RENEWAL THEOREMS FOR SOME WEIGHTED RENEWAL FUNCTIONS

K.-H. Indlekofer (Padernborn, Germany)

I. Kátai (Budapest, Hungary)

O. Klesov (Kiev, Ukraine)

Dedicated to János Galambos on his seventieth anniversary

1. Introduction

Let X, X_1, X_2, \ldots be a family of integer valued, independent and identically distributed random variables with positive mean μ and finite (positive) variance σ . Let $S_n = X_1 + \ldots + X_n$. The asymptotic behaviour of the weighted sum

(1.1)
$$R(k) = \sum_{n=1}^{\infty} a_n P(S_n = k)$$

has been investigated in a paper of Galambos, Indlekofer and Kátai [1]. In the special case $a_n = \tau_r(n)$, the number of solutions of the equation $n = n_1 n_2 \dots n_r$ in positive integers n_j , $1 \le j \le r$, R(k) becomes the renewal function Q(k) for a random walk in r dimensional time whose terms are distributed as X. This special (important!) case has been investigated earlier by Maejima and Mori [2], Ney and Wainger [3] and Galambos and Kátai [4].

The main results proved in [1] are the following.

Assume that $a_n \ge 0$, $a_n = \mathcal{O}(n^{\varepsilon})$, for every $\varepsilon > 0$. Let us assume that, with some positive constants c_1, c_2, c_3, c_4 the inequalities

(1.2)
$$c_1 h L(x) \le A(x+h) - A(x) \le c_2 h L(x)$$

and

(1.3)
$$c_3 \le \frac{L(h)}{L(x)} \le c_4$$

hold with a positive function L(x) for all $x \ge 1$ and $\sqrt{x} \le h \le x$. https://doi.org/10.71352/ac.34.179 Let

(1.4)
$$R_1(k) = \sum_{n=1}^{\infty} a_n \varphi_n(k),$$

where

(1.5)
$$\varphi_n(k) = \varphi_n(k; \mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}n} \exp\left(-\frac{1}{2}\xi_{n,k}^2\right)$$

with

$$\xi_{n,k} = \frac{n\mu - k}{\sigma\sqrt{n}}.$$

Theorem A. Assume that X and a_n satisfy the conditions related above hold true. Then

(1.6)
$$R(k) = R_1(k) + o(R_1(k))$$
 as $k \to \infty$.

Furthermore, with suitbale positive constants c_5 and c_6 ,

(1.7)
$$c_5 \le \frac{R_1(k)}{L(k)} \le c_6.$$

Theorem B. Let $a_n \ge 0$, $a_n = \mathcal{O}(n^{\varepsilon})$ for every $\varepsilon > 0$. Let L(x) be a positive function for which (1.3) holds. Furthermore assume that A(x) < cxL(x) with some positive constants c and that the lower inequality of (1.2) is valid. Let X satisfy the conditions of Theorem A as well as the condition $\int_{|x|\ge z} x^2 dF(x) = \mathcal{O}(z^{-a})$ with a

suitable constant 0 < a < 1, where F(x) is the distribution function of X. Then (1.6) holds.

Theorem C. Let a_n be as in Theorem B, furthermore assume that (1.2) and (1.3) hold. Furthermore assume that there exists a positive function $\varrho(x)$, tending to zero monotonically, such that

(1.8)
$$(A(x+h) - A(x))/hL^*(x) \to 1 \quad (as \quad x \to \infty)$$

uniformly in $h \in (\varrho(x)\sqrt{x}, \sqrt{x})$, where $L^*(x)$ is a very slowly varying function in the sense that, as $x \to \infty$,

(1.9)
$$L^*(Y(x))/L^*(x) \to 1, \quad \text{whenever} \quad \frac{\log Y(x)}{\log x} \to 1.$$

Then, as $k \to \infty$,

(1.10)
$$\frac{R_1(k)}{\frac{1}{\mu}L^*\left(\frac{k}{\mu}\right)} \to 1 \qquad (k \to \infty).$$

In the next section we shall give some examples of a_n originated by some functions defined on the lattice points for which the above conditions assumed in Theorem A, B, C hold.

2.

2.1.

Let

(2.1)
$$\varepsilon(x) = (\log \log x)^{-\frac{1}{5}} (\log x)^{\frac{3}{5}}$$

Theorem 1. Let $\alpha(m)$ (m = 1, 2, ...) be such a sequence of real numbers for which $\alpha(m) = O(\tau_3(m))$, and

(2.2)
$$E(x) = \sum_{m \le x} \alpha(m) \ll x \exp(-c\varepsilon(x))$$

holds with a positive constant c.

