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1. Introduction

Let X,X1, X2, . . . be a family of integer valued, independent and identically dis-
tributed random variables with positive mean μ and finite (positive) variance σ. Let
Sn = X1 + . . .+Xn. The asymptotic behaviour of the weighted sum

R(k) =
∞∑

n=1

anP (Sn = k)(1.1)

has been investigated in a paper of Galambos, Indlekofer and Kátai [1]. In the special
case an = τr(n), the number of solutions of the equation n = n1n2 . . . nr in positive
integers nj , 1 ≤ j ≤ r, R(k) becomes the renewal function Q(k) for a random walk
in r dimensional time whose terms are distributed as X . This special (important!)
case has been investigated earlier by Maejima and Mori [2], Ney and Wainger [3] and
Galambos and Kátai [4].

The main results proved in [1] are the following.
Assume that an ≥ 0, an = O(nε), for every ε > 0. Let us assume that, with

some positive constants c1, c2, c3, c4 the inequalities

c1hL(x) ≤ A(x+ h)−A(x) ≤ c2hL(x)(1.2)

and

c3 ≤ L(h)

L(x)
≤ c4(1.3)

hold with a positive function L(x) for all x ≥ 1 and
√
x ≤ h ≤ x.
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Let

R1(k) =

∞∑
n=1

anϕn(k),(1.4)

where

ϕn(k) = ϕn(k;μ, σ
2) =

1

σ
√
2πn

exp

(
−1

2
ξ2n,k

)
(1.5)

with
ξn,k =

nμ− k

σ
√
n

.

Theorem A. Assume that X and an satisfy the conditions related above hold true.
Then

R(k) = R1(k) + o(R1(k)) as k → ∞.(1.6)

Furthermore, with suitbale positive constants c5 and c6,

c5 ≤ R1(k)

L(k)
≤ c6.(1.7)

Theorem B. Let an ≥ 0, an = O(nε) for every ε > 0. Let L(x) be a positive
function for which (1.3) holds. Furthermore assume that A(x) < cxL(x) with some
positive constants c and that the lower inequality of (1.2) is valid. Let X satisfy the
conditions of Theorem A as well as the condition

∫
|x|≥z

x2dF (x) = O(z−a) with a

suitable constant 0 < a < 1, where F (x) is the distribution function of X . Then (1.6)
holds.

Theorem C. Let an be as in Theorem B, furthermore assume that (1.2) and (1.3)
hold. Furthermore assume that there exists a positive function 	(x), tending to zero
monotonically, such that

(A(x+ h)−A(x))/hL∗(x) → 1 (as x → ∞)(1.8)

uniformly in h ∈ (	(x)
√
x,

√
x), where L∗(x) is a very slowly varying function in the

sense that, as x → ∞,

L∗(Y (x))/L∗(x) → 1, whenever
log Y (x)

log x
→ 1.(1.9)

Then, as k → ∞,
R1(k)

1
μL

∗
(

k
μ

) → 1 (k → ∞).(1.10)

In the next section we shall give some examples of an originated by some func-
tions defined on the lattice points for which the above conditions assumed in Theorem
A, B, C hold.
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2.

2.1.

Let

ε(x) = (log log x)−
1
5 (log x)

3
5 .(2.1)

Theorem 1. Let α(m) (m = 1, 2, . . .) be such a sequence of real numbers for
which α(m) = O(τ3(m)), and

E(x) =
∑
m≤x

α(m) � x exp(−cε(x))(2.2)

holds with a positive constant c.
Let

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a
(1)
N :=

∑
N=nm2

τ(n)α(m),

a
(2)
N :=

∑
N=nm2

τ3(n)α(m).

(2.3)

Let

A(1)(x) =
∑
N≤x

a
(1)
N , A(2)(x) =

∑
N≤x

a
(2)
N .(2.4)

Then

A(1)(x) = A1x log x+A2x+O(
√
x exp(−cε(x)))(2.5)

and

(2.6) A(2)(x) = A3x(log x)
2 +A4x log x+A5x+O(

√
x exp(−cε(x)))

where A1, A2, A3, A4, A5 are constants.

Proof of Theorem 1.

