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RENEWAL THEOREMS FOR SOME
WEIGHTED RENEWAL FUNCTIONS
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0. Klesov (Kiev, Ukraine)

Dedicated to Janos Galambos on his seventieth anniversary

1. Introduction

Let X, X1, Xo, ... be a family of integer valued, independent and identically dis-
tributed random variables with positive mean g and finite (positive) variance o. Let
Sn = X1 + ...+ X,,. The asymptotic behaviour of the weighted sum

(1.1) R(k) = anP(S, = k)
n=1

has been investigated in a paper of Galambos, Indlekofer and Katai [1]. In the special
case a,, = 7-(n), the number of solutions of the equation n = nyns . ..n, in positive
integers nj, 1 < j <r, R(k) becomes the renewal function Q(k) for a random walk
in 7 dimensional time whose terms are distributed as X. This special (important!)
case has been investigated earlier by Maejima and Mori [2], Ney and Wainger [3] and
Galambos and Kaétai [4].

The main results proved in [1] are the following.

Assume that a,, > 0, a, = O(n?), for every ¢ > 0. Let us assume that, with
some positive constants cy, ¢z, c3, ¢4 the inequalities

(1.2) crhL(z) < A(x 4+ h) — A(x) < cohL(x)
and

L(h
(1.3) c3 < LE{E; <cy

hold with a positive function L(x) forall z > 1 and /x < h < x.
https://doi.org/10.71352/ac.34.179
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Let
(1.4) Ri(k) = anpn(k),
n=1
where
(1.5) (k) = on(k; 02)—;& (—1 2 )
. “n PnR5 1, a\/ﬂn p 2 n,k
with

nu—k
ovn

Theorem A. Assume that X and a., satisfy the conditions related above hold true.

fn,k =

Then
(1.6) R(k) = R1(k) + o(R1(k)) as k — oc.
Furthermore, with suitbale positive constants cs and cg,
Ry (k)
1.7 5 < < cg.
(L.7) ¢S T ) = 6

Theorem B. Let a, > 0, a, = O(n®) for every € > 0. Let L(x) be a positive
Sunction for which (1.3) holds. Furthermore assume that A(x) < cxL(x) with some
positive constants c and that the lower inequality of (1.2) is valid. Let X satisfy the

conditions of Theorem A as well as the condition [ x*dF(z) = O(z~%) with a
x>

suitable constant 0 < a < 1, where F(x) is the distribution function of X. Then (1.6)

holds.

Theorem C. Let a,, be as in Theorem B, furthermore assume that (1.2) and (1.3)
hold. Furthermore assume that there exists a positive function o(x), tending to zero
monotonically, such that

(1.8) (A(z +h) — A(z))/hL*(z) — 1 (as x— 00)
uniformly in h € (o(x)\/x, \/x), where L*(x) is a very slowly varying function in the
sense that, as x — oo,
logY
(1.9) L*(Y(x))/L*(z) — 1, whenever log V(x) —
log x
Then, as k — oo,

Ry (k)
17« (E)
I H
In the next section we shall give some examples of a,, originated by some func-

tions defined on the lattice points for which the above conditions assumed in Theorem
A, B, C hold.

(1.10) —1 (k — 00).
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2.

2.1.

Let

2.1 e(x) = (loglog x)_% (logx)5.

il

Theorem 1. Let a(m) (m = 1,2,...) be such a sequence of real numbers for
which a(m) = O(73(m)), and

(2.2) E(z) = Z a(m) < zexp(—ce(z))

m<z

holds with a positive constant c.

Let
ag\}) = Z T(n)a(m),
N=nm?
(2.3)
ag\%) = Z T3(n)a(m).
N=nm?
Let
2.4) A(l)(x) = Z ag\}), A(z)(x) = Z agi).
N<zx N<zx
Then
(2.5) AW (z) = Ajzlogz + Asx + O(V exp(—ce(x)))
and

(2.6) AP (z) = Asz(logz)? + Ayzlogz + Asz 4+ O(Vz exp(—ce(z)))

where Ay, Ay, A3, Ay, A5 are constants.