Let

(2.3)
$$\begin{cases} a_N^{(1)} := \sum_{N=nm^2} \tau(n)\alpha(m), \\ a_N^{(2)} := \sum_{N=nm^2} \tau_3(n)\alpha(m). \end{cases}$$

Let

(2.4)
$$A^{(1)}(x) = \sum_{N \le x} a_N^{(1)}, \quad A^{(2)}(x) = \sum_{N \le x} a_N^{(2)}.$$

Then

(2.5)
$$A^{(1)}(x) = A_1 x \log x + A_2 x + \mathcal{O}(\sqrt{x} \exp(-c\varepsilon(x)))$$

and

(2.6)
$$A^{(2)}(x) = A_3 x (\log x)^2 + A_4 x \log x + A_5 x + \mathcal{O}(\sqrt{x} \exp(-c\varepsilon(x)))$$

where A_1, A_2, A_3, A_4, A_5 are constants.

Proof of Theorem 1.

Lemma 1. From (2.2) we have

(2.7)
$$\sum_{m \ge z} \frac{\alpha(m)}{m^2} \ll \frac{1}{z} \exp(-c_1 \varepsilon(z)),$$

(2.8)
$$\sum_{m \ge z} \frac{\alpha(m)(\log m)^l}{m^2} \ll \frac{1}{z} \exp\left(\frac{-c_1}{2}\varepsilon(z)\right) \quad l = 1, 2..$$

where $c_1 > 0$ is a suitable constant.

Proof of Lemma 1. The left hand side of (2.7) is

$$\int_{z}^{\infty} \frac{dE(u)}{u^2} = \frac{E(u)}{u^2} \Big|_{z}^{\infty} + 2 \int_{z}^{\infty} \frac{E(u)}{u^3} du \ll \frac{1}{z} \exp(-c_1 \varepsilon(z))$$

i.e. (2.7) is true. The proof of (2.8) is similar, we omit it.

We shall prove (2.6).

Let $A^{(2)}(x) = \Sigma_1 + \Sigma_2 - \Sigma_3$, where

(2.9)
$$\Sigma_1 = \sum_{m \le \sqrt{Y}} \alpha(m) \left\{ \sum_{\nu \le \frac{x}{m^2}} \tau_3(\nu) \right\} = \sum_{m \le \sqrt{Y}} \alpha(m) T_3\left(\frac{x}{m^2}\right),$$

(2.10)
$$\Sigma_2 = \sum_{\nu \le \frac{x}{Y}} \tau_3(\nu) E\left(\sqrt{\frac{x}{\nu}}\right),$$

(2.11)
$$\Sigma_3 = E(\sqrt{Y})T_3\left(\frac{x}{Y}\right),$$

(2.12)
$$Y = x \exp(-c_1 \varepsilon(x))$$

and

(2.13)
$$T_3(x) = \sum_{n \le x} \tau_3(n).$$

Let

$$P(t) = \frac{1}{2}t^2 + (3\gamma - 1)t + (3\gamma^2 - 3\gamma + 3\gamma_1 + 1) = a_2t^2 + a_1t + a_0,$$

where γ and γ_1 are given from the Laurent expansion of $\zeta(s)$ around s = 1:

$$\zeta(s) = \frac{1}{s-1} + \gamma + \sum_{k=1}^{\infty} \gamma_k (s-1)^k.$$

According to the result of G. Kolesnik [5], (see A. Ivič [6])

(2.14)
$$|T_3(x) - xP(\log x)| \ll x^{\frac{43}{96} + \varepsilon}$$

for every $\varepsilon > 0$. Let $\theta = \frac{43}{96} + \varepsilon(<\frac{1}{2})$.

We have

(2.15)

$$\Sigma_1 = \sum_{m \le \sqrt{Y}} \frac{\alpha(m)x}{m^2} P\left(\log \frac{x}{m^2}\right) + \mathcal{O}\left(x^{\theta} \cdot \sum_{m \le \sqrt{Y}} \frac{|\alpha(m)|}{m^{2\theta}}\right) = \Sigma_{1,1} + \Sigma_{1,2}.$$

Since

$$\sum_{m \le \sqrt{Y}} \frac{|\alpha(m)|}{m^{2\theta}} \le c \sum_{m \le \sqrt{Y}} \frac{\tau_3(m)}{m^{2\theta}} \ll Y^{\frac{1-2\theta}{2}} (\log x)^2,$$

therefore the error term $\Sigma_{1,2}$ in (2.15) is $\mathcal{O}(\sqrt{x}\exp(-c_1\varepsilon(x)))$.

Let us write

$$\Sigma_{1,1} = x \sum_{m \le \sqrt{Y}} \frac{\alpha(m)}{m^2} \left\{ a_2 \left(\log \frac{x}{m^2} \right)^2 + a_1 \left(\log \frac{x}{m^2} \right) + a_0 \right\} =$$
$$= x \sum_{m \le \sqrt{Y}} \frac{\alpha(m)}{m^2} \left\{ P(\log x) + (-2a_2 \log m + a_1) \log x + \left\{ 2(\log m)^2 - 2a_1 \log m \right\} \right\}.$$

From the conditions on $\alpha(m)$, and from Lemma 1 we obtain that

$$\Sigma_{1,1} = a_4 x (\log x)^2 + a_5 x (\log x) + a_6 x + \mathcal{O}(\sqrt{x} \exp(-c_1 \varepsilon(x)))$$

holds with suitable constants a_4, a_5, a_6 , furthermore $a_4 = \frac{1}{4}$.

