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ON THE FOURIER COEFFICIENTS WITH RESPECT

TO THE DISCRETE LAGUERRE SYSTEM

Ferenc Schipp 1 (Budapest, Hungary)
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Dedicated to the 70th birthday of Professor János Galambos

Abstract. The discrete Laguerre-functions play an important role in system iden-
tification. In this paper we investigate the Fourier coefficients with respect to the
discrete Lagueerre system. Among others an explicit form is given for the Laguerre
Fourier coefficients of rational functions. With the help of this formula we intro-
duce a new transformation which can be used to reconstruct the pole of rational
function. The domain of the transformation in question can be defined in the term
of hyperbolic distance.

1. Introduction

In signal processing and image reconstruction the Fourier-, wavelet-, Gábor- trans-
forms play important roles. There exists a common generalization of these transfor-
mations, the so-called Voice-transformation. The voice transforms are generated by
unitary representations of locally compact groups. The wavelet transform can be ob-
tained in this way from the affine group,the Gabor transform from the Heisenberg
group. In the papers [6, 7, 8] a new transform, called hyperbolic wavelet transform
has been introduced starting from a unitary representation of the Blaschke group. We
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hope that this transformation will be useful in signal processing. In this paper, with the
help of this transformation, we construct an algorithm to reconstruct transfer functions
of systems.

In the definition of the voice-transform a unitary representation of the generating
group (G, ·) is used. Let us consider a Hilbert-space (H, 〈·, ·〉) and let U denote the
set of unitary bijections U : H → H . Namely, the elements of U are bounded
linear bijections which satisfy 〈Uf, Ug〉 = 〈f, g〉 (f, g ∈ H). The set U with the
composition operation (U ◦ V )f := U(V f) (f ∈ H) is a group, the neutral element
of which is I , the identity operator on H . The inverse element of U ∈ U is the operator
U−1. It is equal to the adjoint operator U∗. The homomorphism G � x → Ux ∈ U of
the group (G, ·) on the group (U , ◦) satisfying

i) Ux·y = Ux ◦ Uy (x, y ∈ G),

ii) G � x → Uxf ∈ H is continuous for all f ∈ H
(1.1)

is called the unitary representation of (G, ·) on H . The voice transform of f ∈ H
generated by the representation U and by the parameter φ ∈ H is the (complex-
valued) function on G defined by

(1.2) (Vφf)(x) := 〈f, Uxφ〉 (x ∈ G, f, φ ∈ H).

For any representation U : G → U and for each f, φ ∈ H the voice transform Vφf is
a continuous and bounded function on G.

In this section we introduce a voice transform on the Blaschke group. The Blaschke
function are closely related to the hyperbolic geometry. Namely this group can be
considered as the transformation group of congruences in the Poincaré model of the
hyperbolic plain.

The so called Blaschke functions are defined as

(1.3) Bb(z) := ε
z − b

1− b̄z
(z ∈ C, b = (b, ε) ∈ B := D× T),

where

(1.4) D := {z ∈ C : |z| < 1}, D := {z ∈ C : |z| ≤ 1}, T := {z ∈ C : |z| = 1}.
If b ∈ B, then Bb is 1-1 map on T and D. The restrictions of the Blaschke functions
on the set D or on T with the operation (Bb1 ◦Bb2)(z) := Bb1(Bb2(z)) form a group.
In the set of the parameters B := D × T let us define the operation induced by the
function composition in the following way Bb1

◦ Bb2
= Bb1◦b2

. The group (B, ◦)
will be isomorphic with the group ({Bb, b ∈ B}, ◦). The neutral element of the group
(B, ◦) is e := (0, 1) ∈ B and the inverse element of b = (b, ε) ∈ B is b−1 = (−bε, ε).

It can be prowed that the map

(1.5) ρ(z1, z2) :=
|z1 − z2|
|1− z1 z2| = |Bz1(z2)| (Bz1 := B(z1,1), z1, z2 ∈ D)
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is a metric on D. Moreover the Blaschke functions Bb (b ∈ D) are isometries with
respect to this metric, i.e.

(1.6) ρ(Bb(z1), Bb(z2)) = ρ(z1, z2) (b ∈ D, z1, z2 ∈ D).

The lines in this model are the sets

Lb := {Bb(r) : −1 < r < 1} (b ∈ D),

i.e. circles crossing perpendicularly the unit circle.
The voice transform will be constructed on the Hardy space H = H2(T) , where

the inner product is given by

(1.7) 〈f, g〉 := 1

2π

∫
I

f(eit)g(eit) dt (f, g ∈ H).

The system hn(z) := zn (z ∈ D, n ∈ N) is orthonormal and complete with respect
to this scalar product.

