 + q2

,
q2

q1 + q2

)
=

=

n+1∑
i=2

(p1 + p2 + . . .+ pi)
α(q1 + q2 + . . .+ qi)

1−α·

·f
(

pi
p1 + p2 + . . .+ pi

,
qi

q1 + q2 + . . .+ qi

)
,

that is, the statement holds also for n+ 1, which ends the proof. �

2. The characterization

We begin with the following

Theorem 2.1. For any α ∈ R the relative entropy (Dα
n) is an α–recursive

relative information measure on the open domain.

Proof. In the proof, we will use the identities

lnα(xy) = lnα(x) + lnα(y) + (1− α) lnα(x) lnα(y),

lnα

(
1

x

)
= −xα−1 lnα(x)
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several times, which hold for all α ∈ R and x, y ∈ R+. Let n ≥ 3 and

(p1, . . . , pn), (q1, . . . , qn) ∈ Γ◦
n

be arbitrary. Then

(p1 + p2)
α(q1 + q2)

1−αD2

(
p1

p1 + p2
,

p2
p1 + p2

∣∣∣∣ q1
q1 + q2

,
q2

q1 + q2

)
=

= (p1 + p2)
α(q1 + q2)

1−α×

×
(
− p1
p1 + p2

lnα

(
p1 + p2
q1 + p2

q1
p1

)
− p2

p1 + p2
lnα

(
p1 + p2
q1 + q2

q2
p2

))
=

= (p1 + p2)
α(q1 + q2)

1−α

(
− lnα

(
p1 + p2
q1 + q2

)
+

(
1 + (1− α) lnα

(
p1 + p2
q1 + q2

))
×

×
(
− p1
p1 + p2

lnα

(
q1
p1

)
− p2

p1 + p2
lnα

(
q2
p2

)))
=

= (p1 + p2) lnα

(
q1 + q2
p1 + p2

)
+

[(
q1 + q2
p1 + p2

)1−α

− (1− α) lnα

(
q1 + q2
p1 + p2

)]
×

×
[
−p1 lnα

q1
p1
− p2 lnα

q2
p2

]
=

= (p1 + p2) lnα

(
q1 + q2
p1 + p2

)
− p1 lnα

(
q1
p1

)
− p2 lnα

(
q2
p2

)
=

= Dn(p1, . . . , pn|q1, . . . , qn)−Dn−1(p1 + p2, . . . , pn|q1 + q2 + . . . , qn).

Therefore the relative entropy (Dα
n) is α–recursive, indeed. �

Obviously (Dα
n) is 3-semisymmetric, and for arbitrary γ ∈ R, (γDα

n) is
α–recursive and 3-semisymmetric, as well. Before dealing with the converse
we need two lemmas about logarithmic functions. A function � : R+ → R is
logarithmic if �(xy) = �(x) + �(y) for all x, y ∈ R+. If a logarithmic function �
is bounded above or below on a set of positive Lebesgue measure then �(x) =
= c ln(x) for all x ∈ R+ with some c ∈ R (see [11], Theorem 5 and Theorem
8 on pages 311, 312). The concept of real derivation will also be needed. The
function d : R→ R is a real derivation if it is additive, i.e. d(x+y) = d(x)+d(y)
for all x, y ∈ R, and satisfies the functional equation d(xy) = xd(y) + yd(x) for
all x, y ∈ R. It is somewhat surprising that there are non-identically zero real
derivations (see [11], Theorem 2 on page 352). If d is a real derivation then the

function x �→ d(x)
x , x ∈ R+ is logarithmic. Therefore it is easy to see that the
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real derivation is identically zero if it is bounded above or below on a set of
positive Lebesgue measure.

Lemma 2.2. Suppose that the logarithmic function � : R+ → R satisfies
the equality

(2.1) x�(x) + (1− x)�(1− x) = 0
(
x ∈]0, 1[

)
.

Then there exists a real derivation d : R→ R such that

(2.2) x�(x) = d(x) (x ∈ R+).

