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MEAN VALUES OF MULTIPLICATIVE FUNCTIONS

ON THE SET OF P, +1, WHERE P, RUNS OVER THE
INTEGERS HAVING k DISTINCT PRIME FACTORS

L. Germén (Paderborn, Germany)

Dedicated to the 60th anniversary of Professor Antal Jdrai

Abstract. We investigate the limit behaviour of

Z g(n+1)

n<x
nePy

as = tends to infinity where g is multiplicative with values in the unit disc
and Pj runs over the integers having k distinct prime factors. We let k
vary in the range 2 < k < ¢(z) log log  where ¢(z) is an arbitrary function
tending to zero as x tends to infinity.

Throughout this work n denotes a positive integer and P(n), p(n) denote
the largest and the smallest prime factors of n, respectively. p, ¢ with or without
suffixes will always denote prime numbers. As usual, the number of primes up
to z will be denoted by 7w (z), and log, « := log(log;,_; ) for all positive integers
k where log; x = log x means the natural logarithm of z. If

(1) n:pql'pQQ"'pvl;k) p1 <p2 <...<Dpg, Ti77;:17"'7k
are positive integers, p;, ¢ = 1,..., k are distinct primes then let w(n) := k. A
typical integer n for which w(n) = k will be denoted by 7. We denote the set
of integers having k distinct prime factors with Py, that is

Pr = {m, € N}.
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The set of integers in Py up to x is denoted by Pr(x). We introduce the
counting function for the set P in arithmetic progressions. If (d,l) = 1 then

let
(2, d, 1) = Z 1.

T ST
7=l (mod d)

In the special case d =1 = 1 we use m(x) instead of 7y (z,1,1).

An arithmetical function g : N — C is said to be multiplicative if g(nm) =
= g(n)g(m) holds for all integers n, m with (n,m) = 1. It is called additive if
g(nm) = g(n)+g(m) for (n,m) = 1 and is called strongly additive if additionally
g(p®) = g(p) holds for all p and o € N.

In the middle of the twentieth century Delange did some pioneering work
concerning mean value estimations for multiplicative functions on the set N.
One of his results was the following (See [2])

Theorem (Delange). Let g be a multiplicative function with |g(n)| < 1,
satisfying
1-R
Z eg(p) < 00.
B p
Then
1 g(p
E -1 (1-2) (1 X 22 o)
n<x p<z m>1

as x tends to infinity.

Although this result provides sufficient condition for multiplicative functions
to have zero mean value, the full description of such multiplicative functions
was given by Wirsing [12] for real and by Haldsz [4] for complex multiplicative
functions of modulus < 1. The result of Haldsz extends Delange’s theorem in
the following way:

Theorem (Delange, Wirsing, Haldsz). Let g be a multiplicative function
with |g(n)| < 1, satisfying

> 1—Reg(p)p™™" o
p

p

for some real 7. Then

1 Z — pl;[z <1 - ) (1 +> m(1+”)> o(1)

n<z m>1
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as x tends to infinity. On the other hand, if there is no such 7 then

% Z gn) =o0(1) (z— o00).

n<x

Kétai in [7, 8] began to investigate the mean behaviour of multiplicative
functions on the set of shifted primes. Through the contribution of Hildebrand
[6] and Timofeev [11] it turned out that the situation is basically different from
the case of the whole set of natural numbers. Their result is

Theorem (Kétai, Hildebrand, Timofeev). Let g be a multiplicative function
with |g(n)| < 1 and suppose that there are a real T and a primitive character
Xda modulo d for some modulus d such that

) 1—Rexa(p)f(p)p™""

> p

converges. Then

1 4
@) 2 ) = O T

1 (1 Y Xl xd<pr-1>f<pr—1>p—<f—1>”) +o(l)

= e(p")

p<z
ptd

as © — 00, which is not necessarily o(1) as x tends to infinity, if x4 is a real
character.

