ON THE PAIRS OF MULTIPLICATIVE FUNCTIONS WITH A SPECIAL RELATION

Bui Minh Phong (Budapest, Hungary)

Dedicated to Professor János Galambos on his 70th anniversary

Abstract. It is proved that if f and g are complex-valued multiplicative functions satisfying g(An + 1) - Cf(n) = o(1) as $n \to \infty$ with some positive integer A and non-zero complex constant C, then either f(n) = o(1), g(An + 1) = o(1) as $n \to \infty$ or there exist a complex number s and multiplicative functions F, G such that $f(n) = n^s F(n)$, $g(n) = n^s G(n)$, $(0 \le \text{Re } s < 1)$ and $G(An + 1) = \frac{1}{F(2)}F(n)$ are satisfied for all $n \in \mathbb{N}$. All solutions of $G(An + 1) = \frac{1}{F(2)}F(n)$ are given.

1. Introduction

Let \mathbb{N} , \mathcal{P} , \mathbb{R} and \mathbb{C} denote the set of all positive integers, prime numbers, real and complex numbers, respectively. We denote by (m, n) the greatest common divisor of the integers m and n. For each positive integer k, let \mathbb{N}_k be the set of the natural numbers coprime to k and let \mathcal{L}_k be the set of those arithmetical functions f for which f(n) = o(1) as $n \to \infty$, $n \in \mathbb{N}_k$. Let \mathcal{M}_k (\mathcal{M}_k^*) be the set of complex-valued multiplicative (completely multiplicative) functions $f: \mathbb{N}_k \to \mathbb{C}$. In the case k = 1, let

$$\mathcal{L} := \mathcal{L}_1, \ \mathcal{M} := \mathcal{M}_1 \ \text{and} \ \mathcal{M}^* := \mathcal{M}_1^*.$$

The European Union and the European Social Fund have provided financial support to the project under the grant agreement TÁMOP-4.2.1/B- 09/1/KMR-2010-0003. This work also supported by a grant from OTKA No. 100961.

For positive integers n and k let $n = D_k(n)E_k(n)$, where $D_k(n)$ is the product of prime power divisors p^{α} of n for which p|k and $(E_k(n), k) = 1$.

P. Erdős proved in 1946 [2] that if $f: \mathbb{N} \to \mathbb{R}$ is an additive function such that $\Delta f(n) := f(n+1) - f(n) = o(1)$ as $n \to \infty$, then f(n) is a constant multiple of log n. This assertion has been generalized in several directions (e.g. see [1,5]). The characterization of multiplicative functions $f: \mathbb{N} \to \mathbb{C}$ under suitable regularity conditions even in the simplest case $\Delta f(n) = o(1)$ is much harder.

In 1984, I. Kátai stated as a conjecture that $f \in \mathcal{M}$, $\Delta f(n) = o(1)$ as $n \to \infty$ imply that either $f \in \mathcal{L}$ or $f(n) = n^s$ $(n \in \mathbb{N}), 0 \leq \text{Re } s < 1$. This was proved by E. Wirsing in a letter to Kátai and later in a paper [16]. It is not hard to deduce from Wirsing's theorem that if

$$f, g \in \mathcal{M}, g(n+1) - f(n) = o(1) \text{ as } n \to \infty,$$

then either $g \in \mathcal{L}, f \in \mathcal{L}$ or

$$f(n) = g(n) = n^s \quad (n \in \mathbb{N}), \ 0 \le \operatorname{Re} s < 1.$$

More than 10 years ago, improving the above results, in the joint paper with I. Kátai, we proved in [10] that if $k \in \mathbb{N}$ is given and $f, g \in \mathcal{M}$ satisfy the condition

g(n+k) - f(n) = o(1) as $n \to \infty$,

then either $f \in \mathcal{L}, g \in \mathcal{L}$ or there are $F, G \in \mathcal{M}$ and a complex constant s such that

$$f(n) = n^s F(n), \quad g(n) = n^s G(n), \quad 0 \le \text{Re } s < 1$$

and

G(n+k) = F(n)

are satisfied for all $n \in \mathbb{N}$. In [3, 7, 8, 9, 13, 14], by using the result of [4], the equation G(n+k) = F(n) is solved completely.