Now we estimate the sum Σ_2 .

We have

$$\sum_{U \le \nu \le 2U} \frac{\tau_3(\nu)}{\sqrt{\nu}} \ll \sqrt{U} \log U.$$

From (2.2),

$$\Sigma_2 \le \sum_{\nu \le \frac{x}{Y}} \tau_3(\nu) \left(\frac{x}{\nu}\right)^{\frac{1}{2}} \exp\left(-c\varepsilon \left(\frac{x}{\nu}\right)^{\frac{1}{2}}\right) = c \sum_{t \ge 0} \sum_{\nu \in J_t} J_t$$
$$J_t = \left[\frac{x}{Y} \cdot 2^{-t-1}, \frac{x}{Y} \cdot 2^{-t}\right].$$

Since

$$\sqrt{x} \cdot \sum_{\nu \in J_t} \frac{\tau_3(\nu)}{\sqrt{\nu}} \exp(-c\varepsilon(2^t Y)) \ll \sqrt{x} \cdot \left(\frac{x}{Y} 2^{-t}\right)^{\frac{1}{2}} (\log x) \exp(-c\varepsilon(2^t Y)),$$

therefore

$$\Sigma_2 \ll \frac{x \log x}{\sqrt{Y}} \sum_t \exp(-c\varepsilon(2^t Y)) \ll \sqrt{x} \exp(-c_2\varepsilon(x)),$$

if $0 < c_2$ is small enough.

Finally,

$$\Sigma_3 \ll \sqrt{Y} \exp(-c_1 \varepsilon(x)) \cdot \left(\frac{x}{Y} \log^2 \frac{x}{Y}\right) \ll \sqrt{x} \exp(-c_3 \varepsilon(x)),$$

with some $c_3 > 0$.

The proof of (2.6) is completed.

Remark. The proof of (2.5) is similar. Instead of $T_3(x)$ we have to take

$$T_2(x) = \sum_{n \le x} \tau(n),$$

and instead of $\tau_3(n)$ the function $\tau(n)$. It is known that

$$|T_2(x) - x(\log x + (2\gamma - 1))| \le cx^{\frac{35}{108}} \cdot \log^2 x.$$

We omit the details.

2.2.

Let $\zeta(s)$ be the Riemann zeta function. Then

(2.16)
$$\frac{1}{\zeta(s)} = \sum_{n=1}^{\infty} \frac{\mu(n)}{n^s},$$

where μ is the Möbius function. μ is multiplicative $\mu(p) = -1$, $\mu(p^a) = 0$ (a = 2, 3, ...) for primes p.

Lemma 2. Let

(2.17)
$$\frac{1}{\zeta(s)^l} = \sum_{n=1}^{\infty} \frac{\nu_l(n)}{n^s} \quad (l = 1, 2, \ldots),$$

$$(2.18) N_l(x) = \sum_{\nu \le x} \nu_l(n).$$

For every fixed $l \in \mathbb{N}$

(2.19)
$$N_l(x) \ll x \exp(-c_l \varepsilon(x)),$$

where c_l is a positive, suitable constant.

Proof. We can follow the argument used by A. Ivič. According to Lemma 12.3 in [6] (page 310) there is an absolute constant C > 0 such that

(2.20)
$$\frac{1}{\zeta(s)} = \mathcal{O}\left(\left(\log T\right)^{\frac{2}{3}} \left(\log\log T\right)^{\frac{1}{3}}\right)$$

in the region $(s = \sigma + it)$

(2.21)
$$\sigma \ge 1 - \frac{c}{(\log t)^{\frac{2}{3}}} \frac{1}{(\log \log t)^{\frac{1}{3}}} \quad T_0 \le t \le T$$

and $\zeta(s) \neq 0$ in (2.21). We note that this assertion is a very deep result due to N.M. Korobov and I.M. Vinogradov (see [6]).

By using the Perron-formula,

$$N_{l}(x) = \frac{1}{2\pi i} \int_{1+\frac{1}{\log x} - iT}^{1+\frac{1}{\log x} + iT} \frac{x^{s}}{s\zeta^{l}(s)} ds + \mathcal{O}(\sqrt{x}),$$

 $\text{ if }T\geq x^2,\quad x=[x]+\tfrac{1}{2}.$

See e.g. in K. Prachar [7], Appendix §3. Transforming the integration line as Ivič did (see page 314), we obtain Lemma 2.

2.3.