The main result of this paper is

Theorem 1. Let g(n) be a multiplicative function of modulus one, such
that there are a primitive character x (mod d) for some fizred d and a real T
such that

—iT

3 1 —Rex(p)g(p)p

- p

converges. Let furthermore e(x) be an arbitrary function tending to zero as x
tends to infinity. Then

m(@) ™t Y g+ 1) =

OS2k
27 pu(d) 1 g(p*)p~"*"x(p*)
= 2 1——— 1
1+m<d>£[< e foll)  (z o0)

pid

uniformly for all k, if 1 <k < e(z)loglog x.
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We will use the method of [3] since as we deduce the results from the
analogoue for DP + 1 where P denotes the set of primes.

Let
M(z, f,D):= Y f(Dp+1)

Dp+1<zx

Theorem 2. Let f(n) be a multiplicative function of modulus 1. Let fur-
thermore d be a positive integer. Suppose that there is a real T such that the
series

@) > Ix(p)f(p)p

converges for some primitive character x (mod d). Let 0 < e < 1/2. Then

()

T _1|2

2 p(d) F®)p~"*"x(p*)
_1+i7'<p(d)pl:1w<l_p +a§>:1 >+0(1) (z — o0)
ptdD

holds uniformly for all x > 2 and D < z*/?=¢ with (d, D) = 1.

As an application of Theorem 2 we are able to analyze the mean behavior of
multiplicative functions on the set P 41 in some cases. We need the following

Lemma 1. Let e(x) — 0 as x — oo. Then there exist sequences y, — 00,
0z — 0 as x — oo such that

(3) P(n) > g%, Yz < p(n), n is square-free
hold for all but o(m(x)) elements of Py (x), uniformly for all

2 <k <e(x)loglogx as T — oo.

Proof. The following sets have zero relative density in Py.
L. If Ay = {n € Px, n < : 3 p?In}, then we have

T k 1
4, < E: Sl E: = — E 0.
#A1 < Th— 1( a)-f- e <<7Tk(x)1oglogx p@+ (z°7%)
21/2 pO>al/2 pa<azl/2

a>2 a>2 a>2

Here we used that
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holds uniformly for 2 < k < ¢(z) loglogz. This is a direct consequence of the
asymptotic estimation

_z log logk*1 x 1
4) (@) = logz  (k—1)! 1+0 loglogz /)’

which is uniform for 1 < k < e(x) loglogz (see for example in [9]).

2. Ao ={n € Py, n <z : p(n) <y}, then we have

x x k 1 3/4
H#A; < Z Th—1 (Q) + Z ]; < Wk(x)@ Z ;+O($ ).

p<azl/2 p>gl/2 P<Yaz
P<yx a>2

By means of these last two steps we can assume that p(n) > y,, and n is
square-free. Finally we have

D T D D Y

TS T <axl/2 21/2<n), <a
P(mp)<ael—0z P(ry)<zl—da
1/2 1
Lr '+ —— E log m, <
log x

21/2<n) <a
P(rp)<zl—dz

1 T
_ el 1 1/2
<<log:z: Z Th—1 (p) ogp+x <

p<al—dz

T logk*2 log x logp 1/2
<<10gx (k—2)! <zl:5 plog(z/p) Tt <
p<zl-de
Oz Te\® log log x
and the proof is finished. [ |

Proof of Theorem 1. The case k = 1 was proved by Katai, Hildebrand
and Timofeev, and is included in Theorem 2. Therefore we can suppose that
k > 2. Let Ug(z) be the set of those elements of Py (x), for which (3) holds
true. Let S, be the set of those m;_1, for which there exists at least one prime
p > P(m,_1) such that my_1p € Ui(x). Let p* = pr,_, be the smallest p with

this property. Then mi_1p € Ug(z) for all p* < p < ka_l. Using Lemma 1

we have that 7,_; < 2*», with an appropriate A\, — 0, as x tends to infinity.
Further,

P(ﬂ-kfl) < D, and p(ﬂ-kfl) > Y
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where y, — 00 as x — 0o, slowly. We obtain

