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ON QUANTITATIVE MEAN VALUE ESTIMATIONS
FOR MULTIPLICATIVE FUNCTIONS
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Abstract. In this paper we use the convolution identity of Indlekofer
to derive quantitative mean value estimations for a class of multiplicative
functions f the values of which at primes satisfy |f(p)− κ| ≤ η < κ where
κ > 1/2. This generalizes earlier results by Halász and Elliott which are
valid only for completely multiplicative functions and for the case κ = 1

1. Introduction

In [3, 4, 5] a method was established to prove quantitative mean-value
estimations for multiplicative functions f of modulus ≤ 1. The underlying
idea was to estimate the difference of means of two arithmetic functions if
the behaviour of one of them is known. To be specific, we started with an
estimation of

M(f −Axg, x) :=
∑
n≤x

(f(n)−Axg(n))(1.1)

where Ax ∈ C and g is multiplicative with g(1) = 1.
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If |f | ≤ 1 is multiplicative, we could prove, by choosing g(n) = nia, a ∈ R,
quantitative version of results by Wirsing [6] and Halász [2]. In this paper we
show that the idea works perfectly in the situation where we compare f with
the function g = τκ where τκ is defined by (s = σ + it)

∞∑
n=1

τκ(n)

ns
= (ζ(s))κ (σ > 1).(1.2)

Here ζ(s) denotes Riemann’s zeta function and κ ∈ R. We assume that f �= 0
is multiplicative and that the generating function

F (s) =
∞∑

n=1

f(n)

ns
=
∏
p

(1 +

∞∑
α=1

f(pα)

pαs
)(1.3)

is absolutely convergent for σ > 1 and can be written in the form

F (s) = exp(
∞∑

n=2

f̃(n)Λ(n)

log n
n−s) for σ > 1(1.4)

where Λ denotes von Mangoldt’s function. Obviously F (s) �= 0 if σ > 1.

Remark 1. The connection between f and f̃ is given by Dirichlet’s con-
volution

f(n) log n = (Λf̃ ∗ f)(n) n ∈ N

which holds since f �= 0. From this we conclude

f̃(p) = f(p)

f̃(pα) = αf(pα)−
α−1∑
β=1

f̃(pβ)f(pα−β) (α ≥ 2).
(1.5)

To give an estimate of M(f − Axg, x) with some Ax ∈ C we assume that f is
„near” to g = τκ. The essential condition for this will be

|f(p)− κ| ≤ η < κ.

We prove

Theorem 1.1. Let f �= 0 be multiplicative and let x ≥ 2. Let κ > 1/2 and
0 ≤ η0 < κ, 0 < λ0 ≤ 2. Let f̃ be defined by (1.5). Assume that

|f̃(pα)− κ| ≤ ηα(2− λ)α−1 for all primes p and all α ∈ N(1.6)
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with pα ≤ x, where 0 ≤ η ≤ η0, and λ0 ≤ λ ≤ 2. Put

Ax = exp(
∑
p≤x

f(p)− κ

p
).(1.7)

Then, if τκ is given by (1.2), there exist positive constants c1, c2 which depend
at most on κ, λ0, η0 such that,

(1.8)

|
∑
n≤x

f(n)−Ax

∑
n≤x

τκ(n)| ≤ c1ηx log
κ−1 x|Ax|+

+c1x log
κ−1 x exp(

∑
p≤x

|f(p)| − κ

p
){exp(−c2

η
) + log−c2 x}.

Remark 2. It is easy to show that the conditions of Theorem 1.1 imply
that F (s) converges absolutely for σ > 1 and that the estimate∑

n≤x

f(n) � x

log x

∑
n≤x

|f(n)|
n

(1.9)

holds uniformly for x ≥ 2. Since∑
pα

α≥2

f(pα)

pα
� 1

p2

the inequality ∑
n≤x

|f(n)|
n

� exp(
∑
p≤x

|f(p)|
p

).

is obvious.

