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ON THE THEOREM OF H. DABOUSSI

OVER THE GAUSSIAN INTEGERS
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I. Kátai ∗ (Budapest, Hungary)

Dedicated to Professor Antal Járai on his 60th birthday

Abstract. Some analogues of the theorem of Daboussi over the set of
Gaussian integers are investigated.

1. Introduction

Let c, c1, c2, . . . ,K,K1,K2, . . . be positive constants, not necessarily the
same at every occurrence. Let M be the set of complex valued multiplica-
tive functions and M1 be the set of those g ∈ M for which additionally
|g(n)| ≤ 1 (n ∈ N) holds as well. Let e(α) := e2πiα.

A famous theorem of H. Daboussi published in the paper written jointly
with H. Delange in [2] asserts that

(1.1) sup
f∈M1

∣∣∣∣∣∣ 1x
∑
n≤x

f(n)e(nα)

∣∣∣∣∣∣ = �x → 0 (x→∞),
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whenever α is an irrational number. This famous theorem has been generalized
in different aspects in [1], [3]–[20]. In [2] the following assertion was proved:

Let S be an arithmetical function satisfying the following conditions:

(i) S is almost-periodic B1,

(ii) the Fourier series of S is λ +
∑

λνe(ανn), where all the αν are
irrational.

Then, as x tends to infinity, we have

sup
f∈M1

∣∣∣∣∣∣ 1x
∑
n≤x

f(n)S(n)− 1

λ

∑
f(n)

∣∣∣∣∣∣ ≤ �x(S),

�x(S)→ 0 as (x→∞).

In [20] the following theorem is proved.

Let k ≥ 1 be fixed, J1, . . . , Jk ⊆ [0, 1) be such sets which are the union
of finitely many intervals. Let P1(x), . . . , Pk(x) be non-constant real valued
polynomials,

Qm1,...,mk
(x) = m1P1(x) + · · ·+mkPk(x)

for m1, . . . ,mk ∈ Z.

Assume that Qm1,...,mk
(x)−Qm1,...,mk

(0) has at least one irrational coeffi-
cient for every m1, . . . ,mk ∈ Z, except when m1 = . . . = mk = 0.

Let
S := {n | n ∈ N, {Pl(n)} ∈ Jl, l = 1, . . . , k}.

Let λ be the Lebesgue measure.

Theorem A. Under the conditions stated for P1, . . . , Pk, J1, . . . , Jk we have

(1.2) sup
g∈M1

∣∣∣∣∣∣∣
1

x

∑
n≤x
n∈S

g(n)− λ(J1) . . . λ(Jk)

x

∑
n≤x

g(n)

∣∣∣∣∣∣∣ = τx,

τx → 0 as x→∞.

By using the same method and Theorem B we can prove

Theorem 1. Let J1, . . . , Jk, P1, . . . , Pk, S be as above. Let P be a non-
constant real valued polynomial.

Let Rm0,m1,...,mk
(x) = m0P (x) +Qm1,...,mk

(x). Assume that

Rm0,m1,...,mk
(x)−Rm0,m1,...,mk

(0)
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has at least one irrational coefficient for every m0,m1, . . . ,mk except the case
when m0 = m1 = . . . = mk = 0.

Then

(1.3) sup
g∈M1

1

x

∣∣∣∣∣∣∣
∑
n≤x
n∈S

g(n)e(P (n))

∣∣∣∣∣∣∣ = �x → 0, as x→∞.

�x may depend on S and on P .

Theorem B. (See [7].) (1.3) is true, if S = N.

Applying Theorem A for g(n) = 1 we obtain that

1

x
#{n ≤ x | n ∈ S} → λ(J1) . . . λ(Jk).

From Theorem 1, by using Weyl’s criterion for uniformly distributed se-
quences we get

Theorem 2. Let J1, . . . , Jk, P, P1, . . . , Pk, S as in Theorem 1. Let A be
the set of additive arithmetical functions, S = {t1, t2, . . .}, tj < tj+1 (j =
= 1, 2, . . .), ξn(f) := f(tn) + P (tn) (n = 1, . . .),

(1.4)

ΔN (f | S) :=

:= sup
[α,β)⊆[0,1)

∣∣∣∣ 1N#{ξn(f) mod 1 ∈ [α, β], n ∈ N} − (β − α)

∣∣∣∣ .
Then

(1.5) sup
f∈A

ΔN (f |S) = �N → 0 as N →∞.