S g+ = > Yo g(mewp+1) +o(mi(w) =

n<e mh-1ESs Py, <P<

(5) 7 "
= Z M(g,z,mp—1) Z Z g(me—1p + 1) + o(my(x))
Tk—1€Sy Tk-1€S2 PSPR, |
as x — 00
Let
. l‘iT ,u(d) f —1(17’ ( )
(@, D) = 1+ it o(d) H( +O; )

ptdD

Note that using Lemma 1 we have y,, < p(m;_1), therefore in our case mj_1
and d are coprimes for large . Furthermore,

(6) Z W(p;k_l)<<l‘1/2+ Z Z 1

Tr—1E€Ss Tp—1€S% P(ﬂ'kfl)<P<Pfrk71

which, by the definition of S,., equals o(m(x)) as x tends to infinity. Thus, the
second sum on the most right hand side of (5) is o(m,(x)). For the estimation
of the first sum here we apply Theorem 2 and we deduce

Z (n+1) Z (z, TE—1) ( )+0(7rk(x)) (x — 00).

n<x S
w(n)=k Th—1€

Defining K (z, D) by the identity
Y(x,1) =¥(z,D)K(x, D),

such that

K(;v,D)zH(l— +Zf e )>

p<z
p|D

holds, we have that the left hand side of (5) equals

WESYEDY 7r< ° >+

T —
Tr—1€Sz k=1

) Y(x,mp—1)[1 — K(z,75-1)] + o(mx(z)) (2 — o00).

+ ¥ o

™
Te_1E€Se k-1
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Since y, < p(mi—1), and since

K(l’,ﬂ'k,ﬂ :exp[ Z f(p@)X(pa)p”—l +O< Z ;)17

p<=z p

plmg—1 plmg_1

the right hand side of (5) equals

ESVEDY 7r< >+0(1) 3 7r< a >—|—0(7rk(x)) (z = 00).

T —
Th—1€ESz Tr—1€ESs k=1

Tk—1

By the same argument as in the estimation of (5) and then using (6) again
we obtain

AU

Tr—1€Sz

7Tk—1) =1 (xz—00)

and the assertion follows. |

In order to show Theorem 2 we need an analogoue of the Turan—Kubilius
inequality.

Lemma 2. Let 0 < e <1 and let 0 < 0, be an arbitrary sequence tending
to zero as x tends to infinity. Let D be a positive integer, and let x > 2D. Let
h be a real strongly additive function and

he(n)= > hip).

p%|In

p<(Zpt)1-fz

Then
7 L ha(Dp +1 (q L
D/ p<(z—1)/D ﬁ;f]; q<z

uniformly for all x and all D < z°.

Proof. With zp := (x —1)/D let

hiz(n):= > h(p) and hya(n):= Z h(p).

p*[|In H"

<ol/3 R

Further, define

Aly) = Z hip) and B*(y) := Z M
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The left hand side of (7) is < £1 + X2 + X3, where

1 1/812
5, = hy(Dp+1)— A ,
(= Y lhiaDp 1) - AGHY)
p<zp
1
Yo = (D 1
2 7r(a:D Z |ho,o(Dp + 1),
p<zp
D = —— Z |A(z) — A(z )%
p<ID

Using the Cauchy—Schwarz inequality we have

e
ey S<p<a a8 <p<a p<=z

In order to estimate 3o note that a positive integer, n < x, can have at
most a bounded number of distinct prime divisors g > xl/ Thus, using the
Brun-Titchmarsh inequality (Theorem I1.4.9 in [10]) we deduce

S Y| Y e < ¥ h@Prenalng <

p<zp q|Dp+1 q§m1D761
atD

Tp @l
<<7T(mD) <Z:3 qlog(Z2)

9>Tp

1 h
<Ly P

xqugﬂx q

22: P

Here we used that if Dp + 1 = aq then there exists a unique residue class Ip 4
(mod ¢) such that p =Ilp 4 (mod ¢) holds.