Example 1.1.
1. Let λ be a positive real number smaller than one. Choose, for every

prime p, λ ≤ c(p) ≤ 2− λ. Define the multiplicative function f by

f(pα) =

⎧⎨⎩
c(p)α+1 − 1

c(p)− 1
if c(p) �= 1

α+ 1 otherwise.

Then f satisifies the conditions of Theorem 1.1 with κ = 1.
2. Assume that κ > 1/2 and 0 ≤ η ≤ η0 < 1. Let g be a completely

multiplicative function with

|g(p)− 1| ≤ η.
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Let the multiplicative function defined by

f = τκ−1 ∗ g.(1.10)

Then f fulfills the conditions of Theorem 1.1.
The case κ = 1 has been proved by Elliott and Halász (see [1], Theorem

19.2).

3. Assume that κ > 1/2 and 0 ≤ η ≤ η0 < 1. Let g be multiplicative with

|g(p) + 1| ≤ η

and g(pα) = 0 for all primes p and α ≥ 2. Then Theorem 1.1 holds for

f = τκ+1 ∗ g.(1.11)

Theorem 1.1 will follow from

Theorem 1.2. Let f �= 0 be multiplicative and let x ≥ 2. Let κ > 1/2 and
0 ≤ η0 < κ, 0 < λ0 ≤ 2. Let f̃ be defined by (1.5). Assume that

|f̃(pα)− κ| ≤ ηα(2− λ)α−1 for all primes p and all α ∈ N(1.12)

with pα ≤ x, where 0 ≤ η ≤ η0, and λ0 ≤ λ ≤ 2. Put,

M(x) =
∑
n≤x

(f −Aτκ) (n).

Then the estimate

(1.13)
log2 x|M(x)| � x log x

x∫
1

|M (u) |
u2

du+ x
∑
n≤x

|f(n)|
n

+(η + log−1 x)|A|x logκ+1 x,

holds uniformly for all A ∈ C. The implied constant depends at most on
κ, η0, λ0.

For 0 < u ≤ 1 we define the functions H0 (u) and H1 (u) by

H2
0 (u) :=

∞∫
−∞

∣∣∣∣F (1 + u+ it)−Aζκ(1 + u+ it)

1 + u+ it

∣∣∣∣2 dt



On estimations for multiplicative functions 119

and

H2
1 (u) :=

∞∫
−∞

∣∣∣∣F ′ (1 + u+ it)−A(ζκ(1 + u+ it))′

1 + u+ it

∣∣∣∣2 dt,
respectively.

The integral appearing in Theorem 1.2 can be estimated by using the
following result proved in [4].

Theorem 1.3. Let M(x) =
∑

n≤x (f −Aτκ) (n) as above. Then

(i)
x∫

1

|M(u)|
u2

du � H0

(
1

log x

)
(log x)

1
2 ,

(ii)
x∫

1

|M(u)|
u2

du � H1

(
1

log x

)
,

(iii)
x∫

1

|M(u)|
u2

du �
1∫

1
log x

H1(y)

y1/2
dy.

2. A convolutional identity

As usual c will denote a constant not necessarily having the same value at
different occurrences. p, q will denote prime numbers.

We recall some well known properties of the Dirichlet convolution of arith-
metical functions.

In the following we use the convolution arithmetic for functions from

S := {f : R → C, f(x) = 0 for x < 1} ,

which coincides with the Dirichlet convolution for the class

A := {f ∈ S : f(x) = 0 for x /∈ N} .

of arithmetical functions.
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So, for f, g ∈ S, the convolution f ∗ g in S is defined by

(f ∗ g)(x) =
∑

1≤n≤x

f
(x
n

)
g(n)

and

(f · g)(x) = (fg)(x) = f(x)g(x).

The "action" of this definition on functions of A is given by the following: if
f ∈ A, g ∈ S then fg ∈ A and for n ∈ N,

(f ∗ g)(n) =
∑
d|n

f
(n
d

)
g(d).