Lemma 1. From (2.2) we have∑
m≥z

α(m)

m2
� 1

z
exp(−c1ε(z)),(2.7)
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∑
m≥z

α(m)(logm)l

m2
� 1

z
exp

(−c1
2

ε(z)

)
l = 1, 2 . . .(2.8)

where c1 > 0 is a suitable constant.

Proof of Lemma 1. The left hand side of (2.7) is∫ ∞

z

dE(u)

u2
=

E(u)

u2

∣∣∣∣∞
z

+ 2

∫ ∞

z

E(u)

u3
du � 1

z
exp(−c1ε(z))

i.e. (2.7) is true. The proof of (2.8) is similar, we omit it.
We shall prove (2.6).
Let A(2)(x) = Σ1 +Σ2 − Σ3, where

Σ1 =
∑

m≤√
Y

α(m)

⎧⎨⎩ ∑
ν≤ x

m2

τ3(ν)

⎫⎬⎭ =
∑

m≤√
Y

α(m)T3

( x

m2

)
,(2.9)

Σ2 =
∑
ν≤ x

Y

τ3(ν)E

(√
x

ν

)
,(2.10)

Σ3 = E(
√
Y )T3

( x
Y

)
,(2.11)

Y = x exp(−c1ε(x))(2.12)

and

T3(x) =
∑
n≤x

τ3(n).(2.13)

Let

P (t) =
1

2
t2 + (3γ − 1)t+ (3γ2 − 3γ + 3γ1 + 1) = a2t

2 + a1t+ a0,

where γ and γ1 are given from the Laurent expansion of ζ(s) around s = 1:

ζ(s) =
1

s− 1
+ γ +

∞∑
k=1

γk(s− 1)k.

According to the result of G. Kolesnik [5], (see A. Ivic̆ [6])

|T3(x)− xP (log x)| � x
43
96+ε(2.14)

for every ε > 0. Let θ = 43
96 + ε(< 1

2 ).
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We have

Σ1 =
∑

m≤√
Y

α(m)x

m2
P
(
log

x

m2

)
+O

⎛⎝xθ ·
∑

m≤√
Y

|α(m)|
m2θ

⎞⎠ = Σ1,1 +Σ1,2.

(2.15)

Since ∑
m≤√

Y

|α(m)|
m2θ

≤ c
∑

m≤√
Y

τ3(m)

m2θ
� Y

1−2θ
2 (log x)2,

therefore the error term Σ1,2 in (2.15) is O(
√
x exp(−c1ε(x))).

Let us write

Σ1,1 =x
∑

m≤√
Y

α(m)

m2

{
a2

(
log

x

m2

)2
+ a1

(
log

x

m2

)
+ a0

}
=

=x
∑

m≤√
Y

α(m)

m2

{
P (log x) + (−2a2 logm+ a1) log x+

+ {2(logm)2 − 2a1 logm}}.
From the conditions on α(m), and from Lemma 1 we obtain that

Σ1,1 = a4x(log x)
2 + a5x(log x) + a6x+O(

√
x exp(−c1ε(x)))

holds with suitable constants a4, a5, a6, furthermore a4 = 1
4 .

Now we estimate the sum Σ2.

We have ∑
U≤ν≤2U

τ3(ν)√
ν

�
√
U logU.

From (2.2),

Σ2 ≤
∑
ν≤ x

Y

τ3(ν)
(x
ν

) 1
2

exp

(
−cε

(x
ν

) 1
2

)
= c
∑
t≥0

∑
ν∈Jt

,

Jt =
[ x
Y

· 2−t−1,
x

Y
· 2−t

]
.

Since

√
x ·
∑
ν∈Jt

τ3(ν)√
ν

exp(−cε(2tY )) � √
x ·
( x
Y
2−t
) 1

2

(log x) exp(−cε(2tY )),
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therefore

Σ2 � x log x√
Y

∑
t

exp(−cε(2tY )) � √
x exp(−c2ε(x)),

if 0 < c2 is small enough.
Finally,

Σ3 �
√
Y exp(−c1ε(x)) ·

( x
Y

log2
x

Y

)
� √

x exp(−c3ε(x)),

with some c3 > 0.
The proof of (2.6) is completed. �

Remark. The proof of (2.5) is similar. Instead of T3(x) we have to take

T2(x) =
∑
n≤x

τ(n),

and instead of τ3(n) the function τ(n).
It is known that

|T2(x)− x(log x+ (2γ − 1))| ≤ cx
35
108 · log2 x.

