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ON MULTIPLICATIVE FUNCTIONS

WITH SHIFTED ARGUMENTS

Bui Minh Phong (Budapest, Hungary)

Dedicated to Professor Antal Járai on his 60th anniversary

Abstract. It is proved that for given integers a > 0, c > 0, b, d with
ad − cb �= 0 there exists a constant η > 0 with the following property:
If unimodular multiplicative functions g1, g2 satisfy |g1(p) − 1| < η and
|g2(p)− 1| < η for all p ∈ P, then

lim inf
x→∞

1

x

∑

n≤x

|g1(an+ b)− Γ g2(cn+ d)| = 0

may hold with some Γ ∈ C \ {0} if g1(n) = g2(n) = 1 for all positive
integers n ∈ N, (n, ac(ad− cb)) = 1.

1. Introduction

An arithmetic function g(n) �≡ 0 is said to be multiplicative if (n,m) = 1
implies that

g(nm) = g(n)g(m)

and it is completely multiplicative if this relation holds for all positive integers
n and m. LetM andM∗ denote the class of all complex-valued multiplicative
and completely multiplicative functions, respectively. A function g is said to be
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unimodular if g satisfies the condition |g(n)| = 1 for all positive integers n. In
the following we shall denote by M(1) and M∗(1) the class of all unimodular
functions g ∈M and g ∈M∗, respectively.

Let A,A∗ be the set of real valued additive and completely additive func-
tions, respectively. As usual, let P, N, Z, R, C be the set of primes, positive
integers, integers, real and complex numbers, respectively. For each real num-
ber z we define ‖ z ‖ as follows:

‖ z ‖= min
k∈Z

| z − k | .

A. Hildebrand [1] proved the following

Theorem A. There exists a positive constant δ with the following property.
If g ∈ M∗(1) and |g(p) − 1| ≤ δ holds for every p ∈ P, then either g(n) = 1
for all n ∈ N identically, or

lim inf
x→∞

1

x

∑
n≤x

|g(n+ 1)− g(n)| > 0.

By using the ideas of Hildebrand [1] and himself, I. Kátai [2] proved the
following generalization:

Theorem B. Let g ∈ M∗(1). There exist positive constants δ and β < 1
with the property: If

lim sup
x→∞

∑
xβ<p<x

|g(p)− 1|
p

< δ

and

lim inf
x→∞

1

x

∑
x
2≤n≤x

|g(n+ 1)− g(n)| = 0,

then g(n) = 1 for all n ∈ N identically.

Our purpose in this paper is to prove the following

Theorem. Let a, c ∈ N, b, d ∈ Z with ad− cb �= 0. There exists a constant
η > 0 with the following property:

If g1, g2 ∈M(1), |g1(p)− 1| < η and |g2(p)− 1| < η for all p ∈ P, then

lim inf
x→∞

1

x

∑
n≤x

|g1(an+ b)− Γg2(cn+ d)| = 0
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may hold with some Γ ∈ C \ {0} if

g1(n) = g2(n) = 1 for all n ∈ N, (n, ac(ad− cb)) = 1.

As a direct consequence we can formulate the next

Corollary. Let a, c ∈ N, b, d ∈ Z with ad− cb �= 0. There exists a constant
η > 0 with the following property:

If f1, f2 ∈ A, ‖f1(p)‖ < η and ‖f2(p)‖ < η for all p ∈ P, then

lim inf
x→∞

1

x

∑
n≤x

‖f1(an+ b)− f2(cn+ d)−Δ‖ = 0

may hold with some Δ ∈ R if

‖f1(n)‖ = ‖f2(n)‖ = 0 for all n ∈ N, (n, ac(ad− cb)) = 1.

We note that I. Kátai [2] has conjectured that if

lim
x→∞

1

x

∑
n≤x

‖f(n+ 1)− f(n)‖ = 0,

then there is a real number λ ∈ R such that

‖f(n)− λ log n‖ = 0 for all n ∈ N.

This conjecture remains open.