In general the operation ∗ is not commutative in S, but if f, g ∈ A then
f ∗ g = g ∗ f.

Consider the function ε defined by

ε(x) =

⎧⎨⎩
1 for x = 1,

0 otherwise.

Clearly ε ∈ A, and
f ∗ ε = f for f ∈ S

and

(ε ∗ f)(x) =

⎧⎪⎨⎪⎩
f(x) if x ∈ N,

for f ∈ S.
0 otherwise

(2.1)

Thus ε serves as a right identity under convolution for all of S, but it is a left
identity only in A.

The relation (2.1) suggests that for each f ∈ S we define an image f0 ∈ A
by

f0 = ε ∗ f for f ∈ S.
The Möbius function μ is defined by

10 ∗ μ = ε,

where 10 = ε ∗ 1 and 1 ∈ S with

1(x) =

⎧⎨⎩
1 for x ≥ 1,

0 otherwise.
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The well knownMöbius inversion formula says that if f, g ∈ S then f = g∗10

if and only if g = f ∗ μ.
Let L ∈ S denote the logarithm function. Then obviously L acts as a

derivation on S, that is
L · (f ∗ g) = (L · f) ∗ g + f ∗ (L · g) for all f, g ∈ S.

Further, we introduce the von Mangoldt function Λ ∈ A by

ε ∗ L = L0 = Λ ∗ 10,

i.e.
Λ = L0 ∗ μ,

and for f ∈ S the corresponding von Mangoldt function is defined by

f0 ∗ Λf = L0f.

The quantitative estimations are described in [3]. For the sake of completeness
we give the proof of

Theorem 2.1. Let the arithmetical function f, g ∈ A satisfy f(1) �= 0 and
g(1) �= 0. Put M = 1 ∗ (f − g). Then

L2M = M ∗ (Λg ∗ Λg + L0Λg) + (R1 +R2) ∗ Λg + L(R1 +R2),

where

R1 = L ∗ (f − g)

R2 = 1 ∗ f ∗ (Λf − Λg).

Proof. Obviously

LM = L ∗ (f − g) + 1 ∗ L0(f − g).

Then

LM = 1 ∗ (f ∗ Λf )− 1 ∗ (g ∗ Λg) +R1 =

= 1 ∗ (f − g) ∗ Λg + 1 ∗ f ∗ (Λf − Λg) +R1 =

= M ∗ Λg +R1 +R2,

(2.2)

where
R1 = L ∗ (f − g)

and
R2 = 1 ∗ f ∗ (Λf − Λg).
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We multiply (2.2) with L and obtain

(2.3) L2M = LM ∗ Λg +M ∗ L0Λg + LR1 + LR2.

Then, substituting (2.2) in (2.3) we arrive at

L2M = M ∗ (Λg ∗ Λg + L0Λg) + (R1 +R2) ∗ Λg + L(R1 +R2)

which leads immediately to Theorem 2.1. �

We prove

Lemma 2.1. Let f, h ∈ A such that∑
n≤x

h(n) = cx log x+O(x).(2.4)

Then

(|Mf | ∗ h)(x) =
∑
n≤x

|Mf (
x

n
)|h(n) =

= c

x∫
1

|Mf (
x

t
)|(log t)dt+O

⎛⎝x
∑
n≤x

|f(n)|
n

⎞⎠ .

Proof. Let

H(t) :=
∑
n≤t

|f(n)|.

Then H(t) is increasing function of t furthermore for 1 ≤ t < t′

||Mf (t)| − |Mf (t
′)|| ≤ |Mf (t)−Mf (t

′)| ≤ H(t′)−H(t).

The assertion follows by partial summamtion in the same way as in the proof
of Lemma 3.1 in [5]. �

3. Proof of the theorems

Proof of Theorem 1.2. We apply Theorem 2.1 and show first that

R1(x) = O(
x

log x
(
∑
n≤x

|f(n)|
n

+ |A| logκ x))(3.1)
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and

R2(x) � 1

log x

x∫
1

|M(
x

t
)| log tdt+ (η + log−1 x)|A|x logκ x+

x

log x

∑
n≤x

|f(n)|
n

.

