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Abstract. For every natural number greater than 2, the sequence gen-
erated by iterating the tau-function is a strictly monotone decreasing se-
quence, it stabilizes and at the end reaches 2. The second but last value of
the sequence is an odd prime. The question of Imre Kéatai is what is the
asymptotic distribution of these primes, if any.

Our goal was to analyze every tau-iteration sequence of all natural numbers
up to a given bound. We also analyzed the tau-iteration sequence for
randomly chosen set of large numbers. For calculating the tau-function,
efficient factorization methods are necessary.

a1 02

Tau-function. Let n = p{'p5*...p0", where r € N, o;; > 0 integer, p; > 0
prime and p; # p; if i # j. Let 7(n) denote the number of positive divisors
of n. Then 7(n) = (a1 + 1)(ae + 1) -+ (e + 1).

It is evident that 7(1) = 1,7(p) =2 and 7(n) < n if n > 3.

Tau-iteration. Consider the iterated sequence n, 7(n), 7 (n) = 7(7(n)),
,..., where n > 2. This is a strictly monotone decreasing sequence until reach-

ing 2 and stabilizing (it cannot reach 1). The value before 2 is an odd prime.
We will call this number lasttau(n) from now on.

n T(n) 73 (n) 73 (n) lasttau(n)
64 = 2° 7 2 2 7
2541 =3-7-112 12 6 4 3
3003=3-7-11-13 24 5 2 5

Table 1 — Examples for the iteration
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As it is clear from the examples, the most difficult part is the first factor-
ization. Since we want to work with 50-60-digit long numbers, we have to find
efficient methods of tolerable running times.

Small factors (2,3, ...,9973) can be found using trial division. Beyond that
the Pollard p method is used up to 10°.

For finding even larger factors, we use elliptic curves. Roughly speaking, the
running time of the elliptic curve factorization depends only on the length of
the second largest prime factor. This method is appropriate for finding factors
of about 20-30 digits.

To guarantee that each found factor is prime, the Miller—Rabin primality
test is used after these methods.

Elliptic curves. An elliptic curve over R is the set of all (z,y) pairs on
the plane satisfying y? = 23 + ax + b, where a and b are real constants and
4a® + 27b% # 0.

It is obvious that if any point (x,y) is on the curve, then so is (z, —y). The
condition for the constants guarantees that a definite tangent exists at every
point of the curve. If a (non-vertical) line intersects the curve at two points,
(z1,y1) and (z2,y2), then it intersects the curve at a third point (z3,ys) as
well. If slope of the line is A = (y1 — y2)/(x1 — x2) then it is not hard to prove
that 3 = A2 — 21 — 29 and y3 = M(x3 — 1) + y1. We can define the addition
operation by the formula (z1,y1)+ (22, y2) = (z3, —ys3). If the line is tangent to
the curve then we consider the line to intersect the curve at two equal points,
i.e., 11 = z3 and y; = yo. In this case A = (323 +a)/(2y1). If the line is vertical
we consider the third intersection point to be in the infinity; this point will be
the zero element of the addition. With this addition operation the points of
the elliptic curve form an Abelian group.

We can define elliptic curves over any field having characteristic different
from 2 and 3. Even more generally, we can define “elliptic curves” but only with
a partial addition operation above a commutative ring with identity element,
for example, above Z/nZ if ged(n,6) = 1 and ged(n, 4a® + 27b%) = 1. For any
prime divisor p of n we also get an elliptic curve modulo p. If an addition is
defined over Z/nZ then it is also defined for any prime divisor p of n. A key
observation here is that for any prime divisor p of n, doing the addition modulo
n and reducing the result modulo p is the same as reducing the addends modulo
p first and then adding the results modulo p. To factorize n we use “elliptic
curves” over Z/nZ. Roughly speaking, for some point P on the curve, we
calculate k! - P for a rather large k. During this calculation the ged operation
to compute A will with high probability find a non-trivial factor of n.

We can use projective representation: Let the points of the curve be repre-
sented as equivalence classes of triplets (X,Y, Z) above Z/nZ. Point (X,Y, Z)
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is equivalent to all points (c¢X, cY, cZ) where ¢ has an inverse modulo n. The
zero element of the “curve” is the equivalence class of (0,1,0). In this repre-
sentation the equation of the curve becomes the homogeneous equation

ZY? = X3+ aXZ?+b75.