2. Lemmata

N. M. Timofeev [3] proved the following assertion (see [3], Lemma 1):

Lemma 1. Suppose that f1(n) and f2(n) are multiplicative with |f1(n)| ≤ 1
and |f2(n)| ≤ 1 that satisfy the condition

(2.1)
∑
p≤x

(
|f1(p)− 1|+ |f2(p)− 1|

) log p
p

≤ ε(x) log x,
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where ε(x) is a decreasing function that approaches zero as x → ∞, but
ε(x)

√
log x approaches infinity as x→∞, and let a > 0, b, c > 0, d, aj , bj, δj

(j = 1, 2) be integers with

a = δ1a1, b = δ1b1, c = δ2a2, d = δ2b2,

(a1, b1) = 1, (a2, b2) = 1, Δ = a1b2 − a2b1 �= 0.

Then

(2.2)
1

x

∑
n≤x

f1(an+ b)f2(cn+ d) =
∏
p≤x

ωp(f1, f2) +O
(√

ε(x)
)
,

where for p � |a1a2Δ

ωp(f1, f2) =

(
1− 2

p

)
f1

(
pαp(δ1)

)
f2

(
pαp(δ2)

)
+

+

∞∑
r=1

1

pr

(
1− 1

p

)[
f1

(
pr+αp(δ1)

)
f2

(
pαp(δ2)

)
+ f1

(
pαp(δ1)

)
f2

(
pr+αp(δ2)

)]
;

if p|a1, but p � |(a1, a2), then

ωp(f1, f2) =

[
f2

(
pαp(δ2)

)
+

∞∑
r=1

f2

(
pr+αp(δ2)

) 1

pr

](
1− 1

p

)
f1

(
pαp(δ1)

)
;

if p|a2, but p � |(a1, a2), then

ωp(f1, f2) =

[
f1

(
pαp(δ1)

)
+

∞∑
r=1

f1

(
pr+αp(δ1)

) 1

pr

](
1− 1

p

)
f2

(
pαp(δ2)

)
;

if p|Δ, but p � |a1a2, then

ωp(f1, f2) =

(
1− 1

p

)[ ∑
0≤r≤αp(Δ)−1

f1

(
pr+αp(δ1)

)
f2

(
pr+αp(δ2)

) 1

pr
+

+ f1

(
pαp(Δ)+αp(δ1)

)
f2

(
pαp(Δ)+αp(δ2)

)(
1− 1

p

)−1(
1− 2

p

)
+

+
∑
r≥1

1

pr+αp(Δ)

(
f1

(
pr+αp(δ1)

)
f2

(
pαp(δ2)+αp(Δ)

)
+

+ f1

(
pαp(δ1)+αp(Δ)

)
f2

(
pr+αp(δ2)

))]
;

if p|(a1, a2), then

ωp(f1, f2) = f1

(
pαp(δ1)

)
f2

(
pαp(δ2)

)
.

Here αp(n) is the largest integer α such that pα divides n.
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Analyzing the proof of Lemma 1, one can see that it remains true in the
following form:

Lemma 1′. Assume that in the notations of Lemma 1, instead of (2.1)

(2.3)
∑
p≤x

(
|f1(p)− 1|+ |f2(p)− 1|

)
log p

p
≤ δ log x

if x > x0(δ). Then

(2.4) lim sup
x→∞

∣∣∣∣ 1x ∑
n≤x

f1(an+ b)f2(cn+ d)−
∏
p≤x

ωp(f1, f2)

∣∣∣∣ ≤ C
√
δ,

where C is a constant that may depend only on a, b, c, d.

3. Proof of the theorem

Assume that the conditions of Theorem hold and

(3.1)
∑
n≤xν

|g1(an+ b)− Γg2(cn+ d)| < ενxν ,

where εν ↘ 0, xν ↗∞. From (3.1) it is clear that |Γ| = 1 and∑
n≤xν

|Γg1(an+ b)g2(cn+ d)− 1| < ενxν .

