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Abstract. Let (S,+) and (G,+) be two commutative semigroups. Assum-
ing that the latter one is cancellative we deal with functions f : S −→ G
satisfying the Jensen functional equation written in the form

2f(x+ y) = f(2x) + f(2y) .

It turns out that functions f, g, h : S −→ G satisfying the functional equa-
tion of Pexider

f(x+ y) = g(x) + h(y)

must necessarily be Jensen. The validity of the converse implication is also
studied with emphasis placed on a very special Pexider equation

ϕ(x+ y) + δ = ϕ(x) + ϕ(y) ,

where δ is a fixed element of G. Plainly, the main goal is to express the
solutions of both: Jensen and Pexider equations in terms of semigroup
homomorphisms.

Bearing in mind the algebraic nature of the functional equations consid-
ered, we were able to establish our results staying away from topological
tools.
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1. Introduction

We will investigate the very classical functional equations of Jensen, i.e.

f

(
x+ y

2

)
=

f(x) + f(y)

2
,

and of Pexider, i.e.
f(x+ y) = g(x) + h(y),

where f, g, h are functions defined and assuming values in some abstract al-
gebraic structures. These equations have very rich literature; the basic facts
concerning that topic may be found (among others) in the well known mono-
graphs of J. Aczél [1] and M. Kuczma [2]. It is also commonly known that in the
case where both the domain and the target spaces of functions considered are
linear spaces, the general solution of the Jensen and of the Pexider equations
may be expressed in terms of additive functions. Let us recall that a function
a is called additive provided it satisfies the Cauchy functional equation

a(x+ y) = a(x) + a(y).

In classical situations Jensen functions are represented as the sum of an ad-
ditive map and a constant function. The same can be told about solutions
of the Pexider equation. The question we are faced is: to what extent these
representations remain valid and/or what kind of potentially new phenomena
may occur while dealing with more abstract algebraic structures. In particu-
lar, regarding the Jensen equation, the category of not necessarily commutative
groups was taken into account in the papers of C.T. Ng [3], [4] and H. Stetkaer
[6]. In the present paper we will concentrate on semigroups as potential do-
mains and codomains. In some cases, we try also to get rid of the 2-divisibility
assumption dealing with a version of the Jensen equation which does not re-
quire the feasibility of such division. On the other hand, we try to keep the
strictly algebraic character of our studies avoiding, in particular, any topolog-
ical structures. This aspect distinguishes our approach from the one applied,
for instance, in the paper of W. Smajdor [5]. The basic results from this paper
will be generalized considerably just due to the fact that, bearing in mind the
algebraic nature of the functional equations considered, we were able to stay
away from topological tools.
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2. Some lemmas

We start with a simpler case when the target space of functions considered
is a group.

Lemma 1. Let (S,+) be a commutative semigroup and let (G∗,+) be an
Abelian group. Then a function f : S → G∗ satisfies the Jensen functional
equation

(1) 2f(x+ y) = f(2x) + f(2y), x, y ∈ S,

if and only if there exist an additive map A : S → G∗ and a constant b ∈ G∗

such that

f(2x) = A(x) + b, x ∈ S, and 2f(x) = A(x) + 2b, x ∈ S + S.

Proof. Assume (1) and define a function ϕ : S → G∗ by the formula

ϕ(x) := f(2x)− 2f(x), x ∈ S.

Then by (1) we obtain

2f(x+ y + z) = f(2(x+ y)) + f(2z) = ϕ(x+ y) + 2f(x+ y) + f(2z) =

= ϕ(x+ y) + f(2x) + f(2y) + f(2z),

as well as,

2f(x+ y + z) = f(2x) + f(2(y + z)) = f(2x) + ϕ(y + z) + 2f(y + z) =

= f(2x) + ϕ(y + z) + f(2y) + f(2z),

for all x, y, z ∈ S, whence

ϕ(x+ y) = ϕ(y + z), x, y, z ∈ S.

In particular, setting z = y, due to the commutativity of the binary law in S,

ϕ(2y) = ϕ(x+ y) = ϕ(2x), x, y ∈ S.