�N may depend on S.

Let Nk be the set of the integers the number of the prime power factors
of which is k. Let Nk(x) be the size of n ≤ x, n ∈ Nk. In our paper [10] we
proved

Theorem C. Let 0 < δ(< 1) be an arbitrary constant, and α be an irra-
tional number. Then

(1.6) lim
x→∞ sup

δ≤ k
log log x≤2−δ

sup
f∈M1

1

Nk(x)

∣∣∣∣∣∣∣
∑
m≤x

m∈Nk

f(m)e(mα)

∣∣∣∣∣∣∣ = 0.
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The proof depends on an important assertion due to Dupain, Hall, Tenen-
baum [4], namely that

(1.7) sup
k

log log x≤2−δ

1

Nk(x)

∣∣∣∣∣∣∣
∑
m≤x

m∈Nk

e(mα)

∣∣∣∣∣∣∣→ 0 as x→∞.

Theorem 3.

1.) Let P (n) = αn, Pj(n) = αjn, (j = 1, . . . , k), J1, . . . , Jk and S as
earlier. Assume that mα+m1α1+ · · ·+mkαk is irrational for every nontrivial
choice of m,m1, . . . ,mk. Let Sk(x) = #{n ≤ x | n ∈ Nk, n ∈ S}.

Then

(1.8) lim
x→∞ sup

δ≤ k
log log x≤2−δ

sup
f∈M1

1

Sk(x)

∣∣∣∣∣∣∣
∑
n≤x

n∈Nk∩S

f(n)e(nα)

∣∣∣∣∣∣∣ = 0.

2.) Let P1, . . . , Pk, J1, . . . , Jk and S as earlier. Assume that m1α1 + · · · +
+mkαk is irrational for every nontrivial choice of m1, . . . ,mk. Then

(1.9) lim
x→∞ sup

δ≤ k
log log x≤2−δ

sup
f∈M1

∣∣∣∣∣∣∣
1

Sk(x)

∑
n≤x

n∈Nk∩S

f(n)− 1

Nk(x)

∑
n≤x

n∈Nk

f(n)

∣∣∣∣∣∣∣ = 0.

Since the Theorems 1, 2, 3 can be deduced from already published papers
by the method used in [20], we omit the proofs of them. In the next section we
formulate and prove Theorem 4.

2.

Let Z[i] be the ring of Gaussian integers, Z∗[i] = Z[i] \ {0} be the multi-
plicative group of nonzero Gaussian integers.

Let χ be such an additive character on Z[i], for which χ(1) = e(A), χ(i) =
= e(B). Let K1 be the set of multiplicative functions g : Z∗[i] → C satisfying
|g(α)| ≤ 1 (α ∈ Z∗[i]). Let W be the union of finitely many convex bounded
domain in C. In our paper [11] written jointly with N.L. Bassily and J.-M. De
Koninck we proved
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Theorem D. Assume that at least one of A or B is irrational. Then

(2.1) lim
x→∞ sup

g∈K1

1

|xW |

∣∣∣∣∣∣
∑

β∈xW

g(β)χ(β)

∣∣∣∣∣∣ = 0.

Let I = [0, 1) × [0, 1), S = S1 ∪ . . . ∪ Sr ⊆ I, where Sj are domains the
boundary of which is a rectifiable continuous curve for every j. For some small
Δ > 0 let

S(−Δ) = {(u, v) | [u−Δ, u+Δ]× [v −Δ, v +Δ] ⊆ S},
S(+Δ) = {(u, v) | [u−Δ, u+Δ]× [v −Δ, v +Δ] ∩ S �= 0}.

Let

(2.2) f(x, y) =

{
1, if (x, y) ∈ S

0, if (x, y) ∈ I \ S,

and let us extend the definition of f over R2 by

f(x+ k, y + l) = f(x, y) (k, l ∈ Z).

Let
∑

m,n∈Z

am,ne(mx+ ny) be the Fourier-series of f(x, y). Let Δ > 0 be so

small that S(+Δ) ⊆ I, and

(2.3) fΔ(x, y) :=
1

(2Δ)2

Δ∫
−Δ

Δ∫
−Δ

f(x+ u)f(y + v) du dv.

Since

κ(n) :=
1

2Δ

Δ∫
−Δ

e(nu) du =
1

4πinΔ
(e(nΔ)− e(−nΔ))

if n �= 0, and κ(0) = 1, therefore the Fourier coefficients bm,n of fΔ are

bm,n = am,nκ(m) · κ(n).