We omit the details.

2.2.

Let ζ(s) be the Riemann zeta function. Then

1

ζ(s)
=

∞∑
n=1

μ(n)

ns
,(2.16)

where μ is the Möbius function. μ is multiplicative μ(p) = −1, μ(pa) = 0 (a =
= 2, 3, . . .) for primes p.

Lemma 2. Let

1

ζ(s)l
=

∞∑
n=1

νl(n)

ns
(l = 1, 2, . . .),(2.17)

Nl(x) =
∑
ν≤x

νl(n).(2.18)

For every fixed l ∈ N

Nl(x) � x exp(−clε(x)),(2.19)

where cl is a positive, suitable constant.
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Proof. We can follow the argument used by A. Ivic̆. According to Lemma 12.3 in
[6] (page 310) there is an absolute constant C > 0 such that

1

ζ(s)
= O

(
(log T )

2
3 (log log T )

1
3

)
(2.20)

in the region (s = σ + it)

σ ≥ 1− c

(log t)
2
3

1

(log log t)
1
3

T0 ≤ t ≤ T(2.21)

and ζ(s) �= 0 in (2.21). We note that this assertion is a very deep result due to
N.M. Korobov and I.M. Vinogradov (see [6]).

By using the Perron-formula,

Nl(x) =
1

2πi

∫ 1+ 1
log x+iT

1+ 1
log x−iT

xs

sζl(s)
ds+O(

√
x),

if T ≥ x2, x = [x] + 1
2 .

See e.g. in K. Prachar [7], Appendix §3. Transforming the integration line as Ivic̆
did (see page 314), we obtain Lemma 2. �

2.3.

Let D be the set of those lattice points n1, n2, n3 for which n1, n2, n3 ∈ N and
n1, n2, n3 are square-free numbers.

Let AD(x) := #{(n1, n2, n3) ∈ D|n1n2n3 ≤ x}. Since ζ(s)
ζ(2s) =

∑
n≥1

|μ(n)|
ns ,

therefore (
ζ(s)

ζ(2s)

)3

= ζ(s)3 · 1

ζ(2s)3
=

{∑ τ3(n)

ns

}{∑ ν3(n)

n2s

}
.

Since the conditions for α(m) = ν3(m) in Theorem 1 hold, therefore for AD(x)
(= A(2)(x)) the relation (2.6) is true. A3, A4, A5 are suitable constants.

Corollary 1. Let

RD(k) =
∑

(n1,n2,n3)∈D

P (Sn1n2n3 = k).

Assume that the conditions stated for X in Theorem A hold true. Then

Q(k)

1
μP
(
log k

μ

) → 1 (k → ∞)
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where P (u) = A3u
2 + A4u + A5, A3, A4, A5 are computed from A(2)(x) in the

case A(2)(x) = AD(x).
Remarks. We can prove similar theorems

(i) for the subset of lattice points (n1, n2, n3) such that n1, n2 run over the square-
free positive numbers, and n3 over all positive integers;

(ii) for the subset of lattice points (n1, n2, n3) such that n1 runs over the positive
square-free numbers, n2, n3 ∈ N;

(iii) for D = {(n1, n2)|n1, n2 are square-free};

(iv) for D = {(n1, n2)|n1 square-free, n2 ∈ N}.

3.

Let M1,M2 ∈ N, (0 ≤)l1 < . . . < lT (≤ M1), (0 ≤)k1 < . . . < kR(≤
≤ M2), GCD(lj ,M1) = 1 (j = 1, . . . , T ), GCD(kl,M2) = 1 (l = 1, . . . , R).

Let D =

{
(n,m)

∣∣∣∣ n ≡ lν (mod M1), ν = 1, . . . , T
m ≡ kμ (mod M2), μ = 1, . . . , R

}
,

AD(x) =
∑

nm≤x
(n,m)∈D

1.

Theorem 2. We have

AD(x) = A5x log x+A6x+O
(
x

1
3 (log x)A

)
.(3.1)

Consequently, if

QD(k) =
∑

(n1,n2)∈D

P (Sn1,n2
= k),(3.2)

and the conditions of Theorem A hold true, then

QD(k)
1
μ log k

μ

→ 1 (k → ∞).(3.3)

The proof of (3.1) can be done by the standard method used for proving that∑
n≤x

τ(n) − x(log x + (2γ − 1)) = O
(
x

1
3

)
. See e.g. E. Krätzel [8]. (3.3) is a

consequence of (3.1) of Theorem A.
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4.

