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MEAN VALUES OF MULTIPLICATIVE FUNCTIONS

ON THE SET OF Pk + 1, WHERE Pk RUNS OVER THE

INTEGERS HAVING k DISTINCT PRIME FACTORS

L. Germán (Paderborn, Germany)

Dedicated to the 60th anniversary of Professor Antal Járai

Abstract. We investigate the limit behaviour of

∑

n≤x

n∈Pk

g(n+ 1)

as x tends to infinity where g is multiplicative with values in the unit disc
and Pk runs over the integers having k distinct prime factors. We let k
vary in the range 2 ≤ k ≤ ε(x) log log x where ε(x) is an arbitrary function
tending to zero as x tends to infinity.

Throughout this work n denotes a positive integer and P (n), p(n) denote
the largest and the smallest prime factors of n, respectively. p, q with or without
suffixes will always denote prime numbers. As usual, the number of primes up
to x will be denoted by π(x), and logk x := log(logk−1 x) for all positive integers
k where log1 x = log x means the natural logarithm of x. If

n = pr11 · pr22 · · · prkk , p1 < p2 < . . . < pk, ri, i = 1, . . . , k(1)

are positive integers, pi, i = 1, . . . , k are distinct primes then let ω(n) := k. A
typical integer n for which ω(n) = k will be denoted by πk. We denote the set
of integers having k distinct prime factors with Pk, that is

Pk := {πk ∈ N}.
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The set of integers in Pk up to x is denoted by Pk(x). We introduce the
counting function for the set Pk in arithmetic progressions. If (d, l) = 1 then
let

πk(x, d, l) =
∑
πk≤x

πk≡l (mod d)

1.

In the special case d = l = 1 we use πk(x) instead of πk(x, 1, 1).

An arithmetical function g : N→ C is said to be multiplicative if g(nm) =
= g(n)g(m) holds for all integers n,m with (n,m) = 1. It is called additive if
g(nm) = g(n)+g(m) for (n,m) = 1 and is called strongly additive if additionally
g(pα) = g(p) holds for all p and α ∈ N.

In the middle of the twentieth century Delange did some pioneering work
concerning mean value estimations for multiplicative functions on the set N.
One of his results was the following (See [2])

Theorem (Delange). Let g be a multiplicative function with |g(n)| ≤ 1,
satisfying ∑

p

1− Re g(p)

p
<∞.

Then

1

x

∑
n≤x

g(n) =
∏
p≤x

(
1− 1

p

)(
1 +

∑
m≥1

g(pm)

pm

)
+ o(1)

as x tends to infinity.

Although this result provides sufficient condition for multiplicative functions
to have zero mean value, the full description of such multiplicative functions
was given by Wirsing [12] for real and by Halász [4] for complex multiplicative
functions of modulus ≤ 1. The result of Halász extends Delange’s theorem in
the following way:

Theorem (Delange, Wirsing, Halász). Let g be a multiplicative function
with |g(n)| ≤ 1, satisfying ∑

p

1− Re g(p)p−iτ

p
<∞

for some real τ . Then

1

x

∑
n≤x

g(n) =
xiτ

1 + iτ

∏
p≤x

(
1− 1

p

)(
1 +

∑
m≥1

g(pm)

pm(1+iτ)

)
+ o(1)
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as x tends to infinity. On the other hand, if there is no such τ then

1

x

∑
n≤x

g(n) = o(1) (x→∞).

Kátai in [7, 8] began to investigate the mean behaviour of multiplicative
functions on the set of shifted primes. Through the contribution of Hildebrand
[6] and Timofeev [11] it turned out that the situation is basically different from
the case of the whole set of natural numbers. Their result is

Theorem (Kátai, Hildebrand, Timofeev). Let g be a multiplicative function
with |g(n)| ≤ 1 and suppose that there are a real τ and a primitive character
χd modulo d for some modulus d such that∑

p

1− Reχd(p)f(p)p
−iτ

p

converges. Then

1

π(x)

∑
n≤x

f(p+ 1) =
μ(d)

ϕ(d)

xiτ

1 + iτ
×

×
∏
p≤x
p�d

(
1 +

∑
r≥1

χd(p
r)f(pr)p−riτ − χd(p

r−1)f(pr−1)p−(r−1)iτ

ϕ(pr)

)
+ o(1)

as x → ∞, which is not necessarily o(1) as x tends to infinity, if χd is a real
character.

The main result of this paper is

Theorem 1. Let g(n) be a multiplicative function of modulus one, such
that there are a primitive character χ (mod d) for some fixed d and a real τ
such that ∑

p

1− Reχ(p)g(p)p−iτ

p

converges. Let furthermore ε(x) be an arbitrary function tending to zero as x
tends to infinity. Then

πk(x)
−1

∑
n≤x

ω(n)=k

g(n+ 1) =

=
xiτ

1 + iτ

μ(d)

ϕ(d)

∏
p≤x
p�d

(
1− 1

p− 1
+
∑
α≥1

g(pα)p−iατχ(pα)

pα

)
+ o(1) (x→∞)

uniformly for all k, if 1 ≤ k ≤ ε(x) log log x.
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We will use the method of [3] since as we deduce the results from the
analogoue for DP + 1 where P denotes the set of primes.

Let

M(x, f,D) :=
∑

Dp+1≤x

f(Dp+ 1).