For the definition of the hyperbolic wavelets we use the following representation
of the Blaschke-group on H2(T):

(1.8) (Ubf) := Fb−1 f ◦Bb−1 ,

where

(1.9) Fb(z) :=

√
ε(1− |b|2)
1− bz

(b = (b, ε) ∈ B, z ∈ D).

The representation Ub (b ∈ B) given by (1.8) is unitary on H2(T). The voice
transform generated by (Ub)b∈B is given by the following formula

(1.10) (Vφf)(b) := 〈f, Ubφ〉 (f, φ ∈ H2(T)).

The map Vφ is called hyperbolic wavelet transform, the parameter function φ is the
hyperbolic mother wavelet of the transform.

2. The discrete Laguerre system

For any n ∈ B and any b ∈ D the discrete Laguerre function Ln,b is defined by

(2.1) Ln,b(z) :=

√
1− |b|2
1− bz

(
z − b

1− bz

)n

(z ∈ D, n ∈ N, b ∈ D).
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It is known that the system (Ln,b, n ∈ N) is orthonormal and complete in H2(T)
with respect to the scalar product (1.7). This is a consequence of the fact that these
functions can be obtained from the power functions hn(z) := zn (n ∈ N, z ∈ C) by
the unitary representation (1,10):

(2.2) Ln,b = Ub−1hn (n ∈ N, b = (b, 1) ∈ B).

Ub is unitary, therefore U∗
b = U−1

b = Ub−1 . Consequently for any m,n ∈ N

i) 〈Ln,b, Lm,b〉 = 〈Ub−1hn, Ub−1hm〉 = 〈hn, hm〉 = δmn,

ii) 〈f, Ln,b〉 = 〈f, Ub−1hn〉 = 〈Ubf, hn〉.
(2.3)

Thus the discrete Laguerre Fourier coefficients of f are equal to the trigonometric
Fourier coefficients of the function Ubf . This relation can be used to compute the
discrete Laguerre Fourier coefficients.

Introducing the notation (see (1.3) and (1.9))

(2.4) αb :=
F ′
b

Fb
, βb := B′

b (b ∈ D)

the derivative of Ln,b can be expressed in the form

L′
n,b = (FbB

n
b )

′ = F ′
bB

n
b + nB′

bFbB
n−1
b =

F ′
b

Fb
FbB

n
b + nB′

bFbB
n−1
b .

Consequently

(2.5) L′
n,b = αbLn,b + βbnLn−1,b (n ≥ 1, b ∈ D).

We show that for the derivatives of higher order the following recursion holds.

Thorem 1. For every n ≥ i, i, n ∈ N

(2.6) L
(i)
n,b =

i∑
j=0

γi,j,b

(
n

j

)
Ln−j,b (b ∈ D),

where

γ0,0,b = 1, γi,j,b = 0 if j > i or j < 0 (i ∈ N) and

γi+1,j,b = αbγi,j,b + γ′
i,j,b + jβbγi,j−1,b (j = 0, 1, · · · , i+ 1).

(2.7)
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Proof. By definition and by (2.5)

Ln,b =

0∑
j=0

(
n

j

)
Ln,bγ0,0,b (γ0,0,b := 1)

L′
n,b = αbLn,b + βbnLn−1,b =

1∑
j=0

(
n

j

)
Ln−j,bγi,j,b (γ1,0,b = αb, γ1,1,b = βb)

and Theorem 1 is true for i = 0, 1. Applying induction suppose that (2.6) holds. Then
by (2.5)

L
(i+1)
n,b =

(
L
(i)
n,b

)′
=

i∑
j=0

(
n

j

)
(L′

n−j,bγi,j,b + Ln−j,bγ
′
i,j,b) =

=

i∑
j=0

(
n

j

)(
(αbLn−j,b + βb(n− j)Ln−j−1,b)γi,j,b + Ln−j,bγ

′
i,j,b

)
=

=

i∑
j=0

(
n

j

)
(αbγi,j,b + γ′

i,j,b)Ln−j,b +

i∑
j=0

(
n

j

)
(n− j)Ln−j−1,bβbγi,j,b =

=

i∑
j=0

(
n

j

)
(αbγi,j,b + γ′

i,j,b)Ln−j,b +

i∑
j=0

(
n

j + 1

)
Ln−j−1,b(j + 1)βbγi,j,b =

=

i+1∑
j=0

(αbγi,j,b + γ′
i,j,b + jβbγi,j−1,b)

(
n

j

)
Ln−j,b

and by (2.7) the claim holds for i+ 1 instead of i. �

We denote by R the set of rational functions analytic in the closed disc D. The
rational functions of the form

(2.8) ri,a(z) :=
zi

(1− az)i+1
(z ∈ D, a ∈ D, i ∈ N)

generates the set R. Namely every function f ∈ R can be written in the form

(2.9) f(z) =
N∑

k=1

mk−1∑
i=0

λk,i z
i

(1− akz)i+1
=:

N∑
k=1

Rk(z),

where a∗k := 1/ak (k = 1, 2, · · · , N) are the poles of f with the multiplicity mk and
the λk,i’s are complex numbers and λk,mk−1 �= 0.