4.1.

Let 0 ≤ α < 1, 0 ≤ β < 1,

D(x) = #
{
(n,m) ∈ N2, (n+ α)(m+ β) ≤ x

}
.

Theorem 3. We have

D(x) = x log x+ c(α, β)x+Rx(α, β)
√
x+O

(
x

1
3 (log x)2

)
,

where c(α, β) and Rx(α, β) are defined in the end of the proof. Rx(α, β) is bounded.

Proof. Let ψ(u) = {u}− 1
2 . Then [u] =

(
u− 1

2

)−({u} − 1
2

)
=
(
u− 1

2

)−ψ(u).
Let us write D(x) = Σ1 +Σ2 − Σ3, where

Σ1 =
∑

n≤√
x−α

[ϕ(n)− β], ϕ(n) =
x

n+ α
,

Σ2 =
∑

m≤√
x−β

[ϕ∗(m)− α], ϕ∗(m) =
x

m+ β
,

Σ3 =#{n|n ≤ √
x− α} ·#{m|m ≤ √

x− β}. �

Lemma 3 (Theorem 2.2 in E. Krätzel [8]) . Let f(t) be a real function in [a, b],
twice continuously differentiable, and let |f ′′(t)| ≥ λ2 > 0. Then∑

a<n≤b

ψ(f(n)) � |f ′(b)− f ′(a)|
λ

3
2
2

+
1√
λ2

.

Lemma 4 (Theorem 2.3 in E. Krätzel [8]) . Let f(t) be a real function in [a, b],
twice continuously differentiable. Let f ′′(t) be monotonic and b either positive or
negative throughout. Then

∑
a<n≤b

ψ(f(n)) �
∫ b

a

|f ′′(t)| 13 dt+ 1√|f ′′(a)| +
1√|f ′′(b)| .
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Estimation of Σ1.

We shall write Σ1 = ΣA − ΣB , where

ΣA =
∑

n≤√
x−α

(
ϕ(n)− β − 1

2

)
, ΣB =

∑
n≤√

x−α

ψ(ϕ(n)− β)

ΣA =
∑

n≤√
x−α

ϕ(n)− (β + 1)
[√

x− α
]
.

We have∑
n≤√

x−α

1

n+ α
=

∫ √
x−α

1−0

d([u]− 1
2 )

u+ α
=

∫ √
x−α

1−0

d
(
u− 1

2

)
u+ α

−
∫ √

x−α

1−0

dψ(u)

u+ α

= log
√
x− log(1 + α)− ψ(u)

u+ α

∣∣∣∣
√
x−α

1

+

∫ √
x−α

1−0

ψ(u)

(u+ α)2
du.

Thus ∑
n≤√

x−α

1

n+ α
=

1

2
log x+ C0(α)− ψ(

√
x− α)√
x

−
∫ ∞

√
x−α

ψ(u)

(u+ α)2
du

where

C0(α) = − log(1 + α) +

∫ ∞

1−0

ψ(u)

(u+ α)2
du.

Let

σ(x|a) = ψ(
√
x− α)√
x

+

∫ ∞

√
x−α

ψ(u)

(u+ α)2
du.

Observe that σ(x|α)√x = O(1).
Then

ΣA =
x

2
log x+ xC0(α)− xσ(x|α).

To estimate ΣB we shall use Lemma 4.
We have ϕ′(u) = −x

(u+α)2 , ϕ′′(u) = 2x
(u+α)3 . Let us apply Lemma 4 with

[a, b] = [U, 2U ], where 2U ≤ √
x− α. Then∑

U≤n≤2U

ψ(ϕ(n)) �
∫ 2U

U

( x

u3

) 1
3

du+
1√
x
U3

� x
1
3 logU +

U
3
2√
x
.