Let D be the set of those lattice points n_1, n_2, n_3 for which $n_1, n_2, n_3 \in \mathbb{N}$ and n_1, n_2, n_3 are square-free numbers.

Let $A_D(x) := \#\{(n_1, n_2, n_3) \in D | n_1 n_2 n_3 \le x\}$. Since $\frac{\zeta(s)}{\zeta(2s)} = \sum_{n \ge 1} \frac{|\mu(n)|}{n^s}$, therefore

$$\left(\frac{\zeta(s)}{\zeta(2s)}\right)^3 = \zeta(s)^3 \cdot \frac{1}{\zeta(2s)^3} = \left\{\sum \frac{\tau_3(n)}{n^s}\right\} \left\{\sum \frac{\nu_3(n)}{n^{2s}}\right\}.$$

Since the conditions for $\alpha(m) = \nu_3(m)$ in Theorem 1 hold, therefore for $A_D(x)$ $(= A^{(2)}(x))$ the relation (2.6) is true. A_3, A_4, A_5 are suitable constants.

Corollary 1. Let

$$R_D(k) = \sum_{(n_1, n_2, n_3) \in D} P(S_{n_1 n_2 n_3} = k).$$

Assume that the conditions stated for X in Theorem A hold true. Then

$$\frac{Q(k)}{\frac{1}{\mu}P\left(\log\frac{k}{\mu}\right)} \to 1 \qquad (k \to \infty)$$

where $P(u) = A_3 u^2 + A_4 u + A_5$, A_3, A_4, A_5 are computed from $A^{(2)}(x)$ in the case $A^{(2)}(x) = A_D(x)$.

Remarks. We can prove similar theorems

- (i) for the subset of lattice points (n_1, n_2, n_3) such that n_1, n_2 run over the squarefree positive numbers, and n_3 over all positive integers;
- (ii) for the subset of lattice points (n_1, n_2, n_3) such that n_1 runs over the positive square-free numbers, $n_2, n_3 \in \mathbb{N}$;
- (iii) for $D = \{(n_1, n_2) | n_1, n_2 \text{ are square-free} \};$
- (iv) for $D = \{(n_1, n_2) | n_1 \text{ square-free}, n_2 \in \mathbb{N} \}.$

3.

Let
$$M_1, M_2 \in \mathbb{N}$$
, $(0 \leq)l_1 < \ldots < l_T(\leq M_1)$, $(0 \leq)k_1 < \ldots < k_R(\leq M_2)$, $GCD(l_j, M_1) = 1$ $(j = 1, \ldots, T)$, $GCD(k_l, M_2) = 1$ $(l = 1, \ldots, R)$.
Let $D = \left\{ (n, m) \middle| \begin{array}{l} n \equiv l_{\nu} \pmod{M_1}, \quad \nu = 1, \ldots, T\\ m \equiv k_{\mu} \pmod{M_2}, \quad \mu = 1, \ldots, R \end{array} \right\}$,
 $A_D(x) = \sum_{\substack{nm \leq x\\ (n,m) \in D}} 1.$

Theorem 2. We have

(3.1)
$$A_D(x) = A_5 x \log x + A_6 x + \mathcal{O}\left(x^{\frac{1}{3}} (\log x)^A\right)$$

Consequently, if

(3.2)
$$Q_D(k) = \sum_{(n_1, n_2) \in D} P(S_{n_1, n_2} = k),$$

and the conditions of Theorem A hold true, then

(3.3)
$$\frac{Q_D(k)}{\frac{1}{\mu}\log\frac{k}{\mu}} \to 1 \qquad (k \to \infty).$$

The proof of (3.1) can be done by the standard method used for proving that $\sum_{n \le x} \tau(n) - x(\log x + (2\gamma - 1)) = \mathcal{O}\left(x^{\frac{1}{3}}\right)$. See e.g. E. Krätzel [8]. (3.3) is a consequence of (3.1) of Theorem A.

4.

4.1.

 $\text{Let } 0 \leq \alpha < 1, \quad 0 \leq \beta < 1,$

$$D(x) = \#\left\{(n,m) \in \mathbb{N}^2, \quad (n+\alpha)(m+\beta) \le x\right\}.$$

Theorem 3. We have

$$D(x) = x \log x + c(\alpha, \beta)x + R_x(\alpha, \beta)\sqrt{x} + \mathcal{O}\left(x^{\frac{1}{3}}(\log x)^2\right),$$

where $c(\alpha, \beta)$ and $R_x(\alpha, \beta)$ are defined in the end of the proof. $R_x(\alpha, \beta)$ is bounded.