(3.2)

Then we deduce

(R1 ∗ Λτκ) (x) = O
⎛⎝x(

∑
n≤x

|f(n)|
n

+ |A| logκ x)
⎞⎠

and

(R2 ∗ Λτκ) (x) =

= O
⎛⎝ x∫

1

|M(
x

t
)| log tdt+ (η + log−1 x)|A|x logκ+1 x+ x

∑
n≤x

|f(n)|
n

⎞⎠ .

Now using (1.9) we deduce

R1(x) = (L ∗ (f −Aτκ)) (x) =

x∫
1

M(u)

u
du

x∫
1

Mf (u)−AMτκ(u)

u
du �

�
∑
n≤x

|f(n)|
n

x∫
2

1

log u
du+ |A| logκ x

x∫
2

1

log u
du.

This proves (3.1) since the estimates∑
n≤x

τκ(n)

n
≤ e−1

∑
n≤x

τκ(n)

n1+ 1
log x

� ζκ(1 +
1

log x
) � logκ x

hold. Now

LR2(x) = L(1 ∗ f ∗ (Λf − Λτκ))(x) =

= L ∗ f ∗ (Λf − Λτκ)(x) + 1 ∗ L0f ∗ (Λf − Λτκ)(x)+

+ 1 ∗ f ∗ L0(Λf − Λτκ)(x).

(3.3)

Since

(3.4)

∑
pα≤u
α≥2

α(2− λ)α−1 log p �
∑

p≤√
u

log p
∑

α≤ log u
log p

α exp(α log(2− λ0)) �

� log u
∑
p≤5

exp(
log(2− λ0)

log p
log u) + u1/2−ε log2 u

∑
p≤√

u

1 � u1−ε
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holds for some appropriate fixed 1/2 > ε > 0, we conclude∑
n≤u

|Λf (n)− Λτκ(n)| ≤ η
∑
pα≤u

log p+ c
∑
pα≤u
α≥2

α(2− λ)α−1 log p ≤

≤ ηu+ cu1−ε,

(3.5)

which implies

(3.6) L ∗ (Λf − Λτκ)(y) =

y∫
1

∑
n≤u(Λf − Λτκ)(n)

u
du � y.

Thus

L ∗ f ∗ (Λf − Λτκ)(x) � x
∑
n≤x

|f(n)|
n

.

Observing Lf = Λf ∗ f we get

|Λf − Λτκ | ≤ ηΛ + cΛ̃,

where

Λ̃(n) =

{
α(2− λ0)

α log p if n = pα, α > 1

0 otherwise .

This leads to

LR2(x) = 1 ∗ f ∗ (Λf ∗ (Λf − Λτκ) + L(Λf − Λτκ))(x)+

+O(x
∑
n≤x

|f(n)|
n

)

� |1 ∗ (f −Aτk)| ∗ [(ηΛ + Λ̃) ∗ (Λ + Λ̃) + L(ηΛ + Λ̃)](x)+

+ x
∑
n≤x

|f(n)|
n

+

+ |A|1 ∗ τk ∗ (|Λf | ∗ |Λf − Λτκ |+ L|Λf − Λτκ |)(x).

(3.7)

Selberg’s Symmetry Formula in the form∑
n≤x

Λ(n) ∗ Λ(n) + Λ(n) log n = 2x log x+O(x),

can easily be obtained by using convolution techniques. See for example [5].
Note that by (3.4)

1 ∗ Λ̃ ∗ Λ̃(x) � x and 1 ∗ Λ ∗ Λ̃(x) � x.
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Thus, by Selberg’s formula, Lemma 2.1 is applicable to the first term on the
right hand side of (3.7), and we arrive at