Proof of Theorem 1.

Lemma 1. From (2.2) we have

a(m) 1
2.7) mz; 5 < exp(—eie(2)),
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a(m)(logm)* 1 —c B
(2.8) n; < Cexp (25(z)> 1=1,2...

where ¢ > 0 is a suitable constant.
Proof of Lemma 1. The left hand side of (2.7) is
/ CdE(u)  E(u)

u2 u?

* * E(u 1
] + Q/Z %du < 2 exp(—ci1e(2))
i.e. (2.7) is true. The proof of (2.8) is similar, we omit it.

We shall prove (2.6).
Let A(Q)(z) =31 + X9 — X3, where

(2.9) Si= Y am)$ Y m) p= > a(m)Ts (%)

(2.10) Se= Y 7(W)E ( f) ,

@.11) Y3 = E(VY)T; (%) ,
(2.12) Y = zexp(—cie(x))
and
(2.13) Ts(z) = 73(n).
n<z
Let

1
P(t) = 5152 + 3y — D)t + (39 = 3y + 3y + 1) = ast® + a1t + aq,
where v and ~; are given from the Laurent expansion of {(s) around s = 1:

()= —— 47+ 3 (s — D

s—1
k=1

According to the result of G. Kolesnik [5], (see A. Ivi¢ [6])
(2.14) T5(z) — 2P(log z)| < x96 <

forevery e > 0. Let§ = 22 + (< 1).
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We have
(2.15)
Y = m;ﬁa(rz;)mP (1og %) +0 |2 m;\/? |O;r(LZZ)| =X1,1 + X0
Since
IR

mg\/? mS\/ﬁ
therefore the error term %4 5 in (2.15) is O(y/z exp(—cie(x))).

Let us write
T \2 T
as (log —2) + a; (log —2) +agp =
m m

Sii=r 30
P(logz) + (—2az logm + a;1) log z+

m<VY

_xz

m<\/7
+ {2(log m)* — 2a; log m}}.

From the conditions on «(m), and from Lemma 1 we obtain that
S11 = asz(logz)? + asz(log x) + asz + O(vVz exp(—ci(x)))

holds with suitable constants a4, as, ag, furthermore a4y = i.

Now we estimate the sum >.

We have
Z 73(v) < \/ﬁlog U.
U<v<2U z
From (2.2),
} }
¥y < T3(v) (7> exp (—CE (f) ) =c Z,
v<E t>0 veJ,
x x
|, 27t71 . 27ti|
Je [Y Y
Since

Nl

(log ) exp(—ce(2'Y)),

Vi Yo

ved,

exp (—ce(2'Y)) < Vz - (; )
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therefore

zlogx
VY

if 0 < ¢4 is small enough.

Yo K

Z exp(—ce(2'Y)) < vz exp(—ce(x)),

Finally,
2y < VY exp(—c1e(z)) - (; log? ;) < VT exp(—ese()),

with some c3 > 0.
The proof of (2.6) is completed. ]

Remark. The proof of (2.5) is similar. Instead of T3(x) we have to take
Ty(x) = 7(n),
n<z

and instead of 73(n) the function 7(n).
It is known that

To(x) —x(logx + (2v — 1 gcx%-lo 2.
| g v g

We omit the details.
2.2.

Let ¢(s) be the Riemann zeta function. Then

1 )
(2.16) O e

n=1

where y is the Mobius function. 4 is multiplicative u(p) = =1, p(p*) =0 (a =
=2,3,...) for primes p.