In order to get the Fourier coefficients of f with respect to the discrete Laguerre
system we shall use the next
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Lemma 1. For every function g ∈ R

(2.10) 〈g, rn,a〉 = g(n)(a)

n!
(n ∈ N, a ∈ D).

Proof. By definition

〈g, rn,a〉 = 1

2π

∫ π

−π

g(eit)e−int

(1− ae−it)n+1
dt =

1

2π

∫ π

−π

g(eit)eit

(eit − a)n+1
dt =

=
1

2πi

∫
|ζ|=1

g(ζ)

(ζ − a)n+1
dζ.

Hence by Cauchy’s integral formula we get (2.10). �

Now we compute the conjugate of the Laguerre Fourier coefficients of Rk. In the
case mk = 1

(2.11) 〈Ln,b, Rk〉 = λk,0Ln,b(ak).

If mk = 2 then by (2.5) and (2.10)

〈Ln,b, Rk〉 = λk,0Ln,b(ak) + λk,1L
′
n,b(ak) =

= (λk,0 + λk,1αb(ak))Ln,b(ak) + λk,1βb(ak)nLn−1,b(ak) :=

:= ck,0Ln,b(ak) + ck,1nLn−1,b(ak) (ck,1 �= 0).

(2.12)

A similar formula holds in the general case.

Lemma 2. The conjugate of the Laguerre Fourier coefficients of Rk are of the
form

(2.13) 〈Ln,b, Rk〉 =
mk−1∑
j=0

(
n

j

)
Ln−j,b(ak)ck,j ,

where the coefficients ck,j do not depend on n and ck,mk−1 �= 0.

Proof. Applying (2.6) and (2.10) for the conjugate of the Laguerre Fourier coeffi-
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cients of Rk we get

〈Ln,b, Rk〉 =
mk−1∑
i=0

λk,i

i!
L
(i)
n,b(ak) =

=

mk−1∑
i=0

λk,i

i!

i∑
j=0

γi,j,b(ak)

(
n

j

)
Ln−j,b(ak) =

=

mk−1∑
j=0

(
n

j

)
Ln−j,b(ak)

mk−1∑
i=j

λk,i

i!
γi,j,b(ak) =

=

mk−1∑
j=0

(
n

j

)
Ln−j,b(ak)ck,j ,

where the coefficients

ck,j =:

mk−1∑
i=j

λk,i

i!
γi,j,b(ak) (j = 0, 1, · · · ,mk − 1)

are independent from n. Hence by (2.7) we get

ck,mk−1 =
λk,mk−1

(mk − 1)!
γmk−1,mk−1,b(ak) = λk,mk−1β

mk−1
b (ak) �= 0,

and Lemma 2 is proved. �

3. Reconstruction algorithm

Let us fix the parameters ( the inverse poles) a1, a2, · · · , aN ∈ D of f ∈ R.
Depending on this set of inverse poles and using the hyperbolic distance ρ defined in
(1.5) for i = 1, 2, · · · , N we introduce the following domains of D:

Di : = {b ∈ D : ρ(b, ai) > max
1≤j≤N,i�=j

ρ(b, aj)},

D0 : =

N⋃
j=1

Di.
(3.1)

We show that on set D0 the limit

(3.2) (Qf)(b) := lim
n→∞

〈Ln+1,b, f〉
〈Ln,b, f〉 (f ∈ R)
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exists and the function Qf can be used to reconstruct the poles of f ∈ R. We remark
that the operator Q defined on R in this way is not linear.

Theorem 2. For any function f ∈ R of the form (2.9) the limit (3.2) exists for all
points in D0 and

(3.3) (Qf)(b) = Bb(ai) if b ∈ Di (i = 1, 2, · · · , N).