The general case concerning the characterization of those $f, g \in \mathcal{M}$ for which

$$g(an+b) - Cf(An+B) = o(1)$$
 as $n \to \infty$,

where a > 0, b, A > 0, B are fixed integers and C is a non-zero complex constant, seems to be a hard problem. This question was solved in [11, 12] for B = 0 under the conditions |f(n)| = |g(n)| = 1 $(n \in \mathbb{N})$. A similar result was obtained in [15] under the conditions

$$f = g, f(n+b) - f(n) = o(1)$$
 as $n \to \infty, n \in \mathbb{N}_b$.

N.L. Bassily and I. Kátai [6] showed that if $f, g \in \mathcal{M}$ satisfy

$$g(2n+1) - Cf(n) = o(1) \quad (n \to \infty)$$

with some non-zero constant C, then either $f \in \mathcal{L}, g \in \mathcal{L}_2$ or

$$C = f(2), f(n) = n^s, 0 \le \text{Re } s < 1, \text{ and } f(m) = g(m)$$

for all $n \in \mathbb{N}$, $m \in \mathbb{N}_2$.

The main purpose of this paper is to improve this result of N.L. Bassily and I. Kátai. We prove

Theorem 1. Assume that $A \in \mathbb{N}$, $C \in \mathbb{C} \setminus \{0\}$ and $f, g \in \mathcal{M}$ satisfy the condition

(1)
$$g(An+1) - Cf(n) = o(1) \quad as \quad n \to \infty.$$

Then either f(n) = o(1) and g(An + 1) = o(1) as $n \to \infty$ or there exist a complex number s and functions F, $G \in \mathcal{M}$ such that

$$f(n) = n^{s} F(n), \ g(m) = n^{s} G(n), \ (0 \le \text{Re } s < 1)$$

and

$$G(An+1) = \frac{1}{F(2)}F(n)$$

are satisfied for all $n \in \mathbb{N}$.

In the proof of Theorem 1, we get

(2)
$$F(2n) = F(2), \quad G(m) = \chi_{2A}(m) \text{ for all } n \in \mathbb{N}, \ m \in \mathbb{N}_{2A}.$$

We shall prove

Theorem 2. Assume that $A \in \mathbb{N}$, $D \in \mathbb{C} \setminus \{0\}$ and $F, G \in \mathcal{M}, F \notin \mathcal{L}$ satisfy the equation

(3)
$$G(An+1) = DF(n).$$

Let

$$I(n) = 1$$
 and $\Psi(n) = (-1)^{n-1}$ for all $n \in \mathbb{N}$.

Then the following assertions hold:

(a) If A is even, then all solutions (D, F, G) of (3) have the form

$$(D, F, G) = (1, I, \chi_A)$$
 and $(D, F, G) = (-1, \Psi, \chi_{2A}),$

where χ_{2A} is an arbitrary nonprincipal character (mod 2A). (b) If A is odd, then all solutions of (3) have the form

$$(D, F, G) = (1, I, \chi_A)$$

and

$$(D, F, G) = (z, \mathcal{B}_{(1, \frac{1}{z})}, \mathcal{B}_{(A, z)}\chi_A),$$

where z is an arbitrary non-zero complex number, χ_A is an arbitrary character (mod A) and multiplicative functions $\mathcal{B}_{(k, \ell)}$ are defined as follows:

$$\mathcal{B}_{(k, \ell)} \in \mathcal{M}_k, \ \mathcal{B}_{(k, \ell)}(2n) = \ell \text{ for all } n \in \mathbb{N}_k$$

2. Lemmas

Lemma 1. Assume that $A \in \mathbb{N}$, $D \in \mathbb{C} \setminus \{0\}$ and $F, G \in \mathcal{M}$ satisfy the condition

$$G(An+1) = DF(n) \quad (n \in \mathbb{N}).$$

Let

$$S_F := \{n \in \mathbb{N} \mid F(n) \neq 0\}$$
 and $S_G := \{n \in \mathbb{N} \mid (n, A) = 1, G(n) \neq 0\}.$

Then either the set \mathcal{S}_F is finite or

$$\mathcal{S}_F = \mathbb{N}$$
 and $\mathcal{S}_G = \{n \in \mathbb{N} \mid (n, A) = 1\}.$

Proof. Lemma 1 is a consequence of Theorem 1 in [14].