Assume that for some δ > 0,

(2.4) |am,n| ≤ c

(
1

1 + |m|δ

)(
1

1 + |n|δ

)
,

c is a constant. Thus

(2.5) |bm,n| ≤ |am,n|min

(
1,

2

|m|Δ

)
min

(
1,

2

|n|Δ

)
.
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It is clear that fΔ(u, v) = 1 if (u, v) ∈ S(−Δ), and fΔ(u, v) = 0 if (u, v) ∈
∈ I \ S(+Δ).

Let z = u+ iv ∈ C. The fractional part of z is defined as {z} = {u}+ i{v}.

Theorem 4. Let γj = ξj + iηj (j = 1, . . . , k) be distinct nonzero numbers,
T = {β | β ∈ Z[i], {γjβ} ∈ S, j = 1, . . . , k}. Assume that S satisfies the condi-
tions stated above. Assume that ξ1, . . . , ξk, η1, . . . , ηk are linearly independent
over Q. Then

(2.6) lim
x→∞ sup

g∈K1

∣∣∣∣∣∣∣
1

|xW |
∑

β∈xW
β∈T

g(β)−
ak0,0
|xW |

∑
β∈xW

g(β)

∣∣∣∣∣∣∣ = 0.

Here a0,0, = λ(S) =Lebesgue measure of S.

Theorem 5. Let S, γj , T be as above, χ(u + iv) = e(Au + Bv). Let L be
the lattice {m1ξ1 + · · ·+mkξk + n1η1 + · · ·nkηk}. Assume that either nA �∈ L
for n ∈ Z \ {0} or nB �∈ L for n ∈ Z \ {0}. Then

(2.7) lim
x→∞ sup

g∈K1

∣∣∣∣∣∣∣
1

|xW |
∑

β∈xW
β∈T

g(β)χ(β)

∣∣∣∣∣∣∣ = 0.

Proof of Theorem 4. First we observe that

#{β ∈ xW | {γjβ} ∈ S(+Δ) \ S(−Δ)} ≤(2.8)

≤ c1λ(S
(+Δ) \ S(−Δ))λ(xW ),

and that λ(S(+Δ) \ S(−Δ)) ≤ c2Δ. c2 may depend on S. Let F (u + iv) =
= f(u, v), FΔ(u+ iv) = fΔ(u, v). In this notation∑

β∈xW
β∈T

g(β) =
∑

β∈xW

g(β)F (βγ1) . . . F (βγk) =

=
∑

β∈xW

g(β)FΔ(βγ1) . . . FΔ(βγk) +O(Δλ(xW )).
(2.9)

Let K be so large that

(2.10)
∑
n∈Z

∑
|m|≥K

|bm,n|+
∑

|n|≥K

∑
m

|bm,n| ≤ Δ.

Since
∑

bm,n is absolutely convergent, therefore such a K exists. (See (2.5).)
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Let

(2.11) F
(K)
Δ (u+ iv) =

∑
|m|≤K
|n|≤K

bm,ne(mu+ nv).

Since
|FΔ(u+ iv)− F

(K)
Δ (u+ iv)| ≤ Δ,

from (2.9) we have∑
β∈xW
β∈T

g(β) =
∑∗

m1,...,mk
n1,...,nk

bm1,n1 . . . bmk,nk

∑
β∈xW

g(β)χm1,...,nk
(β).

The star indicates that we sum over those mj , nj for which |mj | ≤ K, |nj | ≤
≤ K (j = 1, . . . , k), where χm1,...,nk

(β) = e(λReβ + μImβ),

λ =

k∑
j=1

(mjξj + njηj), μ =

k∑
j=1

(njξj −mjηj).

From the assumption of the theorem we have that either λ or μ is irrational,
consequently, by Theorem D we have that∑

β∈xW
β∈T

g(β) = ak0,0
∑

β∈xW

g(β) + ox(|xW |) +O(Δ|xW |).

Hence we obtain that

lim
x→∞ sup

g∈K1

∣∣∣∣∣∣∣
1

|xW |
∑

β∈xW
β∈T

g(β)−
ak0,0
|xW |

∑
β∈xW

g(β)

∣∣∣∣∣∣∣ ≤ cΔ.

Since Δ is arbitrary, therefore our theorem is true. �

The proof of Theorem 5 is similar. We omit it.
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