First we tried the approach described as follows. We select a random curve
above Z/nZ with a random point P on it by choosing random z,y,a values
and calculating b from them. Then we check that ged(n, 4a® +27b%) = 1 holds.
If it does, we calculate k! - P for increasing values of k. If it is not successful,
we have found one of the divisors of n.

We carry out the multiplication by k! iteratively, by multiplying @ = (k —
1!+ P by k. We calculate k@ by another iteration starting from @ and 2@Q).
The basic idea is to use only the X and Z coordinates. Let ¢ be the number
represented by the first [ bits of multiplier k. After the [th step we have the X
and Z coordinates of the points i@ and (i+1)Q. If the next bit, i. e., the [+ 1st
bit of k, is zero then we calculate the X and Z coordinates of the points 2i()
and (2i41)Q. If the next bit is one then we calculate the X and Z coordinates
of (204+1)Q and (2i+2)Q. Therefore we need only two operations: duplication
and the calculation of the X and Z coordinates of (2i + 1)@ from the X and
Z coordinates of iQ, (i +1)Q and Q.

The above approach could be more efficient with changing the curve param-
eter determination and calculation of coordinates of the new points. Therefore
we switched to the representation proposed by Montgomery [1]:

Let the curve equation in homogeneous coordinates be
(1) Y2Z = X3+ aX?Z +bX 2%+ cZ°,

the two points of the curve P = (u1/w?,vi/w}) and Py = (ug/w2,ve/w3),
where uy /w? # us/w3.

Then P; = Py + P, where P3 = (u3z/w3,v3/w3) can be determined the
following way:

uz = (vawi — viw3)? — awiwi (uswi — uywi)?

— (u1w3 + uw?) (wwy — ugwi)?,
vy = —vlwg(qu% — u1w§)3 — (vgufl3 — vlwg)ug
+ w%(uzwf - ulwg)2ul(v2uﬁ3 - vlwg),

w3 = wiwa(ugwi — ugw3).

For the duplication 2P, = (u3 /w3, v3/wj), the corresponding coordinates have
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to be determined as well:

uz = (3u? + 2au w? + bw?)? — 4(aw? + 2u1)v?,
v3 = —8v} — (3uf + 2auiw? + bwy)(uz — 4uvi),

wg = 2'[)111}1.

In this approach the calculation of kQ where Q) = (k—1)!P is simply done by
employing the left-to-right binary method using only duplication and addition

of Q.

It seems that the determination of the coordinates requires a lot of multi-
plication. If we determine the starting point and the parameters of the curve in
an appropriate way, the above calculations can be simplified. Let the starting
point of the curve be (1, a, —1), where the constants of the curve (1) are a = 0,
b =0, and ¢ = a®> — 2. With this selection, we can save many calculations.
There is only one curve parameter, «, which is selected by random for each
curve.

The effieciency of the factorization depends on the number of iterations and

the number of curves. The suggested values are the following [10]:

Digits Number of iterations Number of curves
15 2000 25

20 11000 90

25 50000 300

30 250000 700

35 1000000 1800
40 3000000 5100
45 11000000 10600
50 43000000 19300
55 110000000 49000
60 260000000 124000
65 850000000 210000
70 2900000000 340000

Table 2 — Suggested values for number of iterations and curves

These values served well as good starting points for selecting the actual
parameters. During the tests we had to tune them for finding the given length

of factors.

With this simple flow control, we could find the lasttau(n) values:
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procedure lasttau
t, last, i < 7(factors), —1,1
while (¢ # 2)
last +t
ECM(t, factors)
t + 7(factors)
14 i+1
end
end

The implementation of the described methods has been done in C and
C++ languages, with GNU GMP [12] multi-word arithmetic and with Condor
workload management system. The program was run on a cluster of 64-bit
AMD processors for several months.

In the next figure we can see how many times it is necessary to iterate the
7 function for numbers up to 10® to get the lasttau(n) values. We can see that
the most frequent value is 3 and it is never required to iterate more than 6
times.

2.0e+07 3.0e+07
1 1 1 1

1.0e+07

0.0e+00

Required number of iterations for lasttau(n) calculations up to n = 10%

The next diagram shows the distribution of lasttau values up to n = 108.
The biggest lasttau value is 31. The occurrences of 3, 5 and 7 are the highest.
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3 (79.35%)

11,13, 17, 19, 28, 29, 31 (0.02%)
7 (289%)

5 (17.74%)

The ratio of lasttau(n) values up to n = 10%

Let us see these ratios for numbers around 10°°. We chose randomly 1000
numbers and the distribution is the following:

3 4 5 6

Required number of iterations for calculating lasttau(n) for n around 1

200 300
|

100
1

050

We can see that in this random sample the most frequent 7-iteration length
is 5 and the most infrequent is 6.