Proof. Let $\psi(u) = \{u\} - \frac{1}{2}$. Then $[u] = (u - \frac{1}{2}) - (\{u\} - \frac{1}{2}) = (u - \frac{1}{2}) - \psi(u)$. Let us write $D(x) = \Sigma_1 + \Sigma_2 - \Sigma_3$, where

$$\Sigma_1 = \sum_{n \le \sqrt{x} - \alpha} [\varphi(n) - \beta], \qquad \varphi(n) = \frac{x}{n + \alpha},$$

$$\Sigma_2 = \sum_{m \le \sqrt{x} - \beta} [\varphi^*(m) - \alpha], \qquad \varphi^*(m) = \frac{x}{m + \beta},$$

$$\Sigma_3 = \#\{n|n \le \sqrt{x} - \alpha\} \cdot \#\{m|m \le \sqrt{x} - \beta\}.$$

Lemma 3 (Theorem 2.2 in E. Krätzel [8]). Let f(t) be a real function in [a, b], twice continuously differentiable, and let $|f''(t)| \ge \lambda_2 > 0$. Then

$$\sum_{a < n \le b} \psi(f(n)) \ll \frac{|f'(b) - f'(a)|}{\lambda_2^{\frac{3}{2}}} + \frac{1}{\sqrt{\lambda_2}}$$

Lemma 4 (Theorem 2.3 in E. Krätzel [8]). Let f(t) be a real function in [a, b], twice continuously differentiable. Let f''(t) be monotonic and b either positive or negative throughout. Then

$$\sum_{a < n \le b} \psi(f(n)) \ll \int_a^b |f''(t)|^{\frac{1}{3}} dt + \frac{1}{\sqrt{|f''(a)|}} + \frac{1}{\sqrt{|f''(b)|}}$$

Estimation of Σ_1 **.**

We shall write $\Sigma_1 = \Sigma_A - \Sigma_B$, where

$$\Sigma_A = \sum_{n \le \sqrt{x} - \alpha} \left(\varphi(n) - \beta - \frac{1}{2} \right), \qquad \Sigma_B = \sum_{n \le \sqrt{x} - \alpha} \psi(\varphi(n) - \beta)$$
$$\Sigma_A = \sum_{n \le \sqrt{x} - \alpha} \varphi(n) - (\beta + 1) \left[\sqrt{x} - \alpha \right].$$

We have

$$\sum_{n \le \sqrt{x} - \alpha} \frac{1}{n + \alpha} = \int_{1 - 0}^{\sqrt{x} - \alpha} \frac{d([u] - \frac{1}{2})}{u + \alpha} = \int_{1 - 0}^{\sqrt{x} - \alpha} \frac{d(u - \frac{1}{2})}{u + \alpha} - \int_{1 - 0}^{\sqrt{x} - \alpha} \frac{d\psi(u)}{u + \alpha}$$
$$= \log\sqrt{x} - \log(1 + \alpha) - \frac{\psi(u)}{u + \alpha} \Big|_{1}^{\sqrt{x} - \alpha} + \int_{1 - 0}^{\sqrt{x} - \alpha} \frac{\psi(u)}{(u + \alpha)^{2}} du.$$

Thus

$$\sum_{n \le \sqrt{x} - \alpha} \frac{1}{n + \alpha} = \frac{1}{2} \log x + C_0(\alpha) - \frac{\psi(\sqrt{x} - \alpha)}{\sqrt{x}} - \int_{\sqrt{x} - \alpha}^{\infty} \frac{\psi(u)}{(u + \alpha)^2} du$$

where

$$C_0(\alpha) = -\log(1+\alpha) + \int_{1-0}^{\infty} \frac{\psi(u)}{(u+\alpha)^2} du$$

Let

$$\sigma(x|a) = \frac{\psi(\sqrt{x} - \alpha)}{\sqrt{x}} + \int_{\sqrt{x} - \alpha}^{\infty} \frac{\psi(u)}{(u + \alpha)^2} du$$

Observe that $\sigma(x|\alpha)\sqrt{x} = \mathcal{O}(1)$. Then

$$\Sigma_A = \frac{x}{2} \log x + xC_0(\alpha) - x\sigma(x|\alpha)$$

To estimate Σ_B we shall use Lemma 4.

We have $\varphi'(u) = \frac{-x}{(u+\alpha)^2}$, $\varphi''(u) = \frac{2x}{(u+\alpha)^3}$. Let us apply Lemma 4 with [a,b] = [U,2U], where $2U \le \sqrt{x} - \alpha$. Then

$$\sum_{U \le n \le 2U} \psi(\varphi(n)) \ll \int_{U}^{2U} \left(\frac{x}{u^3}\right)^{\frac{1}{3}} du + \frac{1}{\sqrt{\frac{x}{U^3}}} \ll x^{\frac{1}{3}} \log U + \frac{U^{\frac{3}{2}}}{\sqrt{x}}$$

Doing this with $U = (\sqrt{x} - \alpha) \cdot 2^{-l}$ $(l = 1, 2, ..., l_0)$ where l_0 is the smallest integer for which $(\sqrt{x} - \alpha) \cdot 2^{-l_0} \le x^{\frac{1}{3}}$, we have

$$\sum_{n \le \sqrt{x} - \alpha} \psi(\varphi(n)) \ll x^{\frac{1}{3}} (\log x)^2.$$