Proof. Suppose that b ∈ Di. Then Bb(ai) �= 0 and by (2.9) we have

〈Ln+1,b, f〉
〈Ln,b, f〉 =

∑N
k=1〈Ln+1,b, Rk〉∑N
k=1〈Ln,b, Rk〉

=

=
〈Ln+1,b, Ri〉+

∑N
k=1,k �=i〈Ln+1,b, Rk〉

〈Ln,b, Ri〉+
∑N

k=1,k �=i〈Ln,b, Rk〉
=

= Bb(ai)
〈Ln+1,b, Ri〉/Bn+1

b (ai) +
∑N

k=1,k �=i〈Ln+1,b, Rk〉/Bn+1
b (ai)

〈Ln,b, Ri〉/Bn
b (ai) +

∑N
k=1,k �=i〈Ln+1,b, Rk〉/Bn

b (ai)
=

=
un+1(b) + vn+1(b)

un(b) + vn(b)
.

Set m := max{mk : k = 1.2. · · · , N}. Then using Lj,b = FbB
j
b , by (2.13) we

get

〈Ln+m,b, Rk〉
Bn+m

b (ai)
=

=

mk−1∑
j=0

ck,j(ak)

(
n+m

j

)
Ln+m−j,b(ak)/B

n+m
b (ai) =

=
Fb(ak)

Bm
b (ai)

mk−1∑
j=0

ck,j(ak)B
m−j
b (ak)

(
n+m

j

)
Bn

b (ak)

Bn
b (ai)

.

(3.4)

By the definition of the hyperbolic metric for b ∈ Di and j = 0, 1, · · · ,mk − 1 we
have∣∣∣∣(n+m

j

)
Bn

b (ak)

Bn
b (ai)

∣∣∣∣ = (n+m

j

) ∣∣∣∣ρ(ak, b)ρ(ai, b)

∣∣∣∣n → 0 (n → ∞, k = 1, · · · , N, k �= i).

Consequently

vn+m(b) :=

N∑
k=1,k �=i

〈Ln+m,b, Rk〉/Bn+m
b (ai) → 0 (n → ∞).
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Moreover by (3.4) for any qi(b) > max{ρ(b, ak)/ρ(b, ai) : k = 1, · · · , N, k �= i}
and b ∈ Di we have

(3.5) vn+m(b) = O(qni (b)) (n → ∞).

Furthermore by (2.13)

un+m(b) := 〈Ln+m,b, Ri〉/Bn+m
b (ai) =

Fb(ai)

Bm
b (ai)

mi−1∑
j=0

ci,j(ai)

(
n+m

j

)
Bm−j

b (ai).

By (2.13) ci,mi−1,b(ai) �= 0, consequently for the sequence wn(b) := un+1(b)/un(b)
we get

(3.6) lim
n→∞wn(b) = lim

n→∞
un+1(b)

un(b)
= lim

n→∞
un+m+1(b)

un+m(b)
= 1, lim

n→∞ |un(b)| = ∞.

By the definition of un(b) and vn(b)

〈Ln+1,b, f〉
〈Ln,b, f〉 = Bb(ai)

un+1(b) + vn+1(b)

un(b) + vn(b)
.

We show that

lim
n→∞

un+1(b) + vn+1(b)

un(b) + vn(b)
= lim

n→∞
un(b)

vn(b)
= 1

and (3.3) is proved. Indeed by (3.5) and (3.6)∣∣∣∣wn(b)− un+1(b) + vn+1(b)

un(b) + vn(b)

∣∣∣∣ = ∣∣∣∣wn(b)− wn(b) + vn+1(b)/un(b)

1 + vn(b)/un(b)

∣∣∣∣ =
=

|wn(b)||vn(b)/un(b)− vn+1(b)/un(b)|
|1 + vn(b)/un(b)| = O(qni (b) → 0 (n → ∞)

and theorem is proved. �

For the rate of convergence we have the estimation

Δn(b) : =

∣∣∣∣ 〈Ln+1,b, f〉
〈Ln,b, f〉 −Bb(ai)

∣∣∣∣ ≤
≤
(
|1− wn(b)|+

∣∣∣∣wn(b)− un+1(b) + vn+1(b)

un(b) + vn(b)

∣∣∣∣) |Bb(ai)| =

= |1− wn(b)|+O(qni (b)) (b ∈ Di).

If mi = 1 then wn(b) = 1 (n ∈ N), else wn(b) − 1 = O(1/n) and consequently we
have
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Corollary. For b ∈ Di the rate of convergence

Δn(b) =

⎧⎪⎪⎨⎪⎪⎩
O(qni ) if mi = 1

O

(
1

n

)
, if mi > 1.

In connection with (3.3) we introduce the following notion. Denote S the region
vise step function on D.

Definition. The map S : R → S defined by

(Sf)(b) := B−1
b ((Qf)(b)) (f ∈ R, b ∈ D0)

is called spectral operator.

By Theorem 2 with the operator S we can reconstruct the poles ai of f ∈ R for
which Di �= ∅:

(Sf)(b) = ai (f ∈ R, b ∈ Di, i = 1, 2, · · · , N).
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