Theorem 2. Let f(n) be a multiplicative function of modulus 1. Let fur-
thermore d be a positive integer. Suppose that there is a real τ such that the
series ∑

p

|χ(p)f(p)piτ − 1|2
p

(2)

converges for some primitive character χ (mod d). Let 0 < ε < 1/2. Then(
π

(
x− 1

D

))−1

M(x, f,D) =

=
xiτ

1 + iτ

μ(d)

ϕ(d)

∏
p≤x
p�dD

(
1− 1

p− 1
+
∑
α≥1

f(pα)p−iατχ(pα)

pα

)
+ o(1) (x→∞)

holds uniformly for all x > 2 and D ≤ x1/2−ε with (d,D) = 1.

As an application of Theorem 2 we are able to analyze the mean behavior of
multiplicative functions on the set Pk+1 in some cases. We need the following

Lemma 1. Let ε(x) → 0 as x → ∞. Then there exist sequences yx → ∞,
δx → 0 as x→∞ such that

P (n) > x1−δx , yx < p(n), n is square-free(3)

hold for all but o(πk(x)) elements of Pk(x), uniformly for all

2 ≤ k ≤ ε(x) log log x as x→∞.

Proof. The following sets have zero relative density in Pk.

1. If A1 = {n ∈ Pk, n ≤ x : ∃ p2|n}, then we have

#A1 ≤
∑

pα≤x1/2

α≥2

πk−1

(
x

pα

)
+

∑
pα>x1/2

α≥2

x

pα
� πk(x)

k

log log x

∑
pα≤x1/2

α≥2

1

pα
+O(x3/4).

Here we used that

πk−1(x)

πk(x)
∼

k

log log x
(→ 0) (x→∞)
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holds uniformly for 2 ≤ k ≤ ε(x) log log x. This is a direct consequence of the
asymptotic estimation

πk(x) =
x

log x

log logk−1 x

(k − 1)!

(
1 +O

(
1

log log x

))
,(4)

which is uniform for 1 ≤ k ≤ ε(x) log log x (see for example in [9]).

2. If A2 = {n ∈ Pk, n ≤ x : p(n) < yx}, then we have

#A2 ≤
∑

pα≤x1/2

p<yx

πk−1

(
x

pα

)
+

∑
pα>x1/2

α≥2

x

pα
� πk(x)

k

log log x

∑
p<yx

1

p
+O(x3/4).

By means of these last two steps we can assume that p(n) > yx, and n is
square-free. Finally we have∑

πk≤x

P (πk)≤x1−δx

1�
∑

πk≤x1/2

1 +
∑

x1/2≤πk≤x

P (πk)≤x1−δx

1�

�x1/2 +
1

log x

∑
x1/2≤πk≤x

P (πk)≤x1−δx

log πk �

� 1

log x

∑
p≤x1−δx

πk−1

(
x

p

)
log p+ x1/2 �

� x

log x

logk−2 log x

(k − 2)!

∑
p≤x1−δx

log p

p log(x/p)
+ x1/2 �

� 1

δx
πk(x)

k

log log x

and the proof is finished. �

Proof of Theorem 1. The case k = 1 was proved by Kátai, Hildebrand
and Timofeev, and is included in Theorem 2. Therefore we can suppose that
k ≥ 2. Let Uk(x) be the set of those elements of Pk(x), for which (3) holds
true. Let Sx be the set of those πk−1, for which there exists at least one prime
p > P (πk−1) such that πk−1p ∈ Uk(x). Let p∗ = pπk−1

be the smallest p with
this property. Then πk−1p ∈ Uk(x) for all p∗ ≤ p ≤ x

πk−1
. Using Lemma 1

we have that πk−1 < xλx , with an appropriate λx → 0, as x tends to infinity.
Further,

P (πk−1) < p, and p(πk−1) > yx,
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where yx →∞ as x→∞, slowly. We obtain

(5)

∑
n≤x

ω(n)=k

g(n+ 1) =
∑

πk−1∈Sx

∑
p∗
πk−1

≤p≤ x
πk−1

g(πk−1p+ 1) + o(πk(x)) =

=
∑

πk−1∈Sx

M(g, x, πk−1)−
∑

πk−1∈Sx

∑
p≤p∗

πk−1

g(πk−1p+ 1) + o(πk(x))

as x→∞.

Let

ψ(x,D) :=
xiτ

1 + iτ

μ(d)

ϕ(d)

∏
p≤x
p�dD

(
1− 1

p− 1
+
∑
α≥1

f(pα)p−iατχ(pα)

pα

)
.

Note that using Lemma 1 we have yx ≤ p(πk−1), therefore in our case πk−1

and d are coprimes for large x. Furthermore,∑
πk−1∈Sx

π(p∗πk−1
)�x1/2 +

∑
πk−1∈Sx

∑
P (πk−1)<p<p∗

πk−1

1(6)

which, by the definition of Sx, equals o(πk(x)) as x tends to infinity. Thus, the
second sum on the most right hand side of (5) is o(πk(x)). For the estimation
of the first sum here we apply Theorem 2 and we deduce∑

n≤x
ω(n)=k

g(n+ 1) =
∑

πk−1∈Sx

ψ(x, πk−1)π(
x

πk−1
) + o(πk(x)) (x→∞).