Thus we have

$$\Sigma_{1} = \frac{x}{2} \log x + xC_{0}(\alpha) - x\sigma(x|\alpha) - \left(\beta + \frac{1}{2}\right)x^{\frac{1}{2}} + \mathcal{O}\left(x^{\frac{1}{3}}(\log x)^{2}\right).$$

Estimation of Σ_2 . Completely analogously, we have

$$\Sigma_{2} = \frac{x}{2} \log x + xC_{0}(\beta) - x\sigma(x|\beta) - \left(\alpha + \frac{1}{2}\right) x^{\frac{1}{2}} + \mathcal{O}\left(x^{\frac{1}{3}}(\log x)^{2}\right).$$

Estimation of Σ_3 **.**

$$\Sigma_3 = \left(\sqrt{x} - \alpha - \frac{1}{2} - \psi(\sqrt{x} - \alpha)\right) \left(\sqrt{x} - \beta - \frac{1}{2} - \psi(\sqrt{x} - \beta)\right) =$$
$$= x - \sqrt{x} \left\{\alpha + \beta + 1 + \psi\left(\sqrt{x} - \alpha\right) + \psi\left(\sqrt{x} - \beta\right)\right\} + \mathcal{O}(1).$$

Collecting our inequalities we have

$$D(x) = x \log x + x \{C_0(\alpha) + C_0(\beta) - 1\} + + \sqrt{x} \{\alpha + \beta + 1 + \psi (\sqrt{x} - \alpha) + \psi (\sqrt{x} - \beta) - - \alpha - \beta - 1 - \sqrt{x} (\sigma(x|\alpha) + \sigma(x|\beta)) \} + \mathcal{O}(1).$$

Thus our theorem holds with

$$c(\alpha,\beta) = C_0(\alpha) + C_0(\beta) - 1,$$

$$R_x(\alpha,\beta) = \psi\left(\sqrt{x} - \alpha\right) + \psi\left(\sqrt{x} - \beta\right) + \sqrt{x}\sigma(x|\alpha) + \sqrt{x}\sigma(x|\beta)),$$

where

$$C_0(\alpha) = -\log(1+\alpha) + \int_1^\infty \frac{\psi(u)}{(u+\alpha)^2} du,$$

$$R_x(\alpha,\beta) = -\sqrt{x} \left\{ \int_{\sqrt{x}-\alpha}^{\infty} \frac{\psi(u)}{(u+\alpha)^2} du + \int_{\sqrt{x}-\beta}^{\infty} \frac{\psi(u)}{(u+\beta)^2} du \right\} = -\sqrt{x} \int_{\sqrt{x}}^{\infty} \frac{\psi(u-\alpha) + \psi(u-\beta)}{u^2} du.$$

The theorem is proved.

Remark. $R_x(\alpha, \beta)$ is not constant, $\limsup |R_x(\alpha, \beta)| > 0$, $R_x(\alpha, \beta)$ is bounded in x.

4.2.

Let $E = \{e_1 < e_2 < \ldots\}, F = \{f_1 < f_2 < \ldots\}, E(x) := \#\{e \in E | e \le x\}, F(x) = \#\{f \in F | f \le x\}.$ Let $D = \{(e, f) | e \in E, f \in F\}, A_D(x) = = \#\{(e, f) \in D | ef \le x\}.$

Theorem 4. Assume that

$$E(x) = c_1 x + \mathcal{O}(x^{\alpha}), \quad F(x) = c_2 x + \mathcal{O}(x^{\beta}),$$

where c_1, c_2 are positive constants, $0 \le \alpha \le 1$, $0 \le \beta \le 1$. Then

$$A_D(x) = c_3 x \log x + c_4 x + \mathcal{O}(x^{\gamma}),$$

$$c_3 = c_1 c_2, \quad \gamma = \max\left\{\frac{\alpha + 1}{2}, \frac{\beta + 1}{2}\right\},$$

 c_4 is a calculable constant.

Proof. We shall start from the formula

$$A_D(x) = \sum_{f_\mu \le \sqrt{x}} E\left(\frac{x}{f_\mu}\right) + \sum_{e_\nu \le \sqrt{x}} F\left(\frac{x}{e_\nu}\right) - E\left(\sqrt{x}\right) F\left(\sqrt{x}\right) + \mathcal{O}(1)$$
$$= \Sigma_1 + \Sigma_2 - \Sigma_3 + \mathcal{O}(1).$$

We have

$$\Sigma_1 = c_1 x \sum_{f_\mu \le \sqrt{x}} \frac{1}{f_\mu} + \mathcal{O}(x^\alpha) \sum_{f_\mu \le \sqrt{x}} \frac{1}{f_\mu^\alpha}.$$

Let $\Delta(u) := F(u) - c_2 u$.