Doing this with U = (
√
x − α) · 2−l (l = 1, 2, . . . , l0) where l0 is the smallest

integer for which (
√
x− α) · 2−l0 ≤ x

1
3 , we have∑

n≤√
x−α

ψ(ϕ(n)) � x
1
3 (log x)2.
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Thus we have

Σ1 =
x

2
log x+ xC0(α)− xσ(x|α)−

(
β +

1

2

)
x

1
2 +O

(
x

1
3 (log x)2

)
.

Estimation of Σ2. Completely analogously, we have

Σ2 =
x

2
log x+ xC0(β)− xσ(x|β)−

(
α+

1

2

)
x

1
2 +O

(
x

1
3 (log x)2

)
.

Estimation of Σ3.

Σ3 =

(√
x− α− 1

2
− ψ(

√
x− α)

)(√
x− β − 1

2
− ψ(

√
x− β)

)
=

=x−√
x
{
α+ β + 1 + ψ

(√
x− α

)
+ ψ

(√
x− β

)}
+O(1).

Collecting our inequalities we have

D(x) =x log x+ x{C0(α) + C0(β)− 1}+
+
√
x
{
α+ β + 1 + ψ

(√
x− α

)
+ ψ

(√
x− β

)−
− α− β − 1−√

x(σ(x|α) + σ(x|β))}+O(1).

Thus our theorem holds with

c(α, β) = C0(α) + C0(β)− 1,

Rx(α, β) = ψ
(√

x− α
)
+ ψ

(√
x− β

)
+
√
xσ(x|α) +√

xσ(x|β)),

where

C0(α) = − log(1 + α) +

∫ ∞

1

ψ(u)

(u+ α)2
du,

Rx(α, β) =−√
x

{∫ ∞

√
x−α

ψ(u)

(u+ α)2
du+

∫ ∞

√
x−β

ψ(u)

(u+ β)2
du

}
=

=−√
x

∫ ∞

√
x

ψ(u− α) + ψ(u− β)

u2
du.

The theorem is proved. �
Remark. Rx(α, β) is not constant, lim sup |Rx(α, β)| > 0, Rx(α, β) is bounded

in x.
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4.2.

Let E = {e1 < e2 < . . .}, F = {f1 < f2 < . . .}, E(x) := #{e ∈ E|e ≤
≤ x}, F (x) = #{f ∈ F |f ≤ x}. Let D = {(e, f)|e ∈ E, f ∈ F}, AD(x) =
= #{(e, f) ∈ D|ef ≤ x}.

Theorem 4. Assume that

E(x) = c1x+O(xα), F (x) = c2x+O(xβ),

where c1, c2 are positive constants, 0 ≤ α ≤ 1, 0 ≤ β ≤ 1. Then

AD(x) =c3x log x+ c4x+O(xγ),

c3 = c1c2, γ = max

{
α+ 1

2
,
β + 1

2

}
,

c4 is a calculable constant.

Proof. We shall start from the formula

AD(x) =
∑

fμ≤√
x

E

(
x

fμ

)
+
∑

eν≤√
x

F

(
x

eν

)
− E

(√
x
)
F
(√

x
)
+O(1)

=Σ1 +Σ2 − Σ3 +O(1).

We have

Σ1 = c1x
∑

fμ≤√
x

1

fμ
+O(xα)

∑
fμ≤√

x

1

fα
μ

.

Let Δ(u) := F (u)− c2u.

T :=
∑

fμ≤√
x

1

fμ
=

∫ √
x

1

dF (u)

u
= c2

∫ √
x

1

du

u
+

∫ √
x

1

Δ(u)

u
=

=c2 log x+
Δ(u)

u

∣∣∣∣
√
x

1

+

∫ √
x

1

Δ(u)

u2
du.

Let c4 = −Δ(1) +
∫∞
1

Δ(u)
u2 du.

We have

Δ(
√
x)√
x

�(
√
x)α−1,∫ ∞

√
x

Δ(u)

u2
du �

∫ ∞

√
x

uα−2du � (
√
x)α−1,
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thus

Tx =
c1c2
2

x log x+ c4x+O
(
x

α+1
2

)
.

Furthermore ∑
fμ≤√

x

1

fα
μ

≤
∑

n≤√
x

1

nα
≤ (

√
x)1−α = x

1
2−α

2 .

Hence we obtain that

Σ1 =
c1
2
x log x+ c4x+O

(
x

α+1
2

)
.