Therefore, ϕ(t) ≡ const =: c on the set S+S. In view of (1) and the definition
of ϕ, this implies

f(2x) + c+ f(2y) + c = 2f(x+ y) + c+ c = f(2(x+ y)) + c, x, y ∈ S,
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stating that the map A(x) := f(2x)+ c, x ∈ S, is additive. By setting b := −c
we derive the first part of our assertion. For x ∈ S+S one has x = y+z, y, z ∈
∈ S whence, by (1),

A(x) + 2b = A(y + z) + 2b = A(y) + b+A(z) + b =

= f(2y) + f(2z) = 2f(y + z) = 2f(x).

This ends the proof of the necessity, and since the sufficiency is obvious, the
proof is completed. �

Corollary 1. Let all the assumptions of Lemma 1 be satisfied. If, moreover,
the division by 2 is uniquely performable in (G∗,+), then f : S → G∗ satisfies
equation (1) if and only if there exist an additive map A∗ : S → G∗ and a
constant b ∈ G∗ such that

f(x) =

{
A∗(x) + b, for x ∈ S + S

arbitrary, on S \ (S + S).

Proof. By virtue of the second part of the assertion of Lemma 1 it suffices
to put A∗(x) := 1

2A(x), x ∈ S. �

Lemma 2. Let all the assumptions of Lemma 1 be satisfied. If functions
f, g, h : S → G∗ satisfy the Pexider functional equation

(2) f(x+ y) = g(x) + h(y), x, y ∈ S,

then there exist an additive map A : S → G∗ and constants b, c ∈ G∗ such that

(∗)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f(2x) = A(x) + b, x ∈ S;

2g(x) = A(x) + b− c, x ∈ S;

2h(x) = A(x) + b+ c, x ∈ S ;

2f(x) = A(x) + 2b, x ∈ S + S.

Conversely, every triple (f, g, h) satisfying conditions (∗) yields a solution to
the equation

(3) 2f(x+ y) = 2g(x) + 2h(y), x, y ∈ S.

Proof. (Necessity.) We shall first show that f satisfies (1). Indeed, for all
x, y ∈ S we have

2f(x+ y) = f(x+ y) + f(y + x) = g(x) + h(y) + g(y) + h(x) =

= f(2x) + f(2y).
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On account of Lemma 1, there exists an additive map A : S → G∗ and a
constant b ∈ G∗ such that

f(2x) = A(x) + b, x ∈ S, and 2f(x) = A(x) + 2b, x ∈ S + S.

Since

g(x) + h(y) = f(x+ y) = f(y + x) = g(y) + h(x), x, y ∈ S,

we get
h(x)− g(x) = h(y)− g(y) ≡ const =: c.

Consequently,
h(x) = g(x) + c, x ∈ S ,

and, therefore, for every x, y ∈ S we have

f(x+ y) = g(x) + h(y) = g(x) + g(y) + c,

whence
A(x) + b = f(2x) = 2g(x) + c, x ∈ S,

and
2h(x) = 2g(x) + 2c = A(x) + b+ c, x ∈ S,

as claimed.

(Sufficiency.)

2g(x)+2h(y) = A(x)+b−c+A(x)+b+c = A(x+y)+2b = 2f(x+y), x, y ∈ S,

which completes the proof. �

Corollary 2. Let (S,+) be a commutative semigroup and let (G∗,+) be an
Abelian group uniquely 2-divisible. Then the triple (f, g, h) of functions from
S into G∗ yields a solution to equation (2) if and only if

f(x) =

{
A∗(x) + 2b∗ for x ∈ S + S
arbitrary on S \ (S + S);

g(x) = A∗(x) + b∗ − c∗, x ∈ S;

h(x) = A∗(x) + b∗ + c∗, x ∈ S,

where A∗ : S → G∗ is additive and b∗, c∗ are arbitrary constants from G∗.

Proof. In the light of Lemma 2 it suffices to put A∗ := 1
2A, b∗ := 1

2b,
c∗ := 1

2c. �
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3. Main results

In what follows, we shall apply these results to deal with the case where G
is a cancellative semigroup.