Since
|1− z|2 = 2(1− Re z) ≤ 2|1− z| when |z| = 1,

we have∑
n≤xν

| Γg1(an+ b)g2(cn+d)−1|2 ≤ 2
∑
n≤xν

|Γg1(an+ b)g2(cn+d)−1| < 2ενxν ,

which implies

(3.1)′ Re 2Γ
∑
n≤xν

g1(an+ b)g2(cn+ d) ≥ 2(1− εν)xν .

Let us apply Lemma 1′ with f1 = g1, f2 = g2 and δ = 2η. We obtain that

(3.2)
∏
p≤x

|ωp(g1, g2)| ≥ 1− C
√
δ.
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Assume that δ is small, C
√
δ < 1. Then, from (3.2), we have∑

p∈P

(
1− |ωp(g1, g2)|2

)
<∞.

If (p, acΔ) = 1, then αp(δ1) = αp(δ2) = 0 and

ωp(g1, g2) =

(
1− 2

p

)
+

(
1− 1

p

)
1

p

(
g1(p) + g2(p)

)
+O

(
1

p2

)
= 1 + ξp,

where

ξp =
1

p

[
(g1(p)− 1) + (g2(p)− 1)

]
+O

(
1

p2

)
.

Therefore
|ωp(g1, g2)|2 = 1 + ξp + ξp + |ξp|2,

and so

∑
p∈P

(
1− |ωp(g1, g2)|2

)
= 2Re

⎧⎨⎩∑
p∈P

1− g1(p)

p
+
∑
p∈P

1− g2(p)

p

⎫⎬⎭+O(1).

Since

Re (1−g1(p)) ≥ 0, Re (1−g2(p)) ≥ 0 and |1−z|2 = 2(1−Re z) when |z| = 1,

therefore

(3.3)
∑
p∈P

|1− gj(p)|2
p

<∞, j = 1, 2.

Let

σj(x) =
∑

√
x≤p≤x

|1− gj(p)|2
p

.

From (3.3) we have ∑
l=0,1,...

σj(x
1/2l) < c,

where c is a constant. Since∑
p≤x

1

p
= log log(x) + C +O

(
1

log x

)
where C = 0.2615...,

by applying Cauchy’s inequality, we have∑
√
x≤p≤x

|1− gj(p)| log p
p

≤ log x
∑

√
x≤p≤x

1
√
p

|1− gj(p)|√
p

≤
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≤ log x

⎛⎝ ∑
√
x≤p≤x

1

p

⎞⎠1/2⎛⎝ ∑
√
x≤p≤x

|1− gj(p)|2
p

⎞⎠1/2

≤ c1 log x
√
σj(x).

Therefore∑
2≤p≤x

|1− gj(p)| log p
p

≤ c1
∑

2l≤log x

(
log x1/2l

)√
σj(x/2l) = c1 log xΘj(x),

where

Θj(x) =
∑

2l≤log x

√
σj(x/2l)

2l
.

It is clear that Θj(x)→ 0 (x→∞). Let

εj(y) = max
x≥y

Θj(x) and ε(y) = ε1(y) + ε2(y).

Thus (2.1) holds with this ε(x).

From (3.1)′ and (2.2) with f1 = g1 and f2 = g2, we obtain that

Re Γ
∏
p∈P

ωp(g1, g2) = 1,

which implies that
|ωp(g1, g2)| = 1 for all p ∈ P

and ∏
p∈P

ωp(g1, g2) = Γ.

It is clear that if (p, acΔ) = 1, then αp(δ1) = αp(δ2) = 0 (in the notations
of Lemma 1), and so

(3.4) ωp(g1, g2) =

(
1− 2

p

)
+

(
1− 1

p

) ∞∑
r=1

1

pr

(
g1 (p

r) + g2 (p
r)

)
.

Let

λp =

∞∑
r=1

1

pr
(g1(p

r) + g2(p
r)) .

It is clear that |λp| ≤ 2
p−1 , and one can check from (3.4) that |ωp(g1, g2)| < 1,

if g1(p
r) + g2(p

r) �= 2 for at least one r.

Thus we have g1(p
r) = g2(p

r) = 1 if p � |a1a2Δ, p > max(δ1, δ2).

The proof of our theorem is completed. �
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