Defining K(x,D) by the identity

ψ(x, 1) = ψ(x,D)K(x,D),

such that

K(x,D) =
∏
p≤x
p|D

(
1− 1

p− 1
+
∑
α≥1

f(pα)p−iατχ(pα)

pα

)

holds, we have that the left hand side of (5) equals

ψ(x, 1)
∑

πk−1∈Sx

π

(
x

πk−1

)
+

+
∑

πk−1∈Sx

π

(
x

πk−1

)
ψ(x, πk−1)[1−K(x, πk−1)] + o(πk(x)) (x→∞).
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Since yx ≤ p(πk−1), and since

K(x, πk−1) = exp

[ ∑
p≤x

p|πk−1

f(pα)χ(pα)piτ − 1

p
+O

( ∑
p≤x

p|πk−1

1

p2

)]
,

the right hand side of (5) equals

ψ(x, 1)
∑

πk−1∈Sx

π

(
x

πk−1

)
+ o(1)

∑
πk−1∈Sx

π

(
x

πk−1

)
+ o(πk(x)) (x→∞).

By the same argument as in the estimation of (5) and then using (6) again
we obtain

π−1
k (x)

∑
πk−1∈Sx

π

(
x

πk−1

)
→ 1 (x→∞)

and the assertion follows. �

In order to show Theorem 2 we need an analogoue of the Turán–Kubilius
inequality.

Lemma 2. Let 0 ≤ ε < 1 and let 0 < θx be an arbitrary sequence tending
to zero as x tends to infinity. Let D be a positive integer, and let x ≥ 2D. Let
h be a real strongly additive function and

hx(n) =
∑
pα||n

p≤( x−1
D

)1−θx

h(p).

Then

1

π(x−1
D )

∑
p≤(x−1)/D

∣∣∣∣∣hx(Dp+ 1)−
∑
q≤x
q�D

h(q)

ϕ(q)

∣∣∣∣∣
2

� 1

θx

∑
q≤x

|h(q)|2
q

(7)

uniformly for all x and all D ≤ xε.

Proof. With xD := (x− 1)/D let

h1,x(n) :=
∑
pα||n

p≤x
1/8
D

h(p) and h2,x(n) :=
∑
pα||n

x
1/8
D

<p≤x
1−θx
D

h(p).

Further, define

A(y) :=
∑
p≤y
q�D

h(p)

ϕ(p)
and B2(y) :=

∑
p≤y

|h(p)|2
p

.



132 L. Germán

The left hand side of (7) is � Σ1 +Σ2 +Σ3, where

Σ1 =
1

π(xD)

∑
p≤xD

|h1,x(Dp+ 1)−A(x
1/8
D )|2,

Σ2 =
1

π(xD)

∑
p≤xD

|h2,x(Dp+ 1)|2,

Σ3 =
1

π(xD)

∑
p≤xD

|A(x)−A(x
1/8
D )|2.

Using the Cauchy–Schwarz inequality we have

Σ3 �
( ∑

x
1/8
D ≤p≤x

1

p

)( ∑
x
1/8
D ≤p≤x

|h(p)|2
p

)
�

∑
p≤x

|h(p)|2
p

.

In order to estimate Σ2 note that a positive integer, n ≤ x, can have at

most a bounded number of distinct prime divisors q > x
1/8
D . Thus, using the

Brun–Titchmarsh inequality (Theorem I.4.9 in [10]) we deduce

Σ2 =
1

π(xD)

∑
p≤xD

∣∣∣ ∑
q|Dp+1

h2,x(q)
∣∣∣2 � 1

π(xD)

∑
q≤x

1−θx
D

q�D

|h(q)|2π(xD, q, lD,q)�

� xD

π(xD)

∑
q≤x1−θx

D

|h(q)|2
q log(xD

q )
�

� 1

θx

∑
q≤x1−θx

D

|h(q)|2
q

.

Here we used that if Dp+ 1 = aq then there exists a unique residue class lD,q

(mod q) such that p ≡ lD,q (mod q) holds.

It remains to estimate Σ1. Performing the multiplications we obtain∑
p≤xD

∣∣∣h1,x(Dp+ 1)−A(x
1/8
D )

∣∣∣2 = S1 − 2S2 + S3,

where

S1 =
∑
p≤xD

|h1,x(Dp+ 1)|2,

S2 = A(x
1/8
D )

∑
p≤xD

h1,x(Dp+ 1),

S3 = A(x
1/8
D )2π(xD).
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Further,

(8)

S1 =
∑
p≤xD

(
∑

q|Dp+1

h1,x(q))
2 =

∑
q≤xD
q�D

h2
1,x(q)π(xD, q, lD,q)+

+
∑

q1,q2≤xD
q1 �=q2, q1�D, q2�D

h1,x(q1)h1,x(q2)π(xD, q1q2, lD,q1q2).

Since h1,x(q) = 0 for q > x
1/8
D , the Brun–Titchmarsh theorem is applicable

and we deduce that the first term on the right hand side of (8) does not exceed
cπ(xD)B2(x).

The second term on the right hand side of (8) equals

(9)

∑
q1,q2≤x

1/8
D

q1 �=q2, q1�D, q2�D

h1,x(q1)h1,x(q2)
π(xD)

ϕ(q1q2)
+

+
∑

q1,q2≤x
1/8
D

q1 �=q2, q1�D, q2�D

h1,x(q1)h1,x(q2){π(xD, q1q2, lD,q1q2)−
π(xD)

ϕ(q1q2)
}.

Let T1, T2 be the sums in (9). We have

T1

π(xD)
= A2(x

1/8
D )−

∑
q1≤x

1/8
D

q1�D

h2
1,x(q1)

ϕ2(q1)
= A2(x

1/8
D ) +O(B2(x)).