Lemma 2. Assume that $k_0, K \in \mathbb{N}$ and $\Psi \in \mathcal{M}$ satisfy the condition

(4)
$$\Psi(k_0m+1) \to 0 \text{ as } m \to \infty, \ (k_0m+1, K) = 1.$$

Then there is a positive integer k such that $\Psi \in \mathcal{L}_k$.

Proof. Assume that (4) holds for some positive integers k_0, K . We shall prove that there is a $k \in \mathbb{N}$ such that $\Psi \in \mathcal{L}_k$. For every reduced residue class $l \pmod{k_0 K}$ let $E_1^{(l)}, \ldots, E_{\varphi(k_0 K)-1}^{(l)}$ be coprime integers belonging to $l \pmod{k_0 K}$, and satisfying $\Psi(E_j^{(l)}) \neq 0$ $(j = 1, \ldots, \varphi(k_0 K) - 1)$, if there exist so many $E_j^{(l)}$. Let $E^{(l)} := E_1^{(l)} \ldots E_{\varphi(k_0 K)-1}^{(l)}$. Then $\Psi(E^{(l)}) \neq 0$ and for all $x \in \mathbb{N}$, $x \equiv l \pmod{k_0 K}$, $(x, E^{(l)}) = 1$, we have $xE^{(l)} \equiv 1 \pmod{k_0 K}$, and so by (9) and our assumptions, we get

$$\Psi(x) \to 0 \text{ as } x \to \infty, \ x \equiv l \pmod{k_0 K}, \ (x, E^{(l)}) = 1$$

If for some l the maximal size t of the set $E_1^{(l)}, \ldots, E_t^{(l)}$ constructed above is less than $\varphi(k_0K) - 1$, then $\Psi(x) = 0$ if $x \equiv l \pmod{k_0K}$ and $(x, E^{(l)}) = 1$, where $E^{(l)} := E_1^{(l)} \ldots E_t^{(l)}$. Hence $\Psi \in \mathcal{L}_k$ follows, where

$$k := k_0 K \prod_{\substack{1 \le l \le k_0 K \\ (l, k_0 K) = 1}} E^{(l)}.$$

Lemma 2 is proved.

In the following we assume that the functions $f, g \in \mathcal{M}$ satisfy the condition (1), i.e.

$$g(An+1) - Cf(n) = o(1)$$
 as $n \to \infty$

with some fixed positive integer A and a non-zero complex constant C.

We say that a function $\Psi \in \mathcal{M}$ is of a finite support if there is a finite set \mathcal{A} of distinct primes $p_1 < p_2 < \ldots < p_r$ such that

$$\Psi(p^{\alpha}) = 0 \quad (\alpha = 1, 2...) \quad \text{if} \quad p \notin \mathcal{A}.$$

Lemma 3. If f or g is of a finite support, then $f \in \mathcal{L}$ and $g \in \mathcal{L}_D$ hold for some $D \in \mathbb{N}$.

Proof. Let

$$S_f = \{n \in \mathbb{N} \mid f(n) \neq 0\}$$
 and $S_g := \{n \in \mathbb{N} \mid (n, A) = 1, g(n) \neq 0\}.$

Assume first that f is of a finite support, that is $f(p^{\alpha}) = 0$ ($\alpha = 1, 2...$) if $p \notin \mathcal{A} := \{p_1, p_2, ..., p_r\}$. Let $\Delta = p_1 \cdots p_r$. For an arbitrary positive integer n let $n = D_{\Delta}(n)E_{\Delta}(n)$, where $D_{\Delta}(n)$ is the product of those prime power divisors p^{α} of n for which $p|\Delta$, and $E_{\Delta}(n)$ is coprime to Δ . Then $g(Am + 1) \to 0$ as $m \to \infty$ and $E_{\Delta}(m) > 1$.