Lemma 2. Let

1 _ > l/l(n> _
(2.17) o7 _; o =12,
(2.18) Ni(z) =Y wi(n).
v<x

For every fixedl € N
(2.19) Ni(z) < zexp(—qe(x)),

where c; is a positive, suitable constant.
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Proof. We can follow the argument used by A. Ivi¢. According to Lemma 12.3 in
[6] (page 310) there is an absolute constant C' > 0 such that

(2.20) 1 _0 ((1og 7)% (loglog T)%)
¢(s)

in the region (s = o + it)

2.21) o>1-——° 1 Ty <t<T

(logt)3 (loglogt)s
and ((s) # 0 in (2.21). We note that this assertion is a very deep result due to
N.M. Korobov and I.M. Vinogradov (see [6]).
By using the Perron-formula,

S

14 opz HT
/ T 4s 1+ O(va),
1

+1oes —iT SCl(S)

1

N =5

itT >2% z=[z]+3.
See e.g. in K. Prachar [7], Appendix §3. Transforming the integration line as Ivi¢
did (see page 314), we obtain Lemma 2. |

2.3.

Let D be the set of those lattice points 11, ne, ns for which ny,n2,n3 € N and
n1,Na, ng are square-free numbers.

Let Ap(z) := #{(n1,n2,n3) € D|ninang < x}. Since cls) 3 “‘757?)‘,

¢(25) n>1
therefore -
)\ . L _ [y m) vs(n)
<((2s) = ((s) C(2s)% Z s Z n2s [
Since the conditions for a(m) = vs(m) in Theorem 1 hold, therefore for Ap(x)

(= AP (z)) the relation (2.6) is true. Az, Ay, A5 are suitable constants.
Corollary 1. Let
Rp(k)= > P(Snnum, = k).
(n1,n2,n3)€D
Assume that the conditions stated for X in Theorem A hold true. Then
Q(k)

TD (log 5) =1 (k — o0)
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where P(u) = Asu® + Aqu + As, Az, A4, As are computed from AP (x) in the
case AP (z) = Ap(z).

Remarks. We can prove similar theorems

(i) for the subset of lattice points (n1,n2,n3) such that nq, ny run over the square-
free positive numbers, and ng over all positive integers;

(ii) for the subset of lattice points (n1,n2,n3) such that n; runs over the positive
square-free numbers, nqs, n3 € N;

(iii) for D = {(n1, n2)|n1, ng are square-free};

(iv) for D = {(n1,n2)|n;1 square-free, ng € N}.

Let My,M; € N, ( S)ll < < lT(S Ml), (0 S)kl < < kR(S
< M), GCD(l;,My)=1 (j=1,...,T), GCD(k;,My)=1(=1,...,R).

_ n=1, (mod My), v=1,...,T
LetD = {(n,m) m =k, (mod M), pu= 1,...,R}’
(nm3eD

Theorem 2. We have
3.1) Ap(x) = Aszlogx + Agz + O (x%(log:v)A) .
Consequently, if

(3.2) Qo(k) =Y P(Snin, = k),
(n1 ,nz)ED
and the conditions of Theorem A hold true, then

@p(k)

1 k
ﬁlog;

(3.3) =1 (k> oo).

The proof of (3.1) can be done by the standard method used for proving that
>r(n) —z(logz + (2y—1)) = O (33%) See e.g. E. Kriitzel [8]. (3.3) is a

n<z
consequence of (3.1) of Theorem A.
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4.

4.1.

Let0<a<l 0<p8<1,
D(z) =#{(n,m) e N>, (n+a)(m+p)<a}.
Theorem 3. We have
D(z) = zlogz + c¢(a, B)x + Ry (ar, B)vVw + O (a?%(log x)Q) ,
where ¢(a, 8) and Ry («, B) are defined in the end of the proof. R («, 3) is bounded.