Similarly, we can prove that

Σ2 =
c2
2
x log x+ c5x+O

(
x

β+1
2

)
.

with a numerically calculable constant.
Finally

Σ3 =
(
c1
√
x+O (xα

2

)) (
c2
√
x+O

(
x

β
2

))
=

=c1c2x+O
(
x

(1+α)
2

)
+O

(
x

(1+β)
2

)
.

Collecting our estimations, we obtain our theorem. �

We can prove similarly

Theorem 5. Let

E(x) = c1x+O(ε(x)x), F (x) = c2x+O(ε(x)x),

c1, c2 > 0, ε(x) ↓ 0. Then

AD(x) = c1c2x log x+O(ε(
√
x)x log x)

where c5 is a calculable constant.

5.

Let {y} = fractional part of y, ‖ y ‖= min
n∈Z

|x − n|. Let x1, . . . , xN be real

numbers, S(I) =
N∑

{xi}∈I
i=1

1, where I ⊆ [0, 1) is an interval.
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Let
D(x1, . . . , xN ) = sup

I⊆[0,1)

1

N
|S(I)− λ(I)N |,

λ(I) = length of I .
Let

ψk =

N∑
j=1

e(xj) (k = 1, 2, . . .), e(x) := e2πix.

According to a wellknown theorem due to P. Erdős and P. Turán [9]

ND(x1, . . . , xN ) ≤ C

⎛⎝ ∑
1≤k≤Y

|ψk|
k

+
N

Y

⎞⎠ ,(5.1)

where C is an absolute constant, Y ≥ 1 is an arbitrary number.
Let α be an irrational number, I an interval in [0, 1). Let A = {n|{nα} ∈

∈ I}, A(x) = #{n ≤ x|n ∈ A}. From (5.1) we obtain that

|A(x)− λ(I)x| ≤ C

⎛⎝2
∑

1≤k≤Y

1

k
· 1

||kα|| +
x

Y

⎞⎠ ,(5.2)

since in this case
ψk =

∑
1≤n≤x

e(knα),

and so

|ψk| =
∣∣∣∣e([x]kα)− 1

e(kα)− 1

∣∣∣∣ ≤ 2

||kα|| .

Let τ =
√
x, and A

Q , (A,Q) = 1 be such a rational number for which
∣∣∣α− A

Q

∣∣∣ ≤
≤ 1

Qτ , Q < τ holds. Choose Y = Q − 1. Since
∣∣∣kα− kA

Q

∣∣∣ < k
Qτ , therefore

||kα|| > 1
2Q , and so 1

||kα|| ≤ 2Q
Q , thus

|A(x)− λ(I)x| ≤ C

⎛⎝ x

Q
+ 4Q

∑
1≤k≤Y

1

k

⎞⎠ ≤ C

(
x

Q
+ 4Q logQ

)
.

Lemma 5. Let α ∈ (0, 1) be an irrational number, such that ||kα|| > 1
k1+κ (k ∈

∈ N), where κ is a fixed positive number. Let I be a subinterval in [0, 1), A and A(x)
be as above. Then

|A(x)− λ(I)x| ≤ Cx1− 1
2(1+κ) .(5.3)
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Proof. Since Q, defined earlier satisfies 1
Q1+κ < |Qα − A| ≤ 1

τ = 1√
x

, we have

Q > x
1

2(1+κ) . From Theorem 4 and Lemma 5 the following assertion is straightfor-
ward. �

Theorem 6. Let α, β be irrational numbers, ||kα||k1+κ1 ≥ 1, ||kβ||k1+κ2 ≥
≥ 1 (k ∈ N). Let I, J be subintervals in [0, 1),

A = {n|{nα} ∈ I}, B = {m|{mβ} ∈ J},
A(x) = #{n ≤ x|n ∈ A}, B(x) = #{m ≤ x|m ∈ B},

D(x) = #{(n,m)|nm ≤ x, n ∈ A,m ∈ B}.
Then

A(x) =λ(I)x+O
(
x
1− 1

2(1+κ1)

)
,

B(x) =λ(J)x+O
(
x
1− 1

2(1+κ2)

)
and so

D(x) = λ(I)λ(J)x log x+ cx+O (xγ) ,

where c is a calculable constant,

γ = max

(
1− 1

4(1 + κ1)
, 1− 1

4(1 + κ2)

)
.
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