Proof. Let x, y ∈ R+. Then, by (2.1) and by using the properties of the
logarithmic function, we have that

0 =
x

x+ y
�

(
x

x+ y

)
+

y

x+ y
�

(
y

x+ y

)
=

=
x

x+ y

(
�(x)− �(x+ y)

)
+

y

x+ y

(
�(y)− �(x+ y)

)
=

=
1

x+ y

(
x�(x) + y�(y)− (x+ y)�(x+ y)

)
.

This shows that the function x �→ x�(x), x ∈ R+ is additive on R+. Hence,
by the well-known extension theorem (see e.g. [11], Theorem 1 on page 471),
there exists an additive function d : R → R such that (2.2) holds. Since � is
logarithmic, this implies that d(xy) = xd(y) + yd(x) holds for all x, y ∈ R+.
On the other hand, d is odd. Therefore this equation holds also for all x, y ∈ R,
that is, d is a real derivation. �

Lemma 2.3. Suppose that � : R+ → R is a logarithmic function and the
function g0 defined on the interval ]0, 1[ by

g0(x) = x�(x) + (1− x)�(1− x)

is bounded on a set of positive Lebesque measure. Then there exist a real number
β and a real derivation d : R→ R such that

(2.3) x�(x) + βx ln(x) = d(x) (x ∈ R+).

Proof. Define the function g on the interval [0, 1] by g(0) = g(1) = 0, and
for x ∈]0, 1[ by

g(x) =

⎧⎪⎨⎪⎩
−g0(x)

�(2)
, if �(2) �= 0

g0(x)− x log2(x)− (1− x) log2(1− x), if �(2) = 0.
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Then g is a symmetric information function (see [2], (3.5.33) Theorem on page
100) which, by our assumption, is bounded on a set of positive Lebesgue mea-
sure. Therefore, applying a theorem of Diderrich [5], we obtain that

g(x) = −x log2(x)− (1− x) log2(1− x)
(
x ∈]0, 1[

)
.

For a short proof of Diderrich’s theorem see also [13] in which an idea of Járai
[10] proved to be very efficient. Taking into consideration the definition of g
and applying Lemma 2.2, we get (2.3) with suitable β ∈ R. �

Now we are ready to prove our main result.

Theorem 2.4. Let α ∈ R, (In) be an α-recursive and 3-semisymmetric
relative information measure on the open domain, and

f(x, y) = I2(1− x, x|1− y, y)
(
x, y ∈]0, 1[

)
.

Furthermore, suppose that

(2.4) I2(p1, p2|p1, p2) = 0
(
(p1, p2) ∈ Γ2

)
.

If α /∈ {0, 1} then (In) = (γDα
n) for some γ ∈ R.

If α = 1 and there exists a point (u, v) ∈]0, 1[2 such that the function f(·, v)
is bounded on a set of positive Lebesgue measure and the function f(u, ·) is
bounded above or below on a set of positive Lebesgue measure then (In) = (γD1

n)
for some γ ∈ R.

And finally, if α = 0 and there exists a point (u, v) ∈]0, 1[2 such that the
function f(·, v) is bounded above or below on a set of positive Lebesgue measure
and the function f(u, ·) is bounded on a set of positive Lebesgue measure then
(In) = (γD0

n) for some γ ∈ R.

Proof. Applying Theorem 4.2.3. on page 87 of [6] withM(x, y) = xαy1−α,
x, y ∈ R+, and taking into consideration Lemma 1.2.12. on page 16 of [6], (see
also [1]), we have that

(2.5) In (p1, . . . , pn|q1, . . . , qn) = bpα1 q
1−α
1 + c

n∑
i=2

pαi q
1−α
i − b

in case α /∈ {0, 1},

(2.6) In (p1, . . . , pn|q1, . . . , qn) =
n∑

i=1

pi(�1(pi) + �2(qi)) + c(1− p1)
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in case α = 1, and

(2.7) In (p1, . . . , pn|q1, . . . , qn) =
n∑

i=1

qi(�1(pi) + �2(qi)) + c(1− q1)

in case α = 0 for all n ≥ 2, (p1, . . . , pn), (q1, . . . , qn) ∈ Γ◦
n with some b, c ∈ R

and logarithmic functions �1, �2 : R+ → R.