Theorem 1. Let (S,+) be a commutative semigroup and let (G,+) stand
for an Abelian cancellative semigroup. A map f : S → G satisfies Jensen’s
functional equation (1) if and only if there exist elements β, γ ∈ G such that⎧⎪⎨⎪⎩

f(x+ y) + β = f(x) + f(y) + γ for x, y ∈ 2S;

f(2x) + β = 2f(x) + γ for x ∈ S + S;

f is arbitrary on S \ (S + S) .

Proof. We embed the semigroup (G,+) into a group (G∗,+) of equiva-
lence classes determined by the relation

(u, v) ∼ (x, y) :⇐⇒ u+ y = v + x .

Clearly, we identify an element x from G with the class [(2x, x)]. Moreover, we
have also

−[(x, y)] = [(y, x)], as well as 0 = [(x, x)] .

Finally, we put
f∗(x) := [(2f(x), f(x))], x ∈ S.

Equation (1) may equivalently be written in the form

4f(x+ y) + f(2x) + f(2y) = 2f(x+ y) + 2f(2x) + 2f(2y), x, y ∈ S.

This allows us to write

2f∗(x+ y) = [(4f(x+ y), 2f(x+ y))] =

= [(2f(2x) + 2f(2y), f(2x) + f(2y))] =

= f∗(2x) + f∗(2y).

On account of Lemma 1 we infer that there exist an additive map A : S → G∗

and a constant b ∈ G∗ such that

f∗(2x) = A(x) + b, x ∈ S, 2f∗(x) = A(x) + 2b, x ∈ S + S.

Let b = [(β, γ)]. Then, for all x, y ∈ S, one has

f∗(2x+ 2y) + b = A(x+ y) + 2b = A(x) +A(y) + b+ b = f∗(2x) + f∗(2y),
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i.e.

[(2f(2x+ 2y) + β, f(2x+ 2y) + γ)] = [(2f(2x) + 2f(2y), f(2x) + f(2y))] ,

whence

2f(2x+2y)+f(2x)+f(2y)+β = f(2x+2y)+2f(2x)+2f(2y)+γ, x, y ∈ S,

i.e.
f(2x+ 2y) + β = f(2x) + f(2y) + γ, x, y ∈ S

or, equivalently,

f(x+ y) + β = f(x) + f(y) + γ, for all x, y ∈ 2S.

Let now x ∈ S + S. Then x = y + z, y, z ∈ S whence by (1):

2f(x) + γ = 2f(y + z) + γ = f(2y) + f(2z) + γ = f(2y + 2z) + β =

= f(2x) + β,

as claimed.

Clearly, equation (1) leaves the values of f on S \ (S + S) undetermined.

(Sufficiency). Let x, y ∈ S. Then x+ y ∈ S + S and we have

f(2(x+ y)) + β = 2f(x+ y) + γ and f(2x+ 2y) + β = f(2x) + f(2y) + γ,

whence
2f(x+ y) = f(2x) + f(2y), x, y ∈ S.

This finishes the proof. �

Corollary 3. Let (S,+), (G,+) and f be the same as in Theorem 1. Then
the function

af (x) := f(2x) + β + γ, x ∈ S,

enjoys the property

af (x+ y) + 2β = af (x) + af (y), x, y ∈ S.

Proof.

af (x+ y) + 2β = f(2x+ 2y) + 2β + β + γ = f(2x) + f(2y) + 2β + 2γ =
= af (x) + af (y),

for all x, y ∈ S. �
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Theorem 2. Let (S,+) be a commutative semigroup and let (G,+) stand
for an Abelian cancellative semigroup. If functions f, g, h : S → G satisfy
the Pexider equation (2), then each of them satisfies the Jensen equation (1).
Moreover, there exist a map ψ : S → G and constants α, β, γ, δ, ε ∈ G such
that

(4) ψ(x+ y) + ε = 2f(x+ y) + α, x, y ∈ S,

(5) ψ(x+ y) = 2g(x+ y) + β = 2h(x+ y) + γ, x, y ∈ S,

and

(6) ψ(x+ y) + δ = ψ(x) + ψ(y) , x, y ∈ S.