R2(x) � 1

log x

x∫
1

|M(
x

t
)| log tdt+ x

log x
(
∑
n≤x

|f(n)|
n

+ |A| logκ x)+

+ η|A|x logκ x,

which proves (3.2). Here in the last step we used the inequality

1 ∗ τk(n) ∗ (|Λf | ∗ |Λf − Λτκ |+ L|Λf − Λτκ |)(x) �
∑
n≤x

|τκ(n)|x
n
(η log

x

n
+ 1),

which is nothing else but

ηx

x∫
1

∑
n≤u

|τκ(n)|
n

u
du+ x

∑
n≤x

τk(n)

n
� (η +

1

log x
)x logκ+1 x.

Concerning R1 ∗ Λτκ(x) we obtain in the same way.

L ∗ Λτκ(y) � y,

Therefore

R1 ∗ Λτκ(x) = L ∗ (f −Aτκ) ∗ Λτκ(x) = (L ∗ Λτκ) ∗ (f −Aτκ)(x) �

� x(
∑
n≤x

|f(n)|
n

+A logκ x).

We estimate R2 ∗Λτκ(x) = 1∗f ∗ (Λf −Λτκ)∗Λτκ(x) in the same way as above.
Then using

x∫
1

|M
(x
t

)
|(log t)dt ≤ x log x

x∫
1

|M (u) |
u2

du

ends the proof. �

Proof of Theorem 1.1. We use the estimate

ζκ(s) = O(
1

|s− 1|κ ),(3.8)

which holds uniformly for all |τ | � 1, 2 > σ > 1.



126 L. Germán, K.-H. Indlekofer and O. Klesov

Lemma 3.1. Let |f(p)− κ| ≤ η. Then

F ′(s)−A(ζκ(s))′ � |A|
|s− 1|κ {η log(2 + |s− 1| log x) + Σ1}exp{Σ1}

σ − 1
(3.9)

uniformly for all τ � 1, 1 < σ ≤ 2, 2 < x, as long as η log(2+|s−1| log x) � 1,
where

Σ1 = sup
τ

|
∑
p>x

f(p)− κ

ps
+
∑
pα

α≥2

f̃(pα)− κ

αpαs
|.

Proof of Lemma 3.1. Since

ζκ(s) = exp(
∑
n>1

κΛ(n)

ns log n
),

we have

(3.10)

F (s)−Aζκ(s) = ζκ(s)(exp(
∑
n>1

Λ(n)(f̃(n)− κ)

ns log n
)−A) �

� |ζκ(s)A|| exp(
∑
n>1

Λ(n)(f̃(n)− κ)

ns log n
−
∑
p≤x

f(p)− κ

p
)− 1| �

� |ζκ(s)A|| exp(
∑
p≤x

(f(p)− κ)(
1

ps
− 1

p
) +
∑
p>x

f(p)− κ

ps
+

+
∑
pα

α≥2

f̃(pα)− κ

αpαs
)− 1|.

Note that ∑
p≤x

| 1
ps

− 1

p
| � log(2 + |s− 1| log x),(3.11)

holds uniformly for 1 ≤ σ ≤ 2, 2 < x. Then substituting it in the inequality
(3.10) we have for all s with η log(2 + |s− 1| log x) � 1 that

F (s)−Aζκ(s) � |ζκ(s)A|{η log(2 + |s− 1| log x) + Σ1}×
× exp{η log(2 + |s− 1| log x) + Σ1} �

� |ζκ(s)A|{η log(2 + |s− 1| log x) + Σ1} exp{Σ1}.
(3.12)

Let Γ be the circular path surrounding s with radius (σ − 1)/2. It is easy to
check that the conditions for the above inequality are satisfied for the points
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of Γ. Therefore using Cauchy’s theorem and (3.8) we obtain

(3.13)

F ′(s)−A(ζκ(s))′ =
∫
Γ

F (z)−Aζκ(z)