Proof. Lett(u) = {u}—3. Then[u] = (u—3)—({u} — %) = (u— 1) —v(u).
Let us write D(z) = X1 + Yo — X3, where

Si= ) lem gl e = ——
n<{z—a

So= Y [pm)—al,  f(m)=——0),
m< Va8 m+p

Yy =#{nln <V —a}-#{mm <Vzr-p}.  H

Lemma 3 (Theorem 2.2 in E. Kriitzel [8]). Let f(t) be a real function in [a,b),
twice continuously differentiable, and let | f' (t)| > A2 > 0. Then
(b) = f'(a)] = 1

- + .
Az vz

S w(rm) <

a<n<b

Lemma 4 (Theorem 2.3 in E. Kriitzel [8]). Let f(t) be a real function in |[a,b),
twice continuously differentiable. Let f"(t) be monotonic and b either positive or
negative throughout. Then

3 () < /bf"<t>|%dt+ LI
a<n<b a \/|f/’(a)\ \/|f"(b)|.
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Estimation of X;.

We shall write 31 = Y4 — X g, where
1
Sam ¥ (em-6-3). Zem X e -s)
n<Vz—a n<Va—a

Sa= Y, ¢m)—(B+1)[Ve—al.
n<{/z—a

We have

5 1 :/ﬁa d([u] - 3) :/ﬁad(u—;) _/\/M di)(u)
ngﬁian—i—a 1-0 U+« 1-0 U+« 1-0 U+«

Vi—a Va—a
:logf—log(lJrCV)*% +‘/1 0 (Uw-in)é)Qdu'

L _

Thus

11 vve—a) [ w(u)
n;ﬁ:anJra _§logx+00(04)_ Nz /m_(l (u+a)2du
where o0 (
Co(a) = —log(1+a) + /HJ (u¢ uaﬁd“'
Let

o(xl|a) =

Observe that o (z|a)v/z = O(1).
Then .
Ya= B logz + 2Co(a) — zo(z|a).

To estimate > we shall use Lemma 4.

We have ¢'(u) = TaTe)? @' (u) = (uii";)g Let us apply Lemma 4 with
[a,b] = [U,2U], where 2U < \/z — a. Then
2U 1 3
3 1 U2
Z w(go(n))<</ (%)Sdu+7m<<xélogU+7
U<n<2U U u Us g

Doing this with U = (y/z —a) - 270 (I = 1,2,...,1ly) where [y is the smallest
integer for which (y/Z — a) - 27% < 23, we have

Y w(pn) < b (log)®.
n<yr—a
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Thus we have

ol

Y= glogx + 2Cy(a) — zo(z|a) — (5 + ;) 22 4+ 0 (IE (Ing)2> .

Estimation of >,. Completely analogously, we have

Yo = glogx +2Cy(B) — zo(x|B) — <Ot + ;) 22+ 0 (50%(10%37)2) .

Estimation of 3.

B (VE-a-g-vE-a)) (VE- 8- 5 - ulvE-9)) -
=z —Vz{a+B+1+¢(Voe—a)+¢ (Vo—B)}+0(1).
Collecting our inequalities we have

D(z) =zlogz + z{Co(a) + Co(B) — 1}+
+Va{a+B+1+¢ (Vo —a) +¢ (Vo —8) -
—a—f-1-Va(o(ela) + o(x|B)} + O(1).

Thus our theorem holds with
c(a,B) = Co(a) + Co(B) — 1,
Ry(o, ) =9 (Va —a) + ¢ (Vo = B) + Vo (z|a) + Vo (z|B)),
where

o
(a+ay™

Co(a) = —log(1+ )+ /100

Ro(o,8) =~ Va { /; @ﬂ(izpd“ - /;B <uw+(uﬂ)>2d“} -
:—ﬁ/w plue) tvlu=Py,
Nz

u2

The theorem is proved. ]

Remark. R, (a, ) is not constant, lim sup | R, (c, 8)| > 0, R;(«, ) is bounded
in z.
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4.2.

Let E={e1 <ex<...}, F={fi<fo<...}, E(x):=H#{e€Ele
<z}, F)=#{feF|f<z}.LetD={(e,f)lec E,f € F}, Ap(x)

=#{(e,f) € Dlef < x}.
Theorem 4. Assume that
E(z) = ciz + O(x®), F(z) = cox + O(zP),
where c1, co are positive constants, 0 < a <1, 0< g < 1. Then

Ap(z) =czzlogx 4 cux + O(27),
a+1l g+ 1}

C3 = C1C2, '}/:max{ 5 y 5

¢4 is a calculable constant.