$$T := \sum_{f_{\mu} \le \sqrt{x}} \frac{1}{f_{\mu}} = \int_{1}^{\sqrt{x}} \frac{dF(u)}{u} = c_2 \int_{1}^{\sqrt{x}} \frac{du}{u} + \int_{1}^{\sqrt{x}} \frac{\Delta(u)}{u} = c_2 \log x + \frac{\Delta(u)}{u} \Big|_{1}^{\sqrt{x}} + \int_{1}^{\sqrt{x}} \frac{\Delta(u)}{u^2} du.$$

Let $c_4 = -\Delta(1) + \int_1^\infty \frac{\Delta(u)}{u^2} du$. We have

$$\frac{\Delta(\sqrt{x})}{\sqrt{x}} \ll (\sqrt{x})^{\alpha-1},$$
$$\int_{\sqrt{x}}^{\infty} \frac{\Delta(u)}{u^2} du \ll \int_{\sqrt{x}}^{\infty} u^{\alpha-2} du \ll (\sqrt{x})^{\alpha-1},$$

thus

$$Tx = \frac{c_1 c_2}{2} x \log x + c_4 x + \mathcal{O}\left(x^{\frac{\alpha+1}{2}}\right).$$

Furthermore

$$\sum_{f_{\mu} \le \sqrt{x}} \frac{1}{f_{\mu}^{\alpha}} \le \sum_{n \le \sqrt{x}} \frac{1}{n^{\alpha}} \le (\sqrt{x})^{1-\alpha} = x^{\frac{1}{2}-\frac{\alpha}{2}}.$$

Hence we obtain that

$$\Sigma_1 = \frac{c_1}{2} x \log x + c_4 x + \mathcal{O}\left(x^{\frac{\alpha+1}{2}}\right).$$

Similarly, we can prove that

$$\Sigma_2 = \frac{c_2}{2} x \log x + c_5 x + \mathcal{O}\left(x^{\frac{\beta+1}{2}}\right).$$

with a numerically calculable constant.

Finally

$$\Sigma_{3} = \left(c_{1}\sqrt{x} + \mathcal{O}\left(x^{\frac{\alpha}{2}}\right)\right) \left(c_{2}\sqrt{x} + \mathcal{O}\left(x^{\frac{\beta}{2}}\right)\right) = \\ = c_{1}c_{2}x + \mathcal{O}\left(x^{\frac{(1+\alpha)}{2}}\right) + \mathcal{O}\left(x^{\frac{(1+\beta)}{2}}\right).$$

Collecting our estimations, we obtain our theorem.

We can prove similarly

Theorem 5. Let

$$E(x) = c_1 x + \mathcal{O}(\varepsilon(x)x), \quad F(x) = c_2 x + \mathcal{O}(\varepsilon(x)x),$$

 $c_1, c_2 > 0, \quad \varepsilon(x) \downarrow 0.$ Then

$$A_D(x) = c_1 c_2 x \log x + \mathcal{O}(\varepsilon(\sqrt{x}) x \log x)$$

where c_5 is a calculable constant.

5.

Let $\{y\}$ = fractional part of y, $|| y || = \min_{n \in \mathbb{Z}} |x - n|$. Let x_1, \ldots, x_N be real numbers, $S(I) = \sum_{\substack{X_i \mid j \in I \\ i=1}}^{N} 1$, where $I \subseteq [0, 1)$ is an interval.

Let

$$D(x_1,\ldots,x_N) = \sup_{I \subseteq [0,1]} \frac{1}{N} |S(I) - \lambda(I)N|,$$

 $\lambda(I) =$ length of I. Let

$$\psi_k = \sum_{j=1}^N e(x_j)$$
 $(k = 1, 2, ...), \quad e(x) := e^{2\pi i x}$

According to a wellknown theorem due to P. Erdős and P. Turán [9]

(5.1)
$$ND(x_1,\ldots,x_N) \le C\left(\sum_{1\le k\le Y} \frac{|\psi_k|}{k} + \frac{N}{Y}\right),$$

where C is an absolute constant, $Y \ge 1$ is an arbitrary number.

Let α be an irrational number, I an interval in [0,1). Let $\mathcal{A} = \{n | \{n\alpha\} \in I\}, A(x) = \#\{n \le x | n \in \mathcal{A}\}$. From (5.1) we obtain that

(5.2)
$$|A(x) - \lambda(I)x| \le C\left(2\sum_{1\le k\le Y}\frac{1}{k}\cdot\frac{1}{||k\alpha||} + \frac{x}{Y}\right),$$

since in this case

$$\psi_k = \sum_{1 \le n \le x} e(kn\alpha),$$

and so

$$|\psi_k| = \left|\frac{e([x]k\alpha) - 1}{e(k\alpha) - 1}\right| \le \frac{2}{||k\alpha||}.$$