Conversely, if α, β, γ, δ, ε ∈ G are arbitrary constants satisfying condition

(7) β + γ + ε = α+ δ

and equalities (4), (5) and (6) are fulfilled, then

(8) 2f(2x+ 2y) = 2g(2x) + 2h(2y), x, y ∈ S.

Proof. Equation (2) implies that

2f(x+ y) = f(x+ y) + f(y + x) = g(x) + h(y) + g(y) + h(x) = f(2x) + f(2y),

for all x, y ∈ S, i.e. f satisfies Jensen equation (1). Therefore

f(2x) + f(2y) = 2f(x+ y) = 2g(x) + 2h(y), x, y ∈ S.

Fix u, v ∈ S arbitrarily and put x = u+ v. Then

f(2u+ 2v) + f(2y) = 2g(u+ v) + 2h(y),

and by virtue of (2) we get

g(2u) + h(2v) + g(y) + h(y) + g(2v) = 2g(u+ v) + 2h(y) + g(2v),

whence also

g(2u) + g(2v) + f(2v + y) = 2g(u+ v) + f(2v + y)

follows, i.e. g(2u) + g(2v) = 2g(u + v). Analogously, we check that h is a
Jensen function.
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On account of Theorem 1, there exist constants βf , γf , βg, γg, βh, γh ∈ G
such that

(9) ϕ(x+ y) + βϕ = ϕ(x) + ϕ(y) + γϕ, x, y ∈ 2S,

and

(10) ϕ(2x) + βϕ = 2ϕ(x) + γϕ, x ∈ S + S,

where ϕ ∈ {f, g, h}. Let us define the functions aϕ : S → G, ϕ ∈ {f, g, h} by
the formulas

aϕ(x) := ϕ(2x) + βϕ + γϕ, x ∈ S.

Since ϕ is Jensen function we obtain by (10) that

(11) aϕ(x+ y) + 2βϕ = aϕ(x) + aϕ(y), x, y ∈ S.

According to (2) we have

ag(x) + ah(y) = g(2x) + βg + γg + h(2y) + βh + γh =

= f(2x+ 2y) + βg + γg + βh + γh =

= g(2y) + βg + γg + h(2x) + βh + γh =

= ag(y) + ah(x),

whence
ag(x) + ah(y) = ag(y) + ah(x), x, y ∈ S.

Thus, there exist constants λ, μ ∈ G such that

(12) ag(x) + λ = ah(x) + μ, x ∈ S.

Now, setting
ψ(x) := ag(x) + λ = ah(x) + μ, x ∈ S ,

by virtue of (11), for all x, y ∈ S , we infer that

ψ(x)+ψ(y) = ag(x)+λ+ag(y)+λ = ag(x+y)+2βg+2λ = ψ(x+y)+2βg+λ ,

and it suffices to put δ := 2βg + λ to obtain (6). It follows from (11), the
definition of ag and (10) that ψ(x+y) = ag(x+y)+λ = g(2(x+y))+βg+γg+λ =
= 2g(x+y)+2γg+λ , for all x, y ∈ S, which coincides with the first equality in
(5) on setting β := 2γg + λ. The other one may be derived similarly. Finally,
by (4), (2) and (10)

ψ(x+ y) + δ + βf = ψ(x) + ψ(y) + βf = ag(x) + λ+ ah(y) + μ+ βf =

= g(2x) + βg + γg + λ+ h(2y) + βh + γh + μ+ βf =

= f(2(x+ y)) + βg + γg + λ+ βh + γh + μ+ βf =

= 2f(x+ y) + γf + βg + γg + λ+ βh + γh + μ ,
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and it sufficies to put ε := δ+βf as well as α := γf +βg + γg +λ+βh+ γh+μ
to arrive at (4).

Conversely, let α, β, γ, δ, ε ∈ G be arbitrary constants satisfying (7) and
assume that equalities (4), (5) and (6) are fulfilled. Then

2g(2x) + 2h(2y) + β + γ + ε = ψ(2x) + ψ(2y) + ε
= ψ(2x+ 2y) + δ + ε = 2f(2x+ 2y) + α+ δ ,

which jointly with (7) implies (8) and finishes the proof. �

As we see in our considerations the functional equation (6) (see also (11))
plays a crucial role. Thus the problem of solving this equation seems to be a
basic one.