For T2 we use the Cauchy–Schwarz inequality to obtain

T 2
2 �

∑
q1,q2≤x

1/8
D

q1 �=q2, q1�D, q2�D

h2
1,x(q1)

ϕ(q1)

h2
1,x(q2)

ϕ(q2)
×

×
∑

q1,q2≤x
1/8
D

q1 �=q2, q1�D, q2�D

ϕ(q1q2)

{
π(xD, q1q2, lD,q1q2)−

π(xD)

ϕ(q1q2)

}2

�

�B4(x)
∑

q1,q2≤x
1/8
D

q1 �=q2, q1�D, q2�D

ϕ(q1q2)

{
π(xD, q1q2, lD,q1q2)−

π(xD)

ϕ(q1q2)

}2

.

Using the Brun–Titchmarsh inequality

T 2
2 � B4(x)π(xD)

∑
q1,q2≤x

1/8
D

q1 �=q2, q1�D, q2�D

∣∣∣∣π(xD, q1q2, lD,q1q2)−
π(xD)

ϕ(q1q2)

∣∣∣∣ ,
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and an application of the Bombieri–Vinogradov theorem (Chapter 28. in [1])
shows

T2 � B2(x)
π(xD)

logA xD

,

where A > 0 is an arbitrary large costant. Since by the Cauchy–Schwarz
inequality we have

A(y) =
∑
q≤y
q�D

h(q)

ϕ(q)
�

(∑
q≤y

h2(q)

q

)1/2

log log1/2 y � B(y) log log1/2 y,

for y ≥ e2, in a similar way as in the estimation of T2 we deduce

S2 −A2(x
1/8
D )π(xD)�A(x

1/8
D )B(x)

π(xD)

logA xD

�

�B2(x) log log xD
π(xD)

logA xD

�

�B2(x)π(xD),

and the proof is finished. �

Lemma 3. Let D, q be two coprime positive integers and let (lD,q =)lD be
the unique residue class satisfying DlD ≡ 1 (mod q). Let further 0 < ε < 1/2
and xD := (x− 1)/D whenever x > 2 and let a > 1−2ε

1+2ε . Then∑
q>xa

D
q prime, q�D

qπ2(xD, q, lD)� π2(xD)(10)

holds uniformly for all x > 2 and D ≤ x1/2−ε. The constant implied by �
depends on a.

Proof. The sum on the left hand side of (10) equals∑
q>xa

D

q
∑

a1q=Dp1+1

a1≤x/q

∑
a2q=Dp2+1

a2≤x/q

1 ≤2x
∑

a1≤xx
−a
D

(a1,D)=1

1

a1

∑
a2<a1

(a2,D)=1

∑
a1q=Dp1+1≤x
a2q=Dp2+1≤x

1.(11)

Denote the inner sum by (Σ(a1, a2) =)Σ. It is nonempty only if a1 ≡ a2
(mod D). Suppose, a1, a2 is fixed and

q = Dn+ la1D.
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Then

Dp1 + 1 = a1Dn+ a1la1D, Dp2 = a2Dn+ a2la1D.

Thus, the primes we want to count in Σ satisfy

q = Dn+ la1D,

p1 = a1n+ tDa1
, p2 = a2n+ tDa2

,

where

a1la1D −DtDa1
= 1 and a2la1D −DtDa2

= 1.

It follows,

Σ� #
{
n ≤ xD

a1
: q = Dn+ la1D, p1 = a1n+ tDa1

, p2 = a2n+ tDa2
primes

}
.

Let

E = Da1a2(a1 − a2),

and let �(p) be the number of solutions of

(Dn+ la1D)(a1n+ tDa1
)(a2n+ tDa2

) ≡ 0 (mod p).

Since E ≤ xA
D for some appropriate A > 0, by Theorem 5.7 of [5]

Σ� xD

a1 log
3 xD

a1

∏
p

(1− �(p)− 1

p− 1
)(1− 1

p
)−2.

Noting that (D, a1a2) = 1 we have

�(p) =

⎧⎪⎨⎪⎩
1 if p|D, p|a1−a2

D or p|a1, p|a2
2 if p|D, p � a1−a2

D or p|a1a2, p � (a1, a2)

3 otherwise.

Now, making use of the inequality log(1 − z) = 1 + z + O(z2) which holds
uniformly for all real numbers |z| ≤ 1/2 we obtain

∏
p

(
1− �(p)− 1

p− 1

)(
1− 1

p

)−2

�

�
∏
p|D

(
1 +

1

p

) ∏
p| a1−a2

D

(
1 +

1

p

)∏
p|a1

(
1 +

2

p

)∏
p|a2

(
1 +

2

p

)
.
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Thus, the right hand side of (11) is at most

c
x2

D

∏
p|D

(
1 +

1

p

) ∑
a1≤xx

−a
D

(a1,D)=1

1

a21 log
3 xD

a1

∏
p|a1

(
1 +

2

p

)
×

×
∑

a2≤a1
a1≡a2 (mod D)

∏
p| a1−a2

D

(
1 +

1

p

)∏
p|a2

(
1 +

2

p

)
.

Since |ab| ≤ a2 + b2 holds for all real a, b we deduce

∑
a2≤a1

a1≡a2 (mod D)

∏
p| a1−a2

D

(
1 +

1

p

)∏
p|a2

(
1 +

2

p

)
�

�
∑

a2≤a1
a1≡a2 (mod D)

{ ∑
d| a1−a2

D

2ω(d)μ2(d)

d
+
∑
d|a2

4ω(d)μ2(d)

d

}
�

�
∑
d≤ a1

D

2ω(d)μ2(d)

d

∑
a2≤a1

a2≡a1 (mod D)
a1−a2

D
≡0 (mod d)

1 +
∑
d≤a1

(d,D)=1

4ω(d)μ2(d)

d

∑
a2≤a1

a2≡0 (mod d)
a1≡a2 (mod D)

1�

� a1
D

.