Let $\tau = \sqrt{x}$, and $\frac{A}{Q}$, (A, Q) = 1 be such a rational number for which $\left|\alpha - \frac{A}{Q}\right| \le \frac{1}{Q\tau}$, $Q < \tau$ holds. Choose Y = Q - 1. Since $\left|k\alpha - \frac{kA}{Q}\right| < \frac{k}{Q\tau}$, therefore $||k\alpha|| > \frac{1}{2Q}$, and so $\frac{1}{||k\alpha||} \le \frac{2Q}{Q}$, thus

$$|A(x) - \lambda(I)x| \le C\left(\frac{x}{Q} + 4Q\sum_{1\le k\le Y}\frac{1}{k}\right) \le C\left(\frac{x}{Q} + 4Q\log Q\right).$$

Lemma 5. Let $\alpha \in (0, 1)$ be an irrational number, such that $||k\alpha|| > \frac{1}{k^{1+\kappa}}$ $(k \in \mathbb{N})$, where κ is a fixed positive number. Let I be a subinterval in [0, 1), \mathcal{A} and A(x) be as above. Then

(5.3)
$$|A(x) - \lambda(I)x| \le Cx^{1 - \frac{1}{2(1+\kappa)}}$$

Proof. Since Q, defined earlier satisfies $\frac{1}{Q^{1+\kappa}} < |Q\alpha - A| \le \frac{1}{\tau} = \frac{1}{\sqrt{x}}$, we have $Q > x^{\frac{1}{2(1+\kappa)}}$. From Theorem 4 and Lemma 5 the following assertion is straightforward.

Theorem 6. Let α, β be irrational numbers, $||k\alpha||k^{1+\kappa_1} \ge 1$, $||k\beta||k^{1+\kappa_2} \ge 1$ ≥ 1 $(k \in \mathbb{N})$. Let I, J be subintervals in [0, 1),

$$\mathcal{A} = \{n|\{n\alpha\} \in I\}, \quad \mathcal{B} = \{m|\{m\beta\} \in J\},$$
$$A(x) = \#\{n \le x | n \in \mathcal{A}\}, \quad B(x) = \#\{m \le x | m \in \mathcal{B}\},$$
$$D(x) = \#\{(n,m) | nm \le x, n \in \mathcal{A}, m \in \mathcal{B}\}.$$

Then

$$\begin{split} A(x) = &\lambda(I)x + \mathcal{O}\left(x^{1 - \frac{1}{2(1 + \kappa_1)}}\right), \\ B(x) = &\lambda(J)x + \mathcal{O}\left(x^{1 - \frac{1}{2(1 + \kappa_2)}}\right) \end{split}$$

and so

$$D(x) = \lambda(I)\lambda(J)x\log x + cx + \mathcal{O}(x^{\gamma}),$$

where c is a calculable constant,

$$\gamma = \max\left(1 - \frac{1}{4(1+\kappa_1)}, 1 - \frac{1}{4(1+\kappa_2)}\right)$$

References

- Galambos, J., K.H. Indlekofer and I. Kátai, A renewal theorem for random walks in multidimensional time, *Transactions of the American Mathematical Society*, 300 (2), 759–769.
- [2] Maejima, M. and T. Mori, Some renewal theorems for random walk in multidimensional time, *Math. Proc. Cambridge Philos. Soc.*, 95 (1984), 149–154.
- [3] Ney, P. and S. Wainger, The renewal theorem for a random walk in twodimensional time, *Studia Math.*, 46 (1972), 71–85.
- [4] Galambos, J. and I. Kátai, A note on random walks in multidimensional time, Math. Proc. Cambridge Phil. Soc., 99 (1986), 163–170.
- [5] Kolesnik, G., On the estimation of multiple exponential sums, *Recent Progress in Analytic Number Theory*, Symposium Durham 1979 (Vol. 1), Academic, London, 1981, p:231–246.

- [6] Ivič, A., *The Riemann zeta-function*, Theory and applications, Dover Publ., Mineola, 1985.
- [7] Prachar, K., Primzahlverteilung, Springer Verlag, Berlin, 1957.
- [8] Krätzel, E., Lattice points, Kluwer, London, 1988.
- [9] Erdős, P. and P. Turán, On a problem in the theory of uniform distribution I., *Indag. Math.* 10 (1948), 406–413.

K.-H. Indlekofer

Institute of Mathematics University of Paderborn Warburger Str. 100 D-33098 Paderborn Germany k-heinz@math.upb.de

O. Klesov

National Technical University (KPI) Faculty of Physics and Mathematics Department of Mathematical Analysis and Probability Theory pr. Peremogy, 37 03056 Kiev Ukraine klesov@math.uni-paderborn.de

I. Kátai

Department of Computer Algebra Faculty of Informatics Eötvös Loránd University Pázmány Péter sétány 1/C H-1117 Budapest, Hungary katai@compalg.inf.elte.hu