It remains to estimate ;. Performing the multiplications we obtain

> PP +1) - A 1/8)] — S — 28, + S,

p<zp
where
Sl = Z ‘h17$(Dp+1)|2,
p<ID

So=Alxy®) Y hia(Dp+1),

p<zp

S3 = A(I‘ID/8)27T(Z‘D).
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Further,
Si= Y (> ma@)= > hi.(@r(@p,qlpg)+
p<zp q|Dp+1 a<zp
(8) atD
+ Z h1,2(q1)h 2 (g2)7 (2D, 41625 1D g1 40 )-
41,92<Tp

a1#a2; 411D, a2tD
Since hq 4(q) = 0 for ¢ > x}j/s, the Brun—Titchmarsh theorem is applicable
and we deduce that the first term on the right hand side of (8) does not exceed
cn(zp)B?(x).

The second term on the right hand side of (8) equals

Yo hiela)hie(e) m(@p)

a1 arealf® ©(q1G2)
a1#42, 911D, q21D
(9) 1 2 1 2 Tr(xD)
+ h12(q1)h1 2 (g){7(2D, 9162, 1D g15) — .
Zl/ z x 9192 @(q1q2>

8
91,9252
a1#42, 411D, a21D

Let Ty, T> be the sums in (9). We have

1 1 h%z 1 1
wg@) = A@g) - 3 @((qq)) = A2(@Y®) + O(B2(x).
<alf®

q11D

For T, we use the Cauchy—Schwarz inequality to obtain

e @) ela)

91,9252
a1#42, 411D, 21D

2
m(zp)
X E m(zp, AD.grgs) —
. <P(CI1612){ (D q192 D,qq) @(qﬂh)}

1
a1,92<z
a1#492, 011D, q2tD

2
m(zp)
<<B4('73) Z W(Q1q2){ﬂ-($D’ q142, lDyfh(Jz) - } .
a1,a2<a ) 90(%612)
17492, q;fDE,)qz’fD

Using the Brun-Titchmarsh inequality

m(zp)
©(q192)

(D, q192,1D.g1q5) —

)

T2 < B*(x)r(zp) >
1/8

q1,92<zp)
917492, 911D, q21D
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and an application of the Bombieri-Vinogradov theorem (Chapter 28. in [1])
shows

m(zp)

Ty, < B*(x ,
2 ( )logAxD

where A > 0 is an arbitrary large costant. Since by the Cauchy—Schwarz
inequality we have

ha) RON
Ay) = E @(g) < ( g qq > loglog1/2y < B(y) loglogl/2 Y,
q<y

q<y
atD

for y > €2, in a similar way as in the estimation of T we deduce

Sy — AQ(CL'lD/g)?T(,TD) <<A(x}3/8)B(:1c) ﬂ-(jD) <
log” zp
<B*(z)loglogzp ﬂgD) <
log” xp
<B*(x)m(zp),
and the proof is finished. |

Lemma 3. Let D, g be two coprime positive integers and let (Ip,, =)Ip be
the unique residue class satisfying Dip = 1 (mod q). Let further 0 < e < 1/2

and zp := (x — 1)/ D whenever x > 2 and let a > %;g: Then

(10) Z qr?(zp,q,lp) < ©(xp)

a.
9>,
q prime, qfD

holds uniformly for all x > 2 and D < x'/?=¢. The constant implied by <
depends on a.

Proof. The sum on the left hand side of (10) equals

CINEDSFED SENED SEEE="1D DEF- D SENND DR

q>x‘1 a19q=Dp1+1 agq=Dpg+1 <z ® ag<ajy a19q=Dpi+1<zx
b ay<w/q ag<z/q ?l’zzﬁn (ag,D)=1 agq=Dpy+1<=
(LlY =

Denote the inner sum by (X(a1,a2) =)3. It is nonempty only if a1 = as
(mod D). Suppose, a1, as is fixed and

q= I)ﬂ/%-lally
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Then
Dpy+1=a1Dn+aile,p, Dps=asDn+ asla, p.
Thus, the primes we want to count in ¥ satisfy

qZDn—FlalD,

P1 = 01N +tpay, P2 = 02N+ tDay,
where
a1la;p — Dtpa, =1  and  asle,p — Dtpe, = 1.

It follows,

X .
IR #{’I’L < ?D q = Dn + la1Da p1r=an+ tDau b2 = a2m +tDa2 prlmes}'
1

Let
E = Dajaz(ay — az),
and let o(p) be the number of solutions of
(Dn +lg,p)(a1n + tpa, )(a2n + tpe,) =0  (mod p).