The next diagram shows that the greatest lasttau value is 11 and the oc-
currence ratio is very similar to the case of smaller numbers.
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3(70.79%)

11(0.12%)

T (12.28%)

5(16.81%)

Ratio of lasttau(n) values for n around 10°°

Next, we chose the numbers in the interval [107, 107 + 1000). The distri-
bution is still very similar to before. The most frequent iteration length in this
case is also 5, and the most infrequent is also 6.

3 4 5 6

Required number of iterations for calculating lasttau(n)
between 10™ and 107 + 1000

200
|

If we analyze the occurrences of lasttau(n) values, we will see that 11 and
13 are the most frequented ones. The distribution of smaller primes is very
similar to previous samples.
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11,13 (1.12%)

7 (12.88%)

5 (14.72%)

Ratio of lasttau(n) values between 107° and 107° + 1000

The last diagram shows the time of factorization of 1000 numbers in seconds.
We can see that there are extremely high values, and sometimes it was done
very quickly. It depends on the number of curves that we are not able to
determine any factor.
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3e+06 q
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Factorization time for numbers between 107° and 107 + 1000

Let us have a closer look at some numbers of this sample. In Tables 3 and
4 we can see for each n considered what its factors are, the value of lasttau(n)
value (L), the number of iterations necessary (I), and the time the calculation
took in minutes.
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Table 3 — Detailed results 1.

92

Number Factors L |I Time
10V + 976 | 27,7,73, 146477, 260671, 33695203523, 224454548779651, 4235458858118366558837321101961( 5 [4[7
107 + 977 |3, 17, 14105606257880525512331, 13900744695961142853460943668632702576932010017 5 (3163
10 + 978 | 2,11, 167, 1181, 3192803, 721836481699563776769530010565242353651989830516110056379 |7 (30
107 + 979 | 10427, 2177056848782317, 440525301074083144448003611306338630721560959583181 31140
107 + 980 MNQ wua 5,241, 179487843307, 283933670657216666140083467, 4523332533589577684734323809| 3 |6 426
10" + 981 {59,997, 808789, 3174287, 1161081043, 57030721932015325310947921649073543009340003 7130
107 + 982 | 2,263, 477130943, 428411743423, 7274023506249233, 12786173883475811425505044447661 7134
107 + 983 3,7,41,43,139, 3862987, 503025899216462846428056315124594918973335288268239975697 |3 |50
107V + 984 mﬂ 19, 83, 8992096609, 4263142668216287, 20676998140581370242980844143596327408253 3151
107 + 985 |5, 13,2426789, 21866494500907597289427149, 2899181871473416749766870696758359929 3 (5844
107 + 986 |2, 3,109, 70849621, 310760837, 925713014519639, 750208651703929600110747307248146053 |3 |55
107 + 987 29, 31,8467, 114356185229687879, 11488176229348424651575275622456576918253391541 3151
107 + 988 | 22,67, 37313432835820895522388059701492537313432835820895522388059701492541 3150
107 + 989 [ 3% 11,37, 5835672122537, 51979211699628309518763130135876780402222845375783491 3150
107 + 990 2,5,7,8392231, 17022546550153690614910045118770307578861585537521888654263347 3150
107 + 991 |3393413, 74170517838590889773, 39731226287784319853841258581915322272573759 3140
107 4+ 992 | 2°,3, 2383770887, 3087434689256921902709, 14153585608977250699315120651200019319 3 [6[101
107 4+ 993 | 71,1747, 7121, 249881, 5872082217973913357287, 7715825506720897728795650464236947 713153
107 + 994 | 2,17, 23,7481, 656497188317, 2603758626326027467990388413503784482317983209138571 7130
10V + 995 |3,5,97,935096727371, 7349883741973753135321282883048735652618172438758967559 3150
107 + 996 | 2%, 1303, 103823791160342357633, 18479861402384859044159289938117971963412685551 315010
107 + 997 |7,47,1036751, 8644661, 3391420742120581294422583829954267536289138950533665863 3150
107 + 998 |2, 37,13,16831280293, 2539025076590038761273871368178678280343640328861270128379 3152
107° 4- 1000 Muq mwa 11, 909090909090909090909090909090909090909090909090909090909090909091 7130

Table 4 — Detailed results 2.
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