Annales Univ. Sci. Budapest., Sect. Comp. 35 (2011) 85-42

ON MULTIPLICATIVE FUNCTIONS
WITH SHIFTED ARGUMENTS

Bui Minh Phong (Budapest, Hungary)

Dedicated to Professor Antal Jdrai on his 60th anniversary

Abstract. It is proved that for given integers a > 0, ¢ > 0, b, d with
ad — c¢b # 0 there exists a constant n > 0 with the following property:
If unimodular multiplicative functions g1, g2 satisfy |g1(p) — 1| < n and
lg2(p) — 1| < n for all p € P, then

o] _
hxrglgfz Z lgi(an +b) =T ga(cn+d)| =0

n<x

may hold with some I' € C\ {0} if gi(n) = g2(n) = 1 for all positive
integers n € N, (n,ac(ad — ¢b)) = 1.

1. Introduction

An arithmetic function g(n) # 0 is said to be multiplicative if (n,m) =1
implies that
g(nm) = g(n)g(m)
and it is completely multiplicative if this relation holds for all positive integers
n and m. Let M and M™ denote the class of all complex-valued multiplicative
and completely multiplicative functions, respectively. A function g is said to be
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unimodular if g satisfies the condition |g(n)| = 1 for all positive integers n. In
the following we shall denote by M(1) and M*(1) the class of all unimodular
functions g € M and g € M*, respectively.

Let A, A* be the set of real valued additive and completely additive func-
tions, respectively. As usual, let P, N, Z, R, C be the set of primes, positive
integers, integers, real and complex numbers, respectively. For each real num-
ber z we define || z || as follows:

| z||=min | z — k| .
keZ

A. Hildebrand [1] proved the following

Theorem A. There exists a positive constant § with the following property.
If g € M*(1) and |g(p) — 1| < & holds for every p € P, then either g(n) = 1
for all n € N identically, or

1
lim inf = 1) - 0.
im in x;\g(nﬂL ) —g(n)] >

By using the ideas of Hildebrand [1] and himself, 1. Kdtai [2] proved the
following generalization:

Theorem B. Let g € M*(1). There exist positive constants § and 8 < 1
with the property: If

lim sup Z — 1|

T—00

and 1
hmrggf; Z lg(n+1) —g(n)| =0,

$<n<z
then g(n) =1 for all n € N identically.
Our purpose in this paper is to prove the following

Theorem. Let a,c € N, b,d € Z with ad — c¢b # 0. There exists a constant
n > 0 with the following property:

If 91,90 € M(1), |g1(p) — 1| <n and |g2(p) — 1| < n for all p € P, then

| -
hmrggfgng;r lg1(an +b) — Tga(cn + d)| =
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may hold with some T" € C\ {0} if

g1(n) = ga(n) =1 forall n €N, (n,ac(ad — cb)) = 1.

As a direct consequence we can formulate the next

Corollary. Let a,c € N, b,d € Z with ad — cb # 0. There exists a constant
n > 0 with the following property:

If fr, fa € A | A@I <n and || fo(p)|| < for all p € P, then

1
liminf — || fi(an +b) — falen +d) — A =0

n<zx
may hold with some A € R if

lfi()] = | fa(n)|| =0 for all n €N, (n,ac(ad — cb)) = 1.

We note that I. Kétai [2] has conjectured that if

Jim S+ 1)~ S =0,

n<zc
then there is a real number A € R such that
[[f(n) — Alogn| =0 for all neN.

This conjecture remains open.
2. Lemmata

N. M. Timofeev [3] proved the following assertion (see [3], Lemma 1):

Lemma 1. Suppose that fi(n) and fa(n) are multiplicative with |f1(n)| <1
and |fa(n)| < 1 that satisfy the condition

(2.1) SO (A1) — 1]+ falp) — 1|)10§p < e(a)log,

p<z
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where e(x) is a decreasing function that approaches zero as x — o0, but
e(z)vlog x approaches infinity as x — oo, and leta >0, b, ¢ >0, d, a;, b;, 6;
(j = 1,2) be integers with

a=01a1, b=201b1, c=0d2az, d=0dsbs,

(a1,01) =1, (az,b2) =1, A =aiby —agby #0.
Then

22) 3 flan+0)faen+d) = [Jwph, f2) +0 (V@)

n<z p<zx

where for p fajasA

wp(f1, f2) = (1 - ) f ( ap 51)) f2 ( %(5z)> +
+Z (1 — ) [fl <pr+ap(al)> f (pap(tb)) T A <pap(al)) £ (pr+%<52)>}

pr‘a17 bUtp /r(al,@), then

wp(f1, f2) = {fg (p%(52)) + ih (p"*"‘l"(“ﬂ) 1] (1 - ;) f (papwl)) :
r=1

if plag, but p f(a1,az2), then

wp(f1, f2) = { ( ap(51)) +Zf ( r+0411(51)) plr] (1 _ ]19) o (pa,,((sz));

if p|A, but p faras, then

wp(fl,fz) = <1 — ]1)> [ Z fi (pr+04p(51)) fa (prJrap(éz)) I%Jr

0<r<a,(A)-1

1\ ! 2
£y (@0 gy (@ 60) ( _ p) (1 _ p) n
(

1
r+ap (01) ap(d2)+ap(A)
+Zpr+ap(A)< 1\P 1) ( ’ >+
r>1

v ( ap(51)+ap(A) ) f2< r+ap<62>)>}

if p|(a1,az), then

=

wp(f1, f2) = fr (pap(él)) fa ( ap(92) ) .