Assume that $f \notin \mathcal{L}$. Then $g(Am + 1) \neq 0$ holds for infinitely many integers m. It is obvious that there are an infinite sequence of primes $q_1 < q_2 < q_3 < \cdots$ and suitable exponents α_j such that

$$\{q_1^{\alpha_1}, q_2^{\alpha_2}, q_3^{\alpha_3}, \ldots\} \subseteq \mathcal{S}_g.$$

In this case there are a positive integer ℓ , $(\ell, A) = 1$ and an infinite sequence of prime powers

$$\{Q_1, Q_2, Q_3, \ldots\} \subseteq \{q_1^{\alpha_1}, q_2^{\alpha_2}, q_3^{\alpha_3}, \ldots\} \subseteq \mathcal{S}_g,$$

for which $Q_j \equiv \ell \pmod{A}$. This shows that there exist a positive Q for which $Q \in S_g$, $Q \equiv 1 \pmod{A}$ and an infinite sequence of positive integers $m_1 < 0$

 $< m_2 < \dots$ for which $(Q, Am_{\nu} + 1) = 1$ and $\liminf |g(Am_{\nu} + 1)| > 0$. Then $\liminf |g(Q(Am_{\nu} + 1))| > 0$ and so

$$E_{\Delta}\left(Qm_{\nu}+\frac{Q-1}{A}\right)=1, \quad E_{\Delta}(m_{\nu})=1$$

hold for every larger ν .

This contradicts Thue's theorem. Consequently $f \in \mathcal{L}$, and so it follows by Lemma 3 that $g \in \mathcal{L}_D$ holds for some $D \in \mathbb{N}$. Lemma 3 is proved.

The case, when g is of a finite support can be treated similarly.

Lemma 4. If there are positive integers Δ and D such that $f \in \mathcal{L}_{\Delta}$ and $g \in \mathcal{L}_D$, then $f \in \mathcal{L}$.

Proof. By using Lemma 3 we can assume that f, g are not of finite supports. Let $\Delta = \pi_1^{\delta_1} \dots \pi_r^{\delta_r}$ and $D = q_1^{d_1} \dots q_s^{d_s}$, where $\{\pi_1, \dots, \pi_r\} \subseteq \mathcal{P}$ and $\{q_1, \dots, q_s\} \subseteq \mathcal{P}$.

We may assume that for each π_j there exists at least one $l_j (\geq 1)$ such that $f(\pi_i^{l_j}) \neq 0$. Let

$$E(t_1,\ldots,t_r):=\pi_1^{t_1}\ldots\pi_r^{t_r}.$$

Assume that Q_1, \ldots, Q_s are positive integers for which $(Q_i, Q_j) = 1$ $(1 \le i < < j \le s)$ and $f(Q_i) \ne 0$, $(Q_i, \Delta) = 1$. For $u, v, j \in \mathbb{N}$, $u \ne v$ let $q_j^{\beta_{u,v,j}} \parallel Q_u - Q_v$ and

$$T := \max_{\substack{u,v,j\\u \neq v}} \beta_{u,v,j}$$

Then there is a $j_0 \in \{1, \ldots, s\}$ for which

$$q_j^{T+1} \not| AE(t_1, \dots, t_r)Q_{j_0} + 1 \quad (j = 1, \dots, s).$$

Let now j be fixed, $l_1, \ldots, l_{j-1}, l_{j+1}, \ldots, l_r$ be so chosen that $f(\pi_i^{l_i}) \neq 0$ $(i = 1, \ldots, j-1, j+1, \ldots r)$. Let $t_j \to \infty$. Then

$$f(E(l_1,\ldots,t_j,\ldots,l_r)) \to 0 \text{ as } l_j \to \infty,$$

consequently $f(\pi_j^{t_j}) \to 0$ $(t_j \to \infty)$. Thus $f \in \mathcal{L}$ and so Lemma 4 is proved.