Theorem 3. Let (S,+) be a commutative semigroup and let (G,+) stand
for an Abelian cancellative semigroup. Given a fixed element δ ∈ G , if a map
ψ : S → G satisfies the equation

(13) ψ(x+ y) + δ = ψ(x) + ψ(y), x, y ∈ S,

then the set Sδ := ψ−1(G+ δ) is either empty or (Sδ,+) yields a subsemigroup
of (S,+) and there exists a homomorphism H : Sδ → G such that

(14) ψ(x) = H(x) + δ, x ∈ Sδ.

If, moreover, there exists a y0 ∈ S such that ψ(y0) ∈ G+ 2δ, then S + y0 ⊂ Sδ

and there exists an η ∈ G such that

(15) ψ(x) + η = H(x+ y0), x ∈ S.

In particular, such a representation takes place provided that ψ is a surjection
from S onto G.

Proof. Assume that Sδ �= ∅ and take arbitrary x, y ∈ Sδ. Then there exist
w, z ∈ G such that ψ(x) = w + δ and ψ(y) = z + δ. By (13) we infer that

ψ(x+ y) + δ = ψ(x) + ψ(y) = w + δ + z + δ

whence
ψ(x+ y) = w + z + δ ∈ G+ δ.

This means that x + y ∈ Sδ and proves that (Sδ,+) forms a subsemigroup
of (S,+). It follows from the definition of Sδ that there exists a function
H : Sδ → G fulfilling equality (14). For all x, y ∈ Sδ we have

H(x+ y) + 2δ = ψ(x+ y) + δ = ψ(x) + ψ(y) = H(x) + δ +H(y) + δ.

which states that H is a homomorphism.
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If for some y0 ∈ S we have ψ(y0) = η+2δ with some η ∈ G, then y0 ∈ Sδ.
Consequently

η + 2δ = ψ(y0) = H(y0) + δ,

whence

(16) H(y0) = η + δ ∈ G+ δ.

According to (13) we get

ψ(x+ y0) + δ = ψ(x) + ψ(y0) = ψ(x) + η + 2δ, x ∈ S,

and since G is cancellative,

(17) ψ(x+ y0) = ψ(x) + η + δ ∈ G+ δ, x ∈ S.

Therefore x+ y0 ∈ Sδ, x ∈ S, or, equivalently,

S + y0 ⊂ Sδ.

On account of (14) we obtain

ψ(x+ y0) = H(x+ y0) + δ, x ∈ S.

By virtue of (17) we get (15). It is easily seen that (15) takes place provided
ψ is surjective. �

Corollary 4. Let (S,+) be a commutative semigroup and let (G,+) stand
for an Abelian cancellative monoid. Assume that ψ : S → G is a surjection
of S onto G satisfying equation (13), Sδ := ψ−1(G+ δ) �= ∅ and y0 is a fixed
element of S such that ψ(y0) ∈ G + 2δ. Then (Sδ,+) is a subsemigroup of
(S,+) and there exists a homomorphism H mapping Sδ into G such that

ψ(x) = H(x+ y0), x ∈ S,

and
H(S + y0) = G, H(y0) = δ

Proof. Going back to the proof of Theorem 3, take y0 ∈ S such that
ψ(y0) = 2δ there. Then η = 0 and consequently ψ(x) = H(x+ y0), x ∈ S, and
H(y0) = δ. The equality H(S + y0) = G is obvious. �

Remark 1. Let (S,+), (G,+) be the same as in Theorem 3. If ψ : S → G
satisfies equation (13) and there exist u, v ∈ S such that ψ(u) = 2ψ(v), then
the set Sδ = ψ−1(G+ δ) is nonvoid.

In fact, ψ(u) = 2ψ(v) = ψ(v) + ψ(v) = ψ(2v) + δ ∈ G+ δ.
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Lemma 3. Let (S,+) be a commutative semigroup and let (G,+) be
an Abelian cancellative semigroup in which the division by 2 is uniquely per-
formable. If ψ : S → G satisfies equation (13), then for an arbitrary positive
integer n and each x ∈ S the following equality

(18) ψ(x) +
1

2n
δ =

1

2n
ψ(2nx) + δ

holds true.