Now we utilize our further conditions on (In). In case α /∈ {0, 1}, (2.5) with
n = 2 and (2.4) imply that 0 = bp1 + cp2 − b for all (p1, p2) ∈ Γ2 whence b = c
follows. Thus, by (2.5), we obtain that (In) = (γDα

n) with γ = (α − 1)−1. In
case α = 1, (2.6) with n = 2 and (2.4) imply that

0 = p1�(p1) + p2�(p2) + c(1− p1)
(
(p1, p2) ∈ Γ2

)
,

where � = �1 + �2. Therefore c = 0, and, by Lemma 2.2 we get that x�2(x) =
= −x�1(x) + d1(x) for all x ∈ R+ and for some real derivation d1 : R → R.
Thus

f(x, y) = x�1

(
x

y

)
+ (1− x)�1

(
1− x

1− y

)
+

(
x

y
− 1− x

1− y

)
d1(y)

(
x, y ∈]0, 1[

)
.

Since the function f(·, v) is bounded on a set of positive Lebesque measure,
we get that the function x �→ x�1(x) + (1− x)�1(1− x), x ∈]0, 1[ has the same
property. Thus, by Lemma 2.3,

x�1(x) + βx ln(x) = d2(x) (x ∈ R+)

for some β ∈ R and derivation d2 : R→ R. Hence

f(x, y) = −βx ln
(
x

y

)
− β(1− x) ln

(
1− x

1− y

)
−
(
x

y
− 1− x

1− y

)
(d2(y)− d1(y))(

x, y ∈]0, 1[
)
.

f(u, ·) is bounded above or below on a set of positive Lebesgue measure for some
u ∈]0, 1[ thus the derivation d2 − d1 has the same property, so d2 − d1 = 0.
Therefore

f(x, y) = −βx ln
(
x

y

)
− β(1− x) ln

(
1− x

1− y

) (
x, y ∈]0, 1[

)
and the statement follows from Lemma 1.2 with a suitable γ ∈ R. The case
α = 0 can be handled similarly by interchanging the role of the distributions
(p1, . . . , pn) and (q1, . . . , qn) and of the logarithmic functions �1 and �2, respec-
tively. �
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3. Connections to known characterizations

In this section we discuss the connection between our characterization the-
orem and other statements known from the literature in this subject. Here
we deal especially with the results of Hobson [9] and Furuichi [7] which were
the main motivations of our paper. They considered the relative information
measures on closed domain thus the comparison is not obvious.

We begin with some definitions.

Definition 3.1. The relative information measure (In) on the closed do-
main is said to be expansible, if

In+1 (p1, . . . , pn, 0|q1, . . . , qn, 0) = In (p1, . . . , pn|q1, . . . , qn)

is satisfied for all n ≥ 2 and (p1, . . . , pn), (q1, . . . , qn) ∈ Γn, and it is called
decisive, if I2(1, 0|1, 0) = 0. Let α ∈ R be arbitrarily fixed. We say that
the relative information measure (In) satisfies the generalized additivity on the
closed (resp. open) domain if for all n,m ≥ 2 and for arbitrary

(p1,1, . . . , p1,m, . . . , pn,1, . . . , pn,m), (q1,1, . . . , q1,m, . . . , qn,1, . . . , qn,m) ∈
∈ Γnm (or Γ◦

nm)

Inm (p1,1, . . . , p1,m, . . . , pn,1, . . . , pn,m|q1,1, . . . , q1,m, . . . , qn,1, . . . , qn,m) =

= In(P1, . . . , Pn|Q1, . . . Qn) +

n∑
i=1

Pα
i Q

1−α
i Im

(
pi,1
Pi

, . . . ,
pi,m
Pi
|qi,1
Qi

, . . . ,
qi,m
Qi

)
is fulfilled, where Pi =

∑m
j=1 pi,j and Qi =

∑m
j=1 qi,j , i = 1, . . . , n.