Proof. We shall start from the formula

=5 + %, f23+(9( ).

We have

Y1 =cz Z ?+O Z fa'
“w

fuf\/; fu<f

N L YRR YPdu  YVE AW
re T [T T

A
=co log x + % >

e YEN
+/ ﬂdu.
1

1

Letcy = —A(1) + [ Au(;” du.
We have

A(Va) a1
NG < (V)

/ A(;L)du <</ ua72du < (\/5)04717
v U NG

)
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thus
Tx = 6172z10gx+04:1:+(’)( a“).

Furthermore

Ns)

L < (v =at
fu< n<yVz

Hence we obtain that

Y= —a:logx+04x+0(

\+
=
——

Similarly, we can prove that

Yo = %xlogm—&—cm—&—@ (x%

-
N—

with a numerically calculable constant.
Finally

B3 = (e1vz + O (2)) (CQ\F+O ( %))

=cicox + O (x(lga)) ( 2 )

Collecting our estimations, we obtain our theorem.

We can prove similarly
Theorem 5. Let
E(z) =z + O(e(x)r), F(x)=cox+ O(e(x)x),
c1,¢2 >0, e(x) ] 0. Then
Ap(z) = crcazlogz + O(e(Vz)z log x)

where cs is a calculable constant.

Let {y} = fractional part of y, || y ||= mirzl |z — n|. Let zq,...,
ne

N
numbers, S(I) = > 1, where I C [0, 1) is an interval.

{z;}er
i=1

xy be real
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Let

A(I) = length of I.
Let

N
Y = Ze(xj) (k=1,2,...), e(x):=e™",
j=1

According to a wellknown theorem due to P. Erdds and P. Turéan [9]

N
(5.1 ND(zy,...,zny) <C | Y M+? ,
1<k<Y

where C' is an absolute constant, Y > 1 is an arbitrary number.

Let « be an irrational number, I an interval in [0,1). Let A = {n|{na} €
eI}, A(z)=#{n <z|n € A}. From (5.1) we obtain that

1 +£
kol Y ]’

(5.2) Ax) = ADel<C (2 %

1<k<Y

since in this case

Y = Z e(kna),

1<n<z

and so

[Yr| =

e([z]ka) — 1 2
e(ka) — 1 ’ = Tkall’

Let 7 = \/z, and S, (A,Q) = 1 be such a rational number for which ’a - %‘ <

@ < 7 holds. Choose Y = @ — 1. Since ‘ka— %’ < £ therefore

1
S @7 QT’

2
[|kal| > % and so m < g, thus

1 T
|A(z) — A(Dz| < C £+4Q — §0(+4QlogQ>.
a7 2 3)=%g

Lemma 5. Let o € (0,1) be an irrational number, such that ||ka|| > = (k €
€ N), where & is a fixed positive number. Let I be a subinterval in [0,1), A and A(x)
be as above. Then

(53) A(z) — A(I)a| < Gt~ 505
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Proof. Since (), defined earlier satisfies ﬁ <|Qa—A| < % = L, we have

T b
@ > z21+%) . From Theorem 4 and Lemma 5 the following assertion is straightfor-
ward. ]

Theorem 6. Let o, 3 be irrational numbers, ||kal|kitrt > 1, ||kB||k1Tr2 >

>1 (ke€N). Let I, J be subintervals in [0, 1),
A={n|{na} € I}, B={m|{mB} e J},

Ax) =#{n <zln € A}, B(z)=#{m <zlm € B},
D(x) = #{(n,m)|nm < x,n € A,m € B}.

Then
1— >t
() =Xz + 0 (o= )
B(z) =X(J)x+ O (:cl_?(l*l”ﬂ))

and so
D(z) = MDA (J)zlogz + cx + O (27),

where c is a calculable constant,

1 1
=max | 1— ,1— .
! ( A +m) " A1+ m)
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