Since a > 1−2ε
1+2ε and a1 ≤ xx−a

D we have log xD

a1
�a log x� log xD. Further,

∑
a1≤xx

−a
D

(a1,D)=1

1

a1

∏
p|a1

(
1 +

2

p

)
=

∏
p≤xx

−a
D

p�D

(
1 +

1

p

(
1 +

2

p

))
�

�
∏

p≤xx−a
D

(
1 +

1

p

)∏
p|D

(
1 +

1

p

)−1

�

� log xD

∏
p|D

(
1 +

1

p

)−1

.

Thus, the right hand side of (11) does not exceed

c
x2
D

log3 xD

∏
p|D

(
1 +

1

p

) ∑
a1≤xx

−a
D

(a1,D)=1

1

a1

∏
p|a1

(
1 +

2

p

)
� π2(xD),

which proves the assertion. �
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Proof of Theorem 2. First suppose that τ = 0. We set r = log log x, and
xD = x−1

D . Let

KD(x) := {Dp+ 1 ≤ x : p prime}.

We have

(12)

#{n ∈ KD(x) | ∃q2|n, q > y} ≤

≤
∑

y<q<( x−1
D )a

π

(
x− 1

D
, q2, lq

)
+

x− 1

D

∑
q≥( x−1

D )a

1

q2
= δ(y)π

(
x− 1

D

)
,

where δ(y)→ 0 (y →∞). Let f∗ be a multiplicative function defined by

f∗(pα) =

⎧⎪⎨⎪⎩
f(pα), if p ≤ r

f(p), if r < p ≤ x1−ϑx

D

χ(p), otherwise.

Since χ(q) �= 0 for q > d, there exists a function g(q) ∈ [−π, π) such that
f(q) = χ(q)eig(q). By (12)∣∣∣∣∣ ∑

Dp+1≤x

{f(Dp+ 1)− f∗(Dp+ 1)}
∣∣∣∣∣ ≤∑

Dp+1≤x

∃q2|Dp+1, q>r

1 +
∑

Dp+1≤x

∃q|Dp+1, q>x
1−ϑx
D

|eig̃(Dp+1) − 1| ≤

≤
∑

Dp+1≤x

∃q|Dp+1, q>x
1−ϑx
D

|eig̃(Dp+1) − 1|+ o(π(xD)) (x→∞),

where

g̃(pα) =

{
g(p), if x1−ϑx

D < q, α = 1

0, otherwise.

Then ∑
Dp+1≤x

∃q|Dp+1, q>x
1−ϑx
D

|eig̃(Dp+1) − 1| ≤
∑

Dp+1≤x

∃q|Dp+1, q>x
1−ϑx
D

|g̃(Dp+ 1)|

≤
∑

x1−ϑx
D <q≤x

|g(q)|π(xD, q, tD),
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where (tD,q =)tD is the unique residue class satisfying

DtD ≡ −1 (mod q).

Applying the Cauchy–Scwarz inequality then using Lemma 3 we obtain∑
x1−ϑx
D <q≤x

|g(q)|π(xD, q, tD)�

�
( ∑

x1−ϑx
D <q≤x

g(q)2

q

)1/2( ∑
x1−ϑx
D <q≤x

qπ2(xD, q, tD)

)1/2

�

� π(xD)

( ∑
x1−ϑx
D <q≤x

g(q)2

q

)1/2

.

Noting that

|g(q)|2 � |f(q)χ(q)− 1|2,

by (2) we obtain∑
Dp+1≤x

{f(Dp+ 1)− f∗(Dp+ 1)} = o(π(xD)) (x→∞).(13)

Let fr be a further multiplicative function defined by

fr(p
α) =

{
f(pα), if p ≤ r

χ(p), if r < p.

Next we give an alternative representation of M(x, fr, D). It can be written
as follows

∑
Dp+1≤x

fr(Dp+ 1) =
∑

m≤x+1
P (m)≤r
(D,m)=1

f(m)
∑
p≤xD

p≡lD (mod m)

(
Dp+1

m
,P(r))=1

χ

(
Dp+ 1

m

)
+ Err(x, r),

(14)

where

P(r) :=
∏
p≤r

p,
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and (lD,m =)lD is the unique residue class satisfying

DlD ≡ −1 (mod m),

and by (12)

Err(x, r)�
∑

Dp+1≤x

∃q2|Dp+1, r<q

1 = o(π(xD)) (x→∞).

Furthermore, (Dp+1
m ,P(r)) = 1. Hence, Dp+1

m is always odd and there is at

most one prime p satisfying Dp+1 = mDp+1
m if D and m have the same parity.

The contribution of these integers to the sum on the right hand side of (14) is
at most

∑
m≤x

P (m)≤r

1� x exp

(
−1

2

log x

log r

)
,

which inequality is well known in number theory (Theorem III.5.1 in [10]). The
sum over the integers m > er on the right hand side of (14) is at most

∑
er≤m≤√

x
P (m)≤r

π(xD,m, lD) +
∑

√
x≤m≤x

P (m)≤r

xD

m
= Σ1 +Σ2.