(z − s)2
dz �

� |A|{η log(2 + |s− 1| log x) + Σ1}
(σ − 1)2

exp{Σ1}
∫
Γ

1

|z − 1|κ dz �

� |A|{η log(2 + |s− 1| log x) + Σ1}
σ − 1

exp{Σ1} 1

|s− 1|κ

uniformly for |τ | � 1, 1 ≤ σ ≤ 2, 2 < x, η log(2 + |s − 1| log x) � 1. Here we
used the inequalities

|s− 1|/2 ≤ |s− 1| − |z − s| ≤ |s− 1 + z − s| = |z − 1|
and

|z − 1| ≤ 3/2|s− 1|
which hold on Γ. �

Put
F0(s) = exp(

∑
p

|f(p)|
ps

).

Lemma 3.2. Let f be a multiplicative function the generating function of
which is absolutely convergent for �s > 1. Suppose further that f(p) = 0 or
0 < λ1 ≤ |f(p)| for each prime p. If f(p) is nonzero let θp = arg f(p) with
−π < arg z ≤ π for all complex numbers z. Assume that there are real numbers
θ0, and δ > 0 such that

|eiθ0 − eiθp | ≥ δ

holds. Then there are positive constants τ0, K so that the following inequalities
are satisfied for 1 < σ ≤ 2:

|F (s)|
F0(σ)

≤ KΣ2 exp

⎛⎝− δ3λ

64π
log

1

σ − 1
+

δ2λ

8

∑
f(p)=0

1

pσ

⎞⎠(3.14)

if
τ0 < |τ | < −2 + exp

(
(σ − 1)

−3δ3

64π

)
, 1 < σ ≤ 2

and

|F (s)|
F0(σ)

≤ KΣ2 exp

⎛⎝− δ3λ

32π
log

(
1 +

|τ |
σ − 1

)
+

δ2λ

8

∑
f(p)=0

1

pσ

⎞⎠(3.15)
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if |τ | ≤ τ0, 1 < σ ≤ 2, where

Σ2 = sup
τ

exp(|
∑
pα

α≥2

f̃(pα)

αpsα
|).

Proof of Lemma 3.2. A variant of this lemma can be found in [1] Lemma
19.6. Therefore we only sketch the proof. The conditions imply

|F (s)|
F0(σ)

= exp(
∑
pα

α≥2

f̃(pα)

αpsα
) exp(

∑
f(p) �=0

(�{eiθppit} − 1)|f(p)|
pσ

)

≤ Σ2 exp(
∑

f(p) �=0

(�{eiθppit} − 1)|f(p)|
pσ

).

For a, b ∈ R we use the notation

|a− b| (mod 2π) := min
k∈Z

|a− b+ 2kπ|.

Let ψ(eiθ) ∈ C2π(R) such that it is zero at θ0 ± δ/2 , δ2/8 at θ0, and linear on
the intervals between these three points, ( mod 2π), and zero otherwise. The
Fourier series expansion of ψ is given by

ψ(eiθ) =
∑
l∈Z

ale
ilθ,(3.16)

where

al =
1

2π

π∫
−π

ψ(eiθ)e−iθldθ.

Obviously a0 = δ3

32π , and

|al| ≤ 8

πl2

for all l �= 0. Further

1−�eiθpp−iτ ≥
{

δ2

8 if |θ0 − τ log p| (mod 2π) ≤ δ/2

0 otherwise

Thus 1−�eiθpp−iτ is at least as large as ψ(piτ ). This implies∑
f(p) �=0

(1−�{eiθpp−iτ})|f(p)|p−σ ≥
∑

λψ(piτ )p−σ − δ2λ

8

∑
f(p)=0

p−σ,(3.17)



On estimations for multiplicative functions 129

and by (3.16) we obtain that the first term on the right hand side of (3.17) is∑
l∈Z

λal log ζ(σ − ilτ) +O(1).