Since E < x4 for some appropriate A > 0, by Theorem 5.7 of [5]

TD o(p) =1 Lo
YL —— 1———)1--)"".
ai log® £o H( p—1 ) p)

ar p

Noting that (D, ajas) = 1 we have

1 1fp|D7 p|a15a2 or plala p‘aZ

o(p) =142 ifp|D, pt =52 or plaag, p1 (a1, az)
3 otherwise.

Now, making use of the inequality log(1 — z) = 1 + z + O(z?) which holds
uniformly for all real numbers |z| < 1/2 we obtain

164203 <

p

ALY ILC-DI I+

p|D p| %2 play plaz
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Thus, the right hand side of (11) is at most

H<1+ > > a%b;mn(1+2)x

P|D a;<zzp® a1 play p
(ay,D)=1
1 2
<oy T (D).
ag<a) p|AS%2 p p

plaz

a1=ag (mod D)

Since |ab| < a? + b2 holds for all real a,b we deduce

S I eDmed-

az<aj aj— a2 as
a1=ap (mod D) I Pl

2D 12(d) 44 12 (d)
<2 { 2Ty g (<
_ az=ay d| =22 d|az

aj=ag (mod D) D

w(d) w(d)
TR e

dg‘% ag<aj d<aj ag<aj
ag=aj (mod D) (d,D)=1 ap=0" (mod d)
%EO (mod d) ayj=ag (mod D)
ai

Since a > 1+2€ and a; < xx " we have log 22 2> logxz > log xp. Further,

> all;[l( ) Ha<1+?1’(1+12’>><<

aj <za

(a1,D)=1 pg:ng
1 !
< II (r+=)]](1+=) <
,a p p
p<zxp p|D
1\ !
<<10ga?DH<1—|—) .
p
p|D

Thus, the right hand side of (11) does not exceed

Clo;%x,; H( ) Z H (1+ ) < *(zp),

plD aj<zwp plll
(a1.D)=1

which proves the assertion.
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Proof of Theorem 2. First suppose that 7 = 0. We set r = loglog x, and
Tp = ””TEl. Let

Kp(z) :={Dp+1 < x: p prime}.
We have
#{n € Kp(z) | 3¢*|n, ¢ >y} <

(12) < Z 77<3351)q2,lq>+x51 Z ;2:6(y)7r<$51>7

y<g<(Zpt)e q>(E54)

where §(y) — 0 (y = o). Let f* be a multiplicative function defined by

f*), ifp<r
™) =1f), ifr<p<ap’
X(p), otherwise.

Since x(q) # 0 for ¢ > d, there exists a function g(q) € [—m,m) such that
f(a) = x(q)e"'?). By (12)

> {f(Dp+1) = f(Dp+1)}| <

Dp+1<z
o1+ 3 |80+ 1| <
Dp+1<z Dp+1<z
3q2|Dp+1, g>r 39| Dpt1, g>a ks 0e
< Z |ei§(Dp+1) 1+ o(r(zp)) (z — o),
Dp+1<=z

3q|Dp+1, q>w}37191

where

i) = 19w i vp’t<q a=1
g 0, otherwise.

Then
> |e?9(PPHY) 1 > 19(Dp + 1)

Dp+i1<z Dp+1<z
1— . 1—
3q|Dp+1, g>apy U@ 3¢|Dp+1, g>a ]y

Z l9(¢)|m(zp,q,tp),

m}:,_ﬁ’” <g<z

IN

P

IA
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where (tp,, =)tp is the unique residue class satisfying
Dtp=-1 (mod q).

Applying the Cauchy—-Scwarz inequality then using Lemma 3 we obtain

> l9@lr(zp.a.tp) <

ac};f)m<q§x

9\ 1/2 1/2
<<< > g?) ( > qu(xD,q,tD)> <

fc};ﬂm <q<z z};ﬁm <q<z

1/2
<<7r(:£D)< 3 9(;1)2> .

r};ﬁ‘r <q<lz

Noting that

lg(a)* < |f(@)x(q) — 1%,

by (2) we obtain

(13) Y {f(Dp+1) = f{(Dp+ 1)} = on(zp)) (& — o).