A lengthy but simple calculation shows that the relative information mea-
sure (Dα

n) fulfills all of the above listed criteria. As well as Hobson [9] and
Furuichi [7], we would like to investigate the converse direction. More pre-
cisely, the question is whether the generalized additivity property determines
(Dα

n) up to a multiplicative constant. In general this is not true. Let us observe
that in case we consider the generalized additivity on the open domain Γ◦

n then
this property is insignificant for In if n is a prime. Nevertheless, on the closed
domain this property is well–treatable. In this case we can prove the following.

Lemma 3.2. If the relative information measure (In) on the closed domain
is expansible and satisfies the general additivity property with a certain α ∈ R,
then it is also decisive and α–recursive.
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Proof. Firstly, we will show that the generalized additivity and the ex-
pansibility imply that the relative information measure (In) is decisive. In-
deed, if we use the generalized additivity with the choice n = m = 2 and
(p1, p2, p3, p4) = (q1, q2, q3, q4) = (1, 0, 0, 0), then we get that

I4(1, 0, 0, 0|1, 0, 0, 0) = I2(1, 0|1, 0) + I2(1, 0|1, 0)

holds. On the other hand, (In) is expansible, therefore

I4(1, 0, 0, 0|1, 0, 0, 0) = I2(1, 0|1, 0).

Thus I2(1, 0|1, 0) = 0 follows, so (In) is decisive.

Now we will prove the α–recursivity of (In).
Let (r1, . . . , rn), (s1, . . . , sn) ∈ Γn and use the generalized additivity with the
following substitution

p1,1 = r1, p1,2 = r2, pi,1 = ri+1, i = 2, . . . , n− 1, pi,j = 0 otherwise

and

q1,1 = s1, q1,2 = s2, qi,1 = si+1, i = 2, . . . , n− 1, qi,j = 0 otherwise

to derive

Inm( r1, r2, 0, . . . , 0, r3, 0, . . . , 0, rn, 0, . . . , 0|s1, s2, 0, . . . , 0, s3, 0, . . . , 0, sn, 0, . . . , 0 ) =

= In(r1 + r2, r3, . . . , rn, 0|s1 + s2, s3, . . . , sn, 0)+

+(r1 + r2)
α(s1 + s2)

1−αI2

(
r1

r1 + r2
,

r2
r1 + r2

∣∣∣∣ s1
s1 + s2

,
s2

s1 + s2

)
+

+
n∑

j=3

rαj q
1−α
j Im(1, 0, . . . , 0|1, 0, . . . , 0).

After using that (In) is expansible and decisive, we obtain the α–recur-
sivity. �

In view of Theorem 2.4. and Lemma 3.2. the following characterization
theorem follows easily.

Theorem 3.3. Let α ∈ R, (In) be an expansible and 3-semisymmetric
relative information measure on the closed domain which also satisfies the
generalized additivity property on Γn with the parameter α and let f(x, y) =
= I2(1− x, x|1− y, y), x, y ∈]0, 1[. Additionally, suppose that

(3.1) I2(p1, p2|p1, p2) = 0.
(
(p1, p2) ∈ Γ2

)
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If α /∈ {0, 1} then (In) = (γDα
n) for some γ ∈ R.

If α = 1 and there exists a point (u, v) ∈]0, 1[2 such that the function f(·, v)
is bounded on a set of positive Lebesgue measure and the function f(u, ·) is
bounded above or below on a set of positive Lebesgue measure then (In) = (γD1

n)
for some γ ∈ R.

And finally, if α = 0 and there exists a point (u, v) ∈]0, 1[2 such that the
function f(·, v) is bounded above or below on a set of positive Lebesgue measure
and the function f(u, ·) is bounded on a set of positive Lebesgue measure then
(In) = (γD0

n) for some γ ∈ R.

Finally, we remark that the essence of Theorems 2.4. and 3.3. is that, in
case α /∈ {0, 1}, the algebraic properties listed in these theorems determine the
information measure (Dα

n) up to a multiplicative constant without any regu-
larity assumption. Furthermore, if α ∈ {0, 1}, then the mentioned algebraic
properties with a really mild regularity condition determine (Dα

n) up to a mul-
tiplicative constant.
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