Proof. (Induction.) Putting y = x in (13) we obtain

ψ(2x) + δ = 2ψ(x), x ∈ S ,

whence (18) follows immediately for n = 1. Assume (18) for a positive integer
n and each x ∈ S. Then

1

2
ψ(2x) +

1

2n+1
δ =

1

2n+1
ψ(2n+1x) +

1

2
δ, x ∈ S,

as well as

1

2
ψ(2x) + δ +

1

2n+1
δ =

1

2n+1
ψ(2n+1x) +

1

2
δ + δ, x ∈ S.

Applying (18) for n = 1 we obtain

ψ(x) +
1

2
δ +

1

2n+1
δ =

1

2n+1
ψ(2n+1x) +

1

2
δ + δ

and, consequently,

ψ(x) +
1

2n+1
δ =

1

2n+1
ψ(2n+1x) + δ ,

which ends the proof. �

Corollary 5. Under the assumptions of Lemma 3 we have

ψ(x) ∈
∞⋂

n=1

(
G+

(
1− 1

2n

)
δ

)
, x ∈ S.

Proof. Fix an x ∈ S and a positive integer n. On account of Lemma 3
we have

ψ(x) +
1

2n
δ =

1

2n
ψ(2nx) +

1

2n
δ +

(
1− 1

2n

)
δ, x ∈ S, n ∈ N,
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whence

ψ(x) =
1

2n
ψ(2nx) +

(
1− 1

2n

)
δ, x ∈ S, n ∈ N,

which finishes the proof. �

Theorem 4. Let (S,+) be a commutative semigroup and let (G,+) be a
semigroup that is Abelian uniquely 2-divisible and cancellative. Assume that
δ ∈ G is such that

(19)
⋂
n∈N

(
G+

(
1− 1

2n

)
δ

)
⊂ G+ δ.

Then a map ψ : S → G satisfies (13) if and only if there exists a homomorphism
H : S → G such that

ψ(x) = H(x) + δ, x ∈ S.

Proof. It follows from (19) and Corollary 5, that

ψ(x) ∈ G+ δ, x ∈ S.

Therefore

ψ(x) = H(x) + δ, x ∈ S,

where H : S → G is a function. Applying (19) we obtain

H(x+ y) + 2δ = ψ(x+ y) + δ = ψ(x) + ψ(y) = H(x) + δ +H(y) + δ,

which implies that H(x + y) = H(x) +H(y), x, y ∈ S. Since the suffiency is
obvious, the proof has been finished. �

Theorem 5. Let (S,+), (G,+) be two commutative uniquely 2-divisible
semigroups. Assume that (G,+) is cancellative and such that condition (19) is
fulfilled for every δ ∈ G. Then f : S → G satisfies Jensen functional equation
(1) if and only if there exists an additive function H : S → G such that

f(x+ y) = H(x) + f(y), x, y ∈ S.

Proof. By Theorem 1 there exist constants β, γ ∈ G such that

f(x+ y) + β = f(x) + f(y) + γ, x, y ∈ 2S = S.



120 R. Ger and Z. Kominek

Putting ψ(x) := f(x) + γ, x ∈ S, we note that

ψ(x+ y) + β = f(x+ y) + γ + β = f(x) + f(y) + 2γ = ψ(x) +ψ(y), x, y ∈ S,

i.e. equation (13) is satisfied with δ = β. On account of Theorem 4, there
exists an additive map H : S → G such that

ψ(x) = H(x) + β, x ∈ S.

Therefore
f(x) + γ = H(x) + β, x ∈ S ,

and hence

f(x+ y) + β = f(x) + f(y) + γ = H(x) + β + f(y), x, y ∈ S ,

yielding
f(x+ y) = H(x) + f(y), x, y ∈ S ,

as claimed.