Dp+1<x

Let f, be a further multiplicative function defined by

fr(pa): {f(pa)v ifp<r

X(p), ifr<p.

Next we give an alternative representation of M (z, f,., D). It can be written
as follows

(14)
_(Dp+1
> aorin= X g Y x (P 4 B,
Dp+1<zx m<z+1 p<zp
P(m)<r p=lp (mod m)
(o=t (P2EL p(r))=1
where

P(r) =[] »

p<r
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and (Ip,m =)Ip is the unique residue class satisfying
Dip =-1 (mod m),
and by (12)

Err(z,r) < Z 1=o0(n(zp)) (z— o0).
Dp+1<z
3¢2|Dp+1, r<q

Furthermore, (meH,P(r)) = 1. Hence, % is always odd and there is at
most one prime p satisfying Dp+1 = m% if D and m have the same parity.
The contribution of these integers to the sum on the right hand side of (14) is
at most

11
Z 1 < xexp (—2 12?;3) ,

m<ax
P(m)<r

which inequality is well known in number theory (Theorem III.5.1 in [10]). The
sum over the integers m > e” on the right hand side of (14) is at most

Z m(xp, m,lp) + Z %:214—22.

eT<m<\VT Vz<m<az
P(m)<r P(m)<r

Using the Brun—Titchmarsh theorem we obtain

e"<m<\x w(m m<zx @(m)
P(m)<r P(m)<r
m(xp) 1
1 (0%
e SO DT SR
p<r « mp® <z

P(m)<r, (m,p)=1
m(xp)logr Z logp <

r
p<r p

<

log?
<n(zp) ir.

Further, using the inequality |log(1 — y) — y| < 232, which is valid for all real
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y with |1 —y| < 1/2 we have

1 1\
Sy < apr VY — <<33Dx1/4H<1—p3/4) <

m<aw <r
P(m)<r p=

1
<<xDac_1/4 exp <Z 3/4> <
p

p<T

<zpz Ve,

The inner sum on the right hand side of (14) equals

> () Y w-

Dp=—1" (mod m) 3| (PEELP(r)

SN CHED YA C ey

S|P (r) Dp<z
(8,Dd)=1 Dp+1=0 (mod &m)

d
= Z N(é) Z Yd(b)J(x,m,(S,b),

5|P(r) b=1
(8,Dd)=1 (b,d)=

where
Im(x,m,9,b) := #{p <zp: Dp+1=0 (mod dm), % =b (mod d)}

Note that J,,(x,m,d,b) < 1 for all b with (bm — 1,d) # 1. There is a unique
s (mod d) such that 6l = b (mod d), therefore

Dp+1=cdm and Dp+1=mb+ tdm,
implies
Dp+1=mis6 (mod mdd).
Thus,
Im(x,m,0,0) =#{p<zp : Dp+1=mdls (mod édm)}.

We arrive at

d
z, fr, D Z fm) > xad) > pd)w(xp, sdm, mdls)+
PT:I)EST (b?dz)lzl ((sé,lgd()rll

(bm—1,d)=1

(15) +o(r(zp)) (z— o0),
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where Y’ indicates that m and D are of opposite parity. The right hand side
of (15) equals

d
! — 7T($D)
b 0
Z f(m) Z Xa(b) Z 1) iyt
P(m)<r (bml,)i1);)1:1 (5,Dd)=1
m(xp) B
+O< 5;) WZ; ‘W(ID,Jdm, mols) — o(6dm) ’) =M + Erra(x,r).