Using the Brun–Titchmarsh theorem we obtain

Σ1 � π(xD)
∑

er≤m≤√
x

P (m)≤r

1

ϕ(m)
�π(xD)

r

∑
m≤x

P (m)≤r

logm

ϕ(m)
�

�π(xD)

r

∑
p≤r

∑
α

log pα
∑

mpα≤x
P (m)≤r, (m,p)=1

1

ϕ(pαm)
�

�π(xD) log r

r

∑
p≤r

log p

p
�

�π(xD)
log2 r

r
.

Further, using the inequality | log(1− y)− y| ≤ 2y2, which is valid for all real
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y with |1− y| ≤ 1/2 we have

Σ2 � xDx−1/8
∑
m≤x

P (m)≤r

1

m3/4
�xDx−1/4

∏
p≤r

(
1− 1

p3/4

)−1

�

�xDx−1/4 exp

(∑
p≤r

1

p3/4

)
�

�xDx−1/4er.

The inner sum on the right hand side of (14) equals∑
Dp≤x

Dp≡−1 (mod m)

χd

(
Dp+ 1

m

) ∑
δ|(Dp+1

m ,P(r))

μ(δ) =

=
∑

δ|P(r)
(δ,Dd)=1

μ(δ)
∑
Dp≤x

Dp+1≡0 (mod δm)

χd

(
Dp+ 1

m

)
=

=
∑

δ|P(r)
(δ,Dd)=1

μ(δ)

d∑
b=1

(b,d)=1

χd(b)J(x,m, δ, b),

where

Jm(x,m, δ, b) := #
{
p ≤ xD : Dp+ 1 ≡ 0 (mod δm), Dp+1

m ≡ b (mod d)
}
.

Note that Jm(x,m, δ, b) � 1 for all b with (bm − 1, d) �= 1. There is a unique
lδ (mod d) such that δlδ ≡ b (mod d), therefore

Dp+ 1 = cδm and Dp+ 1 = mb+ tdm,

implies

Dp+ 1 ≡ mlδδ (mod mδd).

Thus,

Jm(x,m, δ, b) = #{p ≤ xD : Dp+ 1 ≡ mδlδ (mod δdm)}.

We arrive at

M(x, fr, D) =
∑′

m≤er

P (m)≤r

f(m)

d∑
b=1

(b,d)=1
(bm−1,d)=1

χd(b)
∑

δ|P(r)
(δ,Dd)=1

μ(δ)π(xD, δdm,mδlδ)+

+ o(π(xD)) (x→∞),(15)
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where Σ′ indicates that m and D are of opposite parity. The right hand side
of (15) equals

∑′

m≤er

P (m)≤r

f(m)

d∑
b=1

(b,d)=1
(bm−1,d)=1

χd(b)
∑

δ|P(r)
(δ,Dd)=1

μ(δ)
π(xD)

ϕ(δdm)
+

+O
( ∑

δ|P(r)
(δ,Dd)=1

∑
m≤er

P (m)≤r

∣∣∣π(xD, δdm,mδlδ)−
π(xD)

ϕ(δdm)

∣∣∣) = M + Err2(x, r).

Applying the Cauchy–Schwarz inequality and then the Brun–Titchmarsh the-
orem we obtain that Err22(x, r) is at most

c

( ∑
δ≤

√
x√

D logA x

4ω(δ) max
(l,δ)=1

∣∣∣π(xD, δ, l)− π(xD)

ϕ(δ)

∣∣∣)2

�

�
∑

δ≤
√

x√
D logA x

16ω(δ)

ϕ(δ)

∑
δ≤

√
x√

D logA x

ϕ(δ) max
(l,δ)=1

∣∣∣π(xD, δ, l)− π(xD)

ϕ(δ)

∣∣∣2 �
�

∏
p≤x

(
1 +

16

p

)
π(xD)

∑
δ≤

√
x√

D logA x

max
(l,δ)=1

∣∣∣π(xD, δ, l)− π(xD)

ϕ(δ)

∣∣∣,
which by the Bombieri–Vinogradov theorem does not exceed π2(xD)

logA x
, where

A > 0 is an arbitrary large fixed constant.

Since

ϕ(δdm) = δdm
∏
p|dm

(
1− 1

p

) ∏
p|δ

p�dm

(
1− 1

p

)
= ϕ(dm)δ

∏
p|δ

p�dm

(
1− 1

p

)
,

we have ∑
δ|P(r)

(δ,Dd)=1

μ(δ)

ϕ(δmd)
=

1

ϕ(dm)

∏
p≤r
p�Dd
p|dm

(
1− 1

p

) ∏
p≤r
p�Dd
p�dm

(
1− 1

p− 1

)
=

=
1

ϕ(dm)

∏
p≤r
p�Dd
p|m

(
1− 1

p

) ∏
p≤r
p�Dd
p�m

(
1− 1

p− 1

)
.
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Further, by the inclusion-exclusion principle and by the orthogonality relation
of the Dirichlet characters we have

d∑
b=1

(b(bm−1),d)=1

χ(b) =
∑

(b,d)=1

χ(b)
∑
k|d

μ(k)

ϕ(k)

∑
χ (mod k)

χk(bm).

Thus,

(16)

1

π(xD)
M =

∑
(b,d)=1

χ(b)
∑
k|d

μ(k)

ϕ(k)

∑
χ (mod k)

χk(b)×

×
∑′

m
P (m)≤r

f(m)χk(m)

ϕ(dm)

∏
p≤r
p�Dd
p|m

(
1− 1

p

) ∏
p≤r
p�Dd
p�m

(
1− 1

p− 1

)
+ Err3(r),

where

Err3(r)�
∑
m>er

P (m)≤r

1

ϕ(dm)

∏
p≤r
p�Dd
p|m

(
1− 1

p

) ∏
p≤r
p�Dd
p�m

(
1− 1

p− 1

)
�

�
∏
p≤r
p�Dd

(
1− 1

p

) ∑
m>er

P (m)≤r

1

ϕ(m)
�

� log2 r

r
.