Here a,(n) is the largest integer a such that p® divides n.
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Analyzing the proof of Lemma 1, one can see that it remains true in the
following form:

Lemma 1'. Assume that in the notations of Lemma 1, instead of (2.1)

(2.3) Z(m@) 1 felp) 1)1 %D < Slog

p<z

if x > x0(0). Then

)| < V5,

(2.4) lim sup|—

T—r00

Zﬁ an +b) fa(en+d) — [[ wp(f1, f2)

p<lx

where C' is a constant that may depend only on a, b, ¢, d.

3. Proof of the theorem

Assume that the conditions of Theorem hold and

(3.1) Z lgi(an +b) —Tga(en + d)| < e, zy,

n<z,

where ¢, \, 0, 2, /* c0. From (3.1) it is clear that |I'| = 1 and

Z ITg1(an + b)gy(cn +d) — 1| < e,z

n<z,
Since
|1 —2>=2(1—-Re z) <2|1 —z| when |z] =1,
we have
Z | Tg1(an+b)gy(cn+d) — 1> < 2 Z ITg1(an+b)gy(cn+d) — 1| < 2,2y,
n<z, n<x,

which implies

(3.1) Re 2T’ Z gi(an +b)go(en+d) > 2(1 —e,)z,

n<x,

Let us apply Lemma 1’ with f; = g1, fo =g, and § = 2r. We obtain that

(3.2) H lwp(g1,2)| > 1= CV6.

p<xz
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Assume that ¢ is small, Cv/§ < 1. Then, from (3.2), we have

> (1= leplgn 32)) < o0

peP

If (p,acA) =1, then oy, (d1) = a,(d2) = 0 and

2 1\ 1 1
wp(91,92) = (1 - p) + (1 - p> S(91(0) +92(p)) + O (p2) =1+&,
where . .
szﬂm@%ﬂ%wm@%ﬁﬂ+0(ﬁ).
Therefore 3
lwp(g1,d2)1> = 1+ & + &, + &%,
and so
S (1 fuplg1,5)) = 2Re { ST Lm0 S Im R ),
PEP peP peP p
Since

Re (1—g1(p)) >0, Re (1—g2(p)) >0 and |[1—z|> = 2(1—Re 2) when |z| =1,

therefore
1—g;(p)|?
(3.3) Z%«m j=1,2.
peP p
Let

1—g;(p)?
Va<p<w p
From (3.3) we have
Jj(x1/2l) <cg,
1=0,1,...

where ¢ is a constant. Since

1 1
Z — =loglog(z) + C + O <> where C = 0.2615...,
i<e log x

by applying Cauchy’s inequality, we have

|1 —g;(p)|logp 1 [1—g;(p)
Z —p <logx Z \/]37\/13 <

Vaz<p<z Vz<p<z
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1/2 1/2
1 1—g;(p)]?
<logz Z z Z 1= g;®)I" < cilogzy/oj(x).
Vz<p<z p Vr<p<z b
Therefore
|1 —g;j(p)|logp 172! _ N _
Z —= s 2 < Z log x oj(x/2') = c1log20;(x),
2<p<z p 2!<log =

where

Voj(z/2")
2’§gaz 2! .

It is clear that ©;(z) — 0 (xz — 00). Let

gj(y) = max©;(z) and e(y) = e1(y) + e2(y).

]

Thus (2.1) holds with this e(x).
From (3.1)" and (2.2) with f; = ¢1 and fo = g, we obtain that

ReT H wp(91,92) = 1,
pEP

which implies that
lwp(g1,72)| =1 forall peP

H wp(91,92) =

peP

and

It is clear that if (p,acA) =1, then a,(61) = a,(d2) = 0 (in the notations
of Lemma 1), and so

(3.4) wp(91,92) = (1 - 2) + <1 - ;) i z% (91 (") + 92 (p’")>-
Let

Zpl ")+ 5a(7).

It is clear that [Ap| < —=5, and one can check from (3.4) that |w,(91,92)| < 1,
if g1(p") +Ga(p") #2 for at least one r.

Thus we have g1(p") = g2(p”) = 1 if p fara2A\, p > max(d1, d2).

The proof of our theorem is completed. |
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