(8,Dd)=1 P(m)<r

Applying the Cauchy—Schwarz inequality and then the Brun—Titchmarsh the-
orem we obtain that Err3(z,r) is at most

2
c 4°0) max ‘7‘(‘ rp,0,l) — ﬂ-(xD)‘ <
( Z; e =0
0S TBlosAs
16«(9) 2
< Z Z »(d) max ‘ﬂ'(arp,é,l) - ﬂ(zD)‘ <
= »(0) ~ (1.0)=1 ()
o< VD logA z o< VD logA z
16
< H (1—|—> m(xp) Z max ’W(xD,CS,l)— ﬂ-(xD)‘,
> p (1.8)=1 @(9)
pszT §< Y=
= VDlog4d z
which by the Bombieri—Vinogradov theorem does not exceed Ti)é"ffi ), where
A > 0 is an arbitrary large fixed constant.
Since
1 1 1
p(0dm) =dodm [[ (1-=) [] (1-=) =wdm)s [] (1-=),
p p p
pldm p|é p|s
ptdm ptdm

we have

2 wéwm)@ ~ i 11 (1‘;) 11 (1‘pll> B

S|P (r) p<r p<r
(5,Dd)=1 piDd piDd
pldm ptdm
1 1 1
= 1— = 1—
¢(dm) 1:[( p)g ( pl)
ptDd ptDd
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Further, by the inclusion-exclusion principle and by the orthogonality relation
of the Dirichlet characters we have

. _ p(k)
>ow= Y x> (o)
(b(omo1).d)=1 (bd)=1 Ha X (med®)
Thus,
1 (k)
S ox)Y Bt Xk (b) %
71—(I'D) (b,d)=1 k|d gp(k) x (mod k)
(16) y Z/ f(m)xi(m) H (1 1> H <1 1) + Errs(r)
m gp(dm) p<r p p<r b |
P(m)<s piDd wfDd
plm ptm
where

m>e” p<r psr
P(m)<r »fDd »fDad
plm pfm
1 1
<J[(1t-2) > —«
p<r p m>e” w(m)
pfDd P(m)<r
log? r
< .
T

Keeping in mind that m and D has opposite parity

(17) Z/WE(“DEOU»L)

m
P(m)<r ptDd ptDd
plm ptm

can be written as

1 f(%)xx(p*) J(0%)xx(p®)
(e ) (e )

p<T a>1 p<r a>1
ptDd - pt2D -
pld
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Thus, the first term on the right hand side of (16) equals

d

X(b) w(k)
2 72 (k)"
(b1 i ¥
(18) X Z Xk(b)H<1— +Zf >><
x (mod k) ;55 a>1
X H (1 + Z I )
old, pr2D ozt

Since the character induced by xx - X is not the principal character if x5 # x
we obtain using Dirichlet’s theorem in arithmetic progressions that

1—xr-X(p)|? 1 1
3 L= X0 oy, (Ogr) > log (Ogﬂ) :
52, P log 2 log, =

if z = logg z. Here we used that xyi - X(p) is at most a ¢(d)-th root of unity.
Further,

Ixe(®)f(p) = 117> [1 = X(p)xx(p)]* — |1 = X(p) £ (p) I,

therefore
5 11— xe@)f )
z<p<r p
> 3 LoxExe)P w( L —x(p)f(p)l2> .
z<p<r z<p<r p
> log (122333) +o(l) (z— ).
4T
Thus,
’H 1— +Zf ‘<<’exp(z<:f )‘<<
siap p=r
1 — Re f(p)xx(p)
<K expl|— =
X =)

=o(1) (z— o).
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Putting it back into (18) we deduce

m(zp) e(d) - -1 = >
(19) o .
X H (1 + I Z))f(p )> +o(1) (z— o0).
pld S’P$2D azl

we proved that

(20) r(ep) Mz, f,. D) = :Ej;P(r) Fo(l) (z— o).

Here we note that if (2) converges for 7 = 0 then 1 < |P(r)| < 1. Now we
can prove that
p(d)

mP(SCD)

is a good approximation of the sum M(x, f, D). Now

7= o) M (a, £, D)~ 4D pa)| <

o(d)

< [ )M, 1, 0) )M 1, D) D)

P(r)

[+

+r(zp) M (. f*, D) = M(, f.D)|+

+ 2 Plen) 7 @) (2. £, D)

therefore by (13) and by (20) we have to show that

(1) «7(wp)| M@, [* D) - M(z. ;. D)

We note that, if d < r, then

I (™) = [fr(p*) = 1.
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Hence there is a strongly additive function g*(p) € (—m, | with
fr(n) = f* - Fp(n) = €.
We note that if

p<r, or p> x};ﬂm, then g¢gr(p) =0.