Conversely, for all x, y ∈ S, one has

f(2x)+ f(2y) = H(x)+ f(x)+H(y)+ f(y) = f(x+ y)+ f(y+x) = 2f(x+ y) ,

which completes the proof. �

4. Generalizations of W. Smajdor’s results

W. Smajdor [5] defines an abstract convex cone as a cancellative Abelian
monoid (G,+) provided that a map [0,∞)×G � (λ, s)→ λs ∈ G is given such
that

1s = s, λ(μs) = (λμ)s, λ(s+ t) = λs+ λt, (λ+ μ)s = λs+ μs,

s, t ∈ G, λ, μ ∈ [0,∞).

Under the additional assumption that G is endowed with a complete metric �
such that

�(s+ t, s+ t′) = �(t, t′), s, t, t′ ∈ G, �(λs, λt) = λ�(s, t), λ ∈ [0,∞), s, t ∈ G ,

W. Smajdor’s main result (see Theorem 1 of [5]) states that any function f
mapping an Abelian 2-divisible semigroup (S,+) into (G,+) satisfies the Jensen



An interplay between Jensen’s and Pexider’s functional equations 121

equation if and only if there exists an additive map a : S → G such that the
equality f(x+ y) = a(x) + f(y) holds true for all x, y ∈ S.

The occurrence of a topology (actually: metric topology) in the target
cone in Smajdor’s theorem seems to be artificial bearing in mind the strictly
algebraic nature of the problem considered. Our Theorem 5 generalizes her
result by avoiding any topological structure in the target space. In fact, the
only thing we need is to show that under W. Smajdor’s assumptions condition
(19), i.e. the inclusion ⋂

n∈N

(
G+

(
1− 1

2n

)
δ

)
⊂ G+ δ

is fulfilled for every δ from G. As a matter of fact, we shall achieve that with
the aid of considerably weaker requirements.

Proposition. Given a cancellative semigroup (G,+) uniquely divisible by
2 and admitting a complete metric � such that

�(x+ z, y + z) = �(x, y), x, y, z ∈ G, �(2x, 2y) = 2�(x, y), x, y ∈ G ,

there exists a neutral element 0 in G, i.e. (G,+) is necessarily a monoid.
Moreover, for every δ from G condition (19) holds true.

Proof. The binary law “+” has to be continuous; in fact, if

G � xn −→ x0 ∈ G and G � yn −→ y0 ∈ G,

then

�(xn + yn, x0 + y0) ≤ �(xn + yn, xn + y0) + �(xn + y0, x0 + y0) =

= �(yn, y0) + �(xn, x0) −→ 0 as n −→∞ .

In particular the map G � x −→ 2x ∈ G is continuous. Fix δ ∈ G arbitrarily.
Then (

1

2n
δ

)
n∈N

is a Cauchy sequence .

Indeed, for all positive integers n, k one has

�

(
1

2n+k
δ,

1

2n
δ

)
≤

k−1∑
j=0

1

2n+j
�

(
1

2
δ, δ

)
≤ 1

2n−1
�

(
1

2
δ, δ

)
.

Since ρ is complete the sequence ( 1
2n δ)n∈N converges to an x0 ∈ G. Then also

2x0 = 2 lim
n→∞

1

2n+1
δ = lim

n→∞
1

2n
δ = x0 ,
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whence, for every x ∈ G, we get

x+ x0 = x+ 2x0 = (x+ x0) + x0 and x0 + x = 2x0 + x = x0 + (x0 + x) ,

which, by means of the cancellativity assumption, states that x0 is zero element
in G .

Now, in order to show the inclusion (19), fix an arbitrary x from the inter-
section

⋂
n∈N(G + (1 − 1

2n )δ). Then, for every n ∈ N one may find a gn ∈ G
such that

x+
1

2n
δ = gn + δ .

Since the addition is continuous and the sequence
(

1
2n δ

)
n∈N

converges to the

neutral element x0, the sequence (gn + δ)n∈N tends to x. Therefore, x belongs
to G+ δ since, obviously, the set G+ δ is closed as a complete subspace of G.
This completes the proof. �

Remark 2. Condition (19) is automatically satisfied in any Abelian,
uniquely 2-divisible group (G,+). Actually, for any δ ∈ G the inclusion

G+

(
1− 1

2n

)
δ = G− 1

2n
δ + δ ⊂ G+ δ

is satisfied for every n ∈ N.