Since ∑
l∈Z

al log ζ(σ − ilτ) ≥
⎧⎨⎩

a0
2

log 1
σ−1 + 1 if |τ | > τ0

a0 log
|τ |
σ−1 + 1 if |τ | ≤ τ0,

the proof is finished. �

Lemma 3.3. Under the conditions of Lemma 3.2. the inequality

|F (s)|
F0(σ)

≤ KΣ2 exp

⎛⎝− δ3λ

32π(A+ 2)
log

(
1 +

|τ |
σ − 1

)
+

δ2λ

8

∑
f(p)=0

1

pσ

⎞⎠(3.18)

holds uniformly for all |τ | ≤ (σ − 1)−A.

Proof of Lemma 3.3. Using

log(1 +
|τ |

σ − 1
) ≤ (A+ 2) log(

1

σ − 1
) + c

which holds uniformly for all |τ | ≤ (σ − 1)−A we obtain by (3.14) that

|F (s)|
F0(σ)

≤ KΠ2 exp

⎛⎝− δ3λ

32π(A+ 2)
log

(
1 +

|τ |
σ − 1

)
+

δ2λ

8

∑
f(p)=0

1

pσ

⎞⎠
holds for all τ0 ≤ |τ | ≤ (σ − 1)−A. On the other hand by (3.15) the same
inequality is valid for |τ | ≤ τ0, thus the assertion of Lemma 3.3 follows. �

Define βy = exp(r)y, and δ = exp(r) with 2r = 1
η+1/ log log x . Let

H2(1 + y) =

∞∫
−∞

|F
′(1 + y + it)−A(ζκ(1 + y + it))′

1 + y + it
|2dt.(3.19)

In the range 1/ log−1 x ≤ y ≤ δ log−1 x we treat the integral on the right side
for |t| ≤ βy, βy < |t| ≤ T and T < |t| separately, where T = y−D with an
arbitrary large positive constant D. The integral over this three ranges will be
denoted by I11, I12 and I13, respectively. Concerning I11 we conclude that

η log(2 + |s− 1| log x) ≤ η log(2 + y log x+ yδ log x) � η log δ2 � 1,
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and
y ≤ βy ≤ δ2/ log x ≤ 1.

The conditions of Theorem 1.1 imply Σ1 � η. Then, by (3.9), it follows that

I11 � η2|A|2
y2

∫
|t|≤βy

log2(2 + y log x+ t log x)

|y + it|2κ dt

� η2|A|2
y2

∫
|t|≤y

log2(2 + y log x+ t log x)

|y + it|2κ dt

+
η2|A|2
y2

∫
y<|t|≤βy

log2(2 + y log x+ t log x)

|y + it|2κ dt.

The first term on the right of the last inequality does not exceed

2η2|A|2 log
2(2 + 2y log x)

y2κ+1
,

whilst the integral in the second term is at most

2

∞∫
y

log2(2 + 2t log x)

t2κ
dt � log2κ−1 x

∞∫
y log x

log2(2 + 2u)

u2κ
du

� log2(2 + 2y log x)y−2κ+1.

Thus
I11 � η2|A|2 log2(2 + 2y log x)y−2κ−1.

Concerning I12 we obtain, using the Cauchy-Schwarz inequality,

I12 �
∫

βy≤|t|≤T

|F
′(1 + y + it)

1 + y + it
|2dt+

∫
βy≤|t|≤T

|A(ζκ(1 + y + it))′

1 + y + it
|2dt

=I121 + I122.

Using the representation

F ′(s) = F (s)
F ′(s)
F (s)

,

we obtain

I121 � sup
βy≤|t|≤T

|F (1 + y + it)|2
∞∫

−∞
| F ′(1 + y + iu)

F (1 + y + iu)(1 + y + iu)
|2du.
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Because of (3.5)
L(u) :=

∑
n≤u

f̃(n)Λ(n) � u.

By an application of Parseval’s identity we deduce that

∞∫
−∞

| F ′(1 + y + iu)

F (1 + y + iu)(1 + y + iu)
|2du = 2π

∞∫
0

|L(ew)|2e−2ywdw � y−1.