Keeping in mind that m and D has opposite parity

∑′

m
P (m)≤r

f(m)χk(m)

ϕ(dm)

∏
p≤r
p�Dd
p|m

(
1− 1

p

) ∏
p≤r
p�Dd
p�m

(
1− 1

p− 1

)
(17)

can be written as

∏
p≤r
p�Dd

(
1− 1

p− 1
+
∑
α≥1

f(pα)χk(p
α)

pα

) ∏
p≤r
p�2D
p|d

(
1 +

∑
α≥1

f(pα)χk(p
α)

pα

)
.
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Thus, the first term on the right hand side of (16) equals

(18)

d∑
b=1

(b,d)=1

χ(b)

ϕ(d)

∑
k|d

μ(k)

ϕ(k)
×

×
∑

χ (mod k)

χk(b)
∏
p≤r
p�dD

(
1− 1

p− 1
+
∑
α≥1

f(pα)χk(p
α)

pα

)
×

×
∏
p≤r

p|d, p�2D

(
1 +

∑
α≥1

f(pα)χk(p
α)

pα

)
.

Since the character induced by χk · χ is not the principal character if χk �= χ
we obtain using Dirichlet’s theorem in arithmetic progressions that

∑
z≤p≤r

|1− χk · χ(p)|2
p

� log

(
log r

log z

)
� log

(
log3 x

log4 x

)
,

if z = log3 x. Here we used that χk · χ(p) is at most a ϕ(d)-th root of unity.
Further,

|χk(p)f(p)− 1|2 � |1− χ(p)χk(p)|2 − |1− χ(p)f(p)|2,

therefore ∑
z≤p≤r

|1− χk(p)f(p)|2
p

�

�
∑

z≤p≤r

|1− χk(p)χ(p)|2
p

+O
( ∑

z≤p≤r

|1− χ(p)f(p)|2
p

)
�

� log

(
log3 x

log4 x

)
+ o(1) (x→∞).

Thus,∣∣∣ ∏
p≤r
p�dD

(1− 1

p− 1
+
∑
α≥1

f(pα)χk(p
α)

pα
)
∣∣∣� ∣∣∣exp(∑

p≤r

f(p)χk(p)− 1

p

)∣∣∣�
� exp

(
−

∑
z≤p≤r

1− Re f(p)χk(p)

p

)
=

= o(1) (x→∞).
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Putting it back into (18) we deduce

(19)

1

π(xD)
M(x, fr, D) =

μ(d)

ϕ(d)

∏
p≤r
p�dD

(
1− 1

p− 1
+
∑
α≥1

f(pα)χ(pα)

pα

)
×

×
∏
p≤r

p|d, p�2D

(
1 +

∑
α≥1

f(pα)χ(pα)

pα

)
+ o(1) (x→∞).

Since χ(pα) = 0 for all p | d, introducing the notation

P (y) :=
∏
p≤y
p�dD

(
1− 1

p− 1
+
∑
α≥1

f(pα)χ(pα)

pα

)
,

we proved that

π(xD)−1M(x, fr, D) =
μ(d)

ϕ(d)
P (r) + o(1) (x→∞).(20)

Here we note that if (2) converges for τ = 0 then 1� |P (r)| ≤ 1. Now we
can prove that

μ(d)

ϕ(d)
P (xD)

is a good approximation of the sum M(x, f,D). Now∣∣∣π−1(xD)M(x, f,D)− μ(d)

ϕ(d)
P (xD)

∣∣∣ ≤
≤
∣∣∣π−1(xD)M(x, f∗, D)− π−1(xD)M(x, fr, D)

P (xD)

P (r)

∣∣∣+
+π(xD)−1|M(x, f∗, D)−M(x, f,D)

∣∣∣+
+
∣∣∣μ(d)
ϕ(d)

P (xD)− π−1(xD)M(x, fr, D)
P (xD)

P (r)

∣∣∣,
therefore by (13) and by (20) we have to show that

π−1(xD)
∣∣∣M(x, f∗, D)−M(x, fr, D)

P (xD)

P (r)

∣∣∣ = o(1) (x→∞).(21)

We note that, if d < r, then

|f∗(pα)| = |fr(pα)| = 1.
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Hence there is a strongly additive function g∗r (p) ∈ (−π, π] with

f∗
r (n) = f∗ · fr(n) = eig

∗
r (n).

We note that if

p ≤ r, or p > x1−ϑx

D , then g∗r (p) = 0.

By Lemma 2 we have∑
Dp+1≤x

∣∣∣g∗r (Dp+ 1)−
∑
q≤xD
q�D

g∗r (q)
q

∣∣∣2 � 1

ϑx
π(xD)

∑
p≤xD

|g∗r (p)|2
p

.(22)

Let

A(x) :=
∑
p≤xD
p�D

g∗r (p)
p

.

We obtain that the left hand side of (21) is at most

c

π(xD)

∣∣∣ ∑
Dp+1≤x

f∗(Dp+ 1)− fr(Dp+ 1)
P (xD)

P (r)

∣∣∣�
� 1

π(xD)

∑
Dp+1≤x

∣∣∣f∗
r (Dp+ 1)− P (xD)

P (r)

∣∣∣�
� 1

π(xD)

∑
Dp+1≤x

∣∣f∗
r (Dp+ 1)− exp[iA(x)]

∣∣+ ∣∣∣exp[iA(x)]− P (xD)

P (r)

∣∣∣ =
= Σ′

1 +Σ′
2.