Another example of an Abelian, uniquely 2-divisible monoid in which con-
dition (19) holds true reads as follows. Let a : R → R be a discontinuous
additive function and let

G := {x ∈ R : a(x) ≥ 0}.

Equipped with the usual addition, the set G yields a commutative semigroup
with 0 as the neutral element. For any δ ∈ G and for every n ∈ Nwe have

G+

(
1− 1

2n

)
δ =

{
y ∈ R : a(y) ≥

(
1− 1

2n

)
a(δ)

}
,

whence⋂
n∈N

(
G+

(
1− 1

2n

)
δ

)
=

⋂
n∈N

{
y ∈ R : a(y) ≥

(
1− 1

2n

)
a(δ)

}
=

= {y ∈ R : a(y) ≥ a(δ)} = G+ δ .

Noteworthy is the fact that in the case where a(δ) > 0 the shift G+ δ fails to
coincide with G itself.
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Finally, each uniquely 2-divisible topological monoid (G,+; 0) such that
for every δ ∈ G the shift G + δ is closed and limn−→∞ 2−nδ = 0 enjoys the
property (19) (cf. the proof of the Proposition).

The following example shows that, in general, condition (19) need not be
fulfilled. Indeed, let G = (0,∞) and let δ > 0 be fixed. Then G equipped
with the usual addition is a uniquely 2-divisible commutative semigroup and

⋂
n∈N

(
(0,∞) +

(
1− 1

2n

)
δ

)
=

⋂
n∈N

((
1− 1

2n

)
δ,∞

)
=

= [δ,∞) �⊂ G+ δ = (δ,∞) .

We terminate this paper with the following generalization of Theorem 2 in [5]
by W. Smajdor.

Theorem 6. Let (S,+), (G,+) be two commutative uniquely 2-divisible
semigroups. Assume that (G,+) is cancellative and such that condition (19) is
fulfilled for every δ ∈ G. If f, g, h : S → G fulfil the Pexider equation (2) then
there exists a homomorphism H : S → G such that

f(x+ y) = H(x) + f(y), g(x+ y) = H(x) + g(y), h(x+ y) = H(x) + h(y),

for all x, y ∈ S.

Proof. On account of Theorem 2 we infer that f, g and h are Jensen
functions. It follows from Theorem 5 that there exist additive functions Hf , Hg

and Hh such that for all x, y ∈ S the equalities

f(x+ y) = Hf (x) + f(y), g(x+ y) = Hg(x) + g(y), h(x+ y) = Hh(x) + h(y),

hold true. Thus, for arbitrary x, y ∈ S we have

Hf (x+ y) + f(x+ y) = f(2x+ 2y) = g(x+ y) + h(x+ y) =

= Hg(x) + g(y) +Hh(y) + h(x) =

= Hg(x) +Hh(y) + f(x+ y)

which leads to
Hf (x+ y) = Hg(x) +Hh(y), x, y ∈ S.

Moreover,

Hg(x)+Hh(x)+2Hf (y) = Hf (2x)+2Hf (y) = 2Hf (x+y) = 2Hg(x)+2Hh(y),

whence
Hh(x) + 2Hf (y) = Hg(x) + 2Hh(y), x, y ∈ S.
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Fix y0 ∈ S arbitrarily and put α := 2Hf (y0), β := 2Hh(y0) to get the relation-
ship

Hh(x) + α = Hg(x) + β, x ∈ S.

Similarly, by fixing an x0 from S and setting γ := 1
2Hh(x0), δ := 1

2Hg(x0) we
arrive at

Hf (y) + γ = Hh(y) + δ, y ∈ S.

Now, with the aid of the embedding technics applied in the proof of Theorem
1, (we omit the details of that standard procedure) we deduce that the corre-
sponding functions H∗

f , H
∗
g and H∗

h mapping S into the group G∗ are pairwise
equal. This, in turn, forces the functions Hf , Hg and Hh to be pairwise equal,
as well. Therefore, we finish the proof by setting H := Hf = Hg = Hg. �
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