Now, the conditions of Lemma 3.2 are fulfilled with λ = κ−η0, and η = κ+η0.
Then f(p) is never zero and we can choose θ0 = π, and δ ≤ 1−2η0

2−η0
in Lemma

3.2. Lemma 3.3 yields

sup
βy≤|t|≤T

|F (1 + y + it)|2 � Σ2F
2
0 (1 + y) exp(−2c log(1 + y−1βy))

with some appropriate positive constant (cD,κ,η0,λ0 =)c. The conditions of
Theorem 1.1 shows that Σ2 � 1 uniformly for 0 < y ≤ 1. Further, with
ε = κ− η0,

F0(1 + y) � exp(
∑

p≤exp(y−1)

|f(p)| − ε

p1+y
)y−ε � exp(

∑
p≤x

|f(p)| − ε

p1+y
)y−ε �

� exp(
∑
p≤x

|f(p)| − ε

p
)y−ε

uniformly for 1/ log x ≤ y < 2. Here we used that∑
p>exp(y−1)

1

p1+y
� 1

holds uniformly for 0 < y ≤ 1, which is a direct consequence of (3.11) and the
asymptotic estimations∑

p≤u

1

p
= log log u+O(1) (u > 2),

ζ(1 + y + it) =
1

y + it
+O(1) (0 < y ≤ 1, |t| � 1).

Further using the inequalities

ζ(1 + y + it) �O(logB(|t|)) (0 < y ≤ 1, |t|G1),

ζ ′(1 + y + it)

ζ(1 + y + it)
�O(logB(|t|)) (0 < y ≤ 1, |t|G1)
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with appropriate positive B we obtain

I122 � |A|2
∫

βy≤|t|≤1

1

|y + it|2κ+2
dt+ |A|2

∫
1≤|t|

log2Bκ(|t|)
|y + it|2 dt � |A|2β−2κ−1

y .

This implies

I12 � exp(2
∑
p≤x

|f(p)| − ε

p
)y−2ε−1 exp(−2c log(1+y−1βy))+|A|2δ−2κ−1y−2κ−1.

Concerning I13 we observe

|F (1 + y + it)| � y−B 0 < y ≤ 1, t ∈ R

for some 0 < B, and we obtain using Cauchy’s theorem

|F ′(1 + y + it)| � y−B−1 0 < y ≤ 1, t ∈ R.

Choosing D large enough gives

sup
t

|F ′(1 + y + it)|2
∫

T≤|t|

1

|1 + y + it|2 dt � yB .

Similar estimations lead to

I13 � (|A|2 + 1)yB .

It remains to estimate H2(1 + y) for δ/ log x < y ≤ 1. In this range we split
the integral appearing on the right hand side of (3.19) into two parts, denoted
by I21 and I22, where |t| ≤ T and T < |t| respectively. A similar computation
as above concerning I12 and I13 shows that

I21 � exp(2
∑
p≤x

|f(p)| − ε

p
)y−2ε−1 + |A|2y−2κ−1,

and

I22 � (|A|2 + 1)yB

respectively. Putting it all together we deduce that
∫ 1

1/ log x
H(1+ y)y−1/2dy is
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at most
1∫

1/ log x

η|A| log(2 + 2y log x)y−κ−1+

+ exp(
∑
p≤x

|f(p)| − ε

p
)y−ε−1 exp(−c log(1 + y−1βy))dy+

+

1∫
1/ log x

|A|δ−κ−1y−κ−1 + (|A|+ 1)yBdy+

+

1∫
δ/ log x

exp(
∑
p≤x

|f(p)| − ε

p
)y−ε−1 + |A|y−κ−1dy,

which does not exceed

logκ x{η|A|+ exp(
∑
p≤x

|f(p)| − κ

p
)(exp(− c

η
) + log−c x)}.

Here we used that

δ−1 �
{
exp(− 1

2η ) if1/ log log x < η

log−1/2 x otherwise.

The proof is finished. �
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