Using the Cauchy–Schwarz inequality again we obtain

Σ′
1 = π(xD)−1

∑
Dp+1≤x

∣∣∣exp[i(g∗r (Dp+ 1)−A(x)
)]
− 1

∣∣∣ ≤
≤ π(xD)−1/2

( ∑
Dp+1≤x

|g∗r (Dp+ 1)−A(x)|2
)1/2

.

Thus, by (22) we deduce that Σ1 is at most(
c

ϑx

∑
p≤xD
p�D

|g∗r (p)|2
p

)1/2

.
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Further,

|g∗r (p)|2 � |f∗
r (p)− 1|2 = |f(p)− fr(p)|2,

therefore

Σ′
1 �

(
1

ϑx

∑
r≤p≤x

|χ(p)f(p)− 1|2
p

)1/2

,

which according to condition (2) tends to zero as r →∞ with a suitable choice
of ϑx.

We have to estimate Σ′
2. It can be written as∣∣∣∣∣1− ∏

r<p≤xD
p�D

(
1− 1

p− 1
+

∑
m≥1

f(pm)χ(pm)

pm

)
exp

(
−i

∑
r<p≤xD

p�D

g∗r (p)
p

)∣∣∣∣∣,
which equals ∣∣∣∣∣1− exp

[
O
( ∑
r<p≤xD

|f(p)χ(p)− 1|2
p

+
∑
r<p

1

p2

)]∣∣∣∣∣,
which again tends to zero as x → ∞, such that (21) follows. Finally we note
that x1−ε < xD, therefore we have

|P (xD)− P (x)| �
∣∣∣∣∣ ∏
xD<p≤x

(
1 +

f(p)χ(p)− 1

p
+O

( 1

p2

))
− 1

∣∣∣∣∣ =
=

∣∣∣∣∣exp
( ∑

xD<p≤x

f(p)χ(p)− 1

p
+O

( 1

p2

))
− 1

∣∣∣∣∣,
which tends to zero as x→∞ inasmuch as

(23)

∣∣∣∣∣ ∑
xD<p≤x

f(p)χ(p)− 1

p

∣∣∣∣∣�
�

( ∑
xD<p≤x

1

p

)1/2( ∑
xD<p≤x

|f(p)χ(p)− 1|2
p

)1/2

= o(1) (x→∞).

We proved Theorem 2 in the case τ = 0.
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Now consider the case of an arbitrary τ . We proved that

π(xD)−1M(x, f(n)n−iτ , D) =
μ(d)

ϕ(d)

∏
p≤x
p�dD

(
1− 1

p− 1
+
∑
α≥1

f(pα)p−iατχ(pα)

pα

)
+

+ o(1) =: ψ(x) + o(1)

as x→∞. Using a summation by parts we obtain that∑
Dp+1≤x

f(Dp+ 1) =xiτ
∑

Dp+1≤x

f(Dp+ 1)(Dp+ 1)−iτ

− iτ

x∫
2

∑
Dp+1≤u

f(Dp+ 1)(Dp+ 1)−iτuiτ−1 du.(24)

If D < xε, then D < xγε′ with some other ε < ε′ < 1 and an appropriate
0 ≤ γ < 1. Therefore the estimation

π

(
u− 1

D

)−1

M(u, f(n)n−iτ , D) =

=
μ(d)

ϕ(d)

∏
p≤u
p�dD

(
1− 1

p− 1
+
∑
α≥1

f(pα)p−iατχ(pα)

pα

)
+ o(1) (x→∞)

remains valid in the range xγ < u < x. Thus, we can estimate the integral on
the right hand side of (24) in this range as

(25)

x∫
xγ

∑
Dp+1≤u

f(Dp+ 1)(Dp+ 1)−iτuiτ−1 du =

=
μ(d)

ϕ(d)

x∫
xγ

π(uD)ψ(u)uiτ−1 du+ o(1)

x∫
xγ

1

D log u
du (x→∞).

Now if xγ ≤ u ≤ x, then as in (23) we have

|ψ(x)− ψ(u)| = o(1)

as x→∞. Therefore the right hand side of (25) equals

π(xD)
xiτ

1 + iτ

μ(d)

ϕ(d)
ψ(x) + o(π(xD)) (x→∞).

Using the trivial bound

|M(u, f(n)niτ , D)| ≤ π(uD),
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we have that the integral on the right hand side of (24) in the range 2 ≤ u ≤ xγ

is not more than

O
(

1

D

xγ∫
2D+1

1

log(u/D)
du

)
�

xγ/D∫
2

1

log(u)
du = o(π(xD)) (x→∞).

In summary we have

∑
Dp+1≤x

f(Dp+ 1) = π(xD)
xiτ

1 + iτ

μ(d)

ϕ(d)
ψ(x) + o(π(xD)) (x→∞),

as asserted. �

References

[1] Davenport, H., Multiplicative Number Theory, 3 ed., Springer-Verlag,
New York, 2000.

[2] Delange, H., Sur les fonctions arithmetiques multiplicatives, Ann. Sci-
ent. EC. Norm. Sup., 78 (1961), 273–304.

[3] Germán, L., The distribution of an additive arithmetical function on the
set of shifted integers having k distinct prime factors, Annales Univ. Sci.
Budapest., Sect. Comp., 27 (2007), 187–215.
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