By Lemma 2 we have

) % |eoprn- Y W

*

‘2<<L7T(IED) Z ‘gr(p)‘z

Dp+1<z a<zp q Vs p<zp p
qtD
Let
9 ()
A(x) == =
() <Z ;
oD
We obtain that the left hand side of (21) is at most
c P(xp)
“(Dp+1) — f-(Dp +1
W(xD)\ >, f D+ ) = S (Dp Dl | <
Dp+1<z
1 P(l‘D)
< fX(Dp+1) — <
m(zp) Dp;g,; ( P(r) ‘
“(Dp+1)— A A(z)] — =
<oy O RO+ - eplAW)]| + [explid)] - 55

Dp+1<zx
=3 + 5.

Using the Cauchy—Schwarz inequality again we obtain

S =r(ep)t Y |esoli(or(Dp+1) - A@)] — 1| <
Dp+1<x

<nep) (Y loi(Dp+1) - A@)P)

Dp+1<z

1/2

Thus, by (22) we deduce that ¥; is at most

1/2
¢ gz (p)|?
(63 )
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Further,

lgr ) < £ () =17 =1f(p) = F (),

therefore

1/2
/ 1 f _12
zl<<(19x 5 W) |

r<p<w

which according to condition (2) tends to zero as r — oo with a suitable choice
of 9,.

We have to estimate 35. It can be written as

1- H (— —|—Zf )exp( Z grp>

r<p<zp m>1 r<p<zp
ptD ptD

which equals

-ofo( § U= 5 )|

r<p<zp T<p

which again tends to zero as x — oo, such that (21) follows. Finally we note
that 2'~¢ < xp, therefore we have

I <1+f(p)x(p)—1+o(p12)> 9

zp<p<lz p

oo ¥ IO o))

rp<p<lz

[P(zp) — P(z)] <

which tends to zero as x — oo inasmuch as

y, L=l
(23) . 1/2 s 12 1/2
() (s - |> .

We proved Theorem 2 in the case 7 = 0.
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Now consider the case of an arbitrary 7. We proved that

1 _ir 1y () fe*)p~ " x (%)
7T(xD) M(:mf(n)n 7D) _ME( +(;1 >+

ptdD
+o(1) = ¥(z) + o(1)

as ¢ — oco. Using a summation by parts we obtain that

Z f(Dp+1) = Z f(Dp+1)(Dp+1)~*
Dp+1<zx Dp+1<z
(24) —m’/ Z f(Dp+1)(Dp+ 1)~ du.
Dp+1<u

If D < zf, then D < 27 with some other ¢ < ¢/ < 1 and an appropriate
0 <~ < 1. Therefore the estimation

™ (“l_) 1>1 M(u, f(n)n="", D) =
D L Ly S

p<u a>1
ptdD

)) +o(l) (z— o)

remains valid in the range 7 < u < x. Thus, we can estimate the integral on
the right hand side of (24) in this range as

Z f(Dp+1 Dp—‘r)” iT— 1du-

zv Dp+1<u
(25) W .
A m(u wu T tdu+o u (x — 00).
_so(d)I[ () ()™ + “{r[mogud (& o)

Now if 27 < u < z, then as in (23) we have

() = p(u)] = o(1)

as x — 0o. Therefore the right hand side of (25) equals

1441 ¢(d)

m(zp) () +o(r(zp)) (v — 00).

Using the trivial bound
| M (u, f(n)n'", D)| < m(up),
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we have that the integral on the right hand side of (24) in the range 2 < u < 27
is not more than

Y z7/D
1 1 1
O(D / bg(u/D)d“> < / fog(ay 1 = 0(7(@p)) (= 00)
2D+1 2

In summary we have

> Dy ) = nlap) i M o) + ofa(en) (o oo)
Dp+1<z
as asserted. |
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