Lemma 5. If there are positive integers Δ and D such that $f \in \mathcal{L}_{\Delta}$ or $g \in \mathcal{L}_D$, then $f \in \mathcal{L}$.

Proof. By using Lemma 3 we can assume that f, g are not of finite supports. We shall prove only the first assertion. Assume that that $f \in \mathcal{L}_{\Delta}$

holds for some positive integer Δ , $\Delta = \pi_1^{\delta_1} \dots \pi_r^{\delta_r}$. It is obvious that given an arbitrary constant c, $f(n) \to 0$ as $n \to \infty$ under the condition $D_{\Delta}(n) \leq c$, where

$$D_{\Delta}(n) := \prod_{\substack{p^{\alpha} \parallel n \\ p \mid \Delta}} p^{\alpha}$$

Since g is not of a finite support, there are coprime integers Q_1, \ldots, Q_t for which $Q_j \equiv 1 \pmod{A}$ and $g(Q_j) \neq 0$ $(j = 1, \ldots, t)$. Let $\pi_j^{\beta_{u,v,j}} \parallel Q_u - Q_v$ and $T := \max_{\substack{u,v,j \\ u \neq v}} \beta_{u,v,j}$. Let m run over the set of those integers for which $(Am + 1, Q_1 \ldots Q_t \Delta) = 1$. Then

(5)
$$g(Q_j(Am+1)) - Cf\left(Q_jm + \frac{Q_j - 1}{A}\right) = o(1)$$

as $m \to \infty$, $(Am + 1, Q_1 \dots Q_t \Delta) = 1$. For each fixed π_l no more than one j exists for which $\pi_l^{T+1} | Q_j m + \frac{Q_j - 1}{A}$. Thus, if t > r, then for each m there is a j such that

$$D_{\Delta}\left(Q_jm + \frac{Q_j-1}{A}\right) |(\pi_1 \dots \pi_r)^T$$

on the set of those integers for which $(Am + 1, Q_1 \dots Q_t \Delta) = 1$. Hence, by (5) we get that $g(Am + 1) \to 0$ as $m \to \infty$ and $(Am + 1, Q_1 \dots Q_t \Delta) = 1$. By Lemma 2 there is a $D \in \mathbb{N}$ such that $g \in \mathcal{L}_D$. Lemma 4 completes the proof of Lemma 5.

Lemma 6. If there is a positive integer n_0 or a positive integer m_0 such that $f(n_0) = 0$ or $g(Am_0 + 1) = 0$, then $f \in \mathcal{L}$.

Proof. Applying (1) with $n = N[N(AN+1)^2m+1]$, we have

$$g(AN+1)g(N^{2}(AN+1)m+1) - Cf(N)f((AN+1)^{2}Nm+1) = o(1)$$

as $m \to \infty$. If $g(AN+1) \neq 0$ and f(N) = 0, then one can deduce from the last relation and Lemma 2–5 that $f \in \mathcal{L}$. If there is an $N \in \mathbb{N}$ such that $f(N) \neq 0$ and g(AN+1) = 0, then we also have $f \in \mathcal{L}$.

Finally, assume that for every positive integer N either f(N) = g(AN+1) = 0, or $f(N)g(AN+1) \neq 0$. Let

$$F(n) = \begin{cases} 1, & \text{if } f(n) \neq 0\\ 0, & \text{if } f(n) = 0 \end{cases} \text{ and } G(m) = \begin{cases} 1, & \text{if } g(m) \neq 0\\ 0, & \text{if } g(m) = 0. \end{cases}$$

Then G(An + 1) = F(n) holds for all $n \in \mathbb{N}$ and $F, G \in \mathcal{M}$. Let

$$S_F := \{ n \in \mathbb{N} \mid F(n) \neq 0 \} \text{ and } S_G := \{ n \in \mathbb{N} \mid G(n) \neq 0 \}.$$

Since $f(n_0) = 0$ (or $g(Am_0 + 1) = 0$), it follows from Lemma 1 that $|S_F| < \infty$, thus $f(n) \to 0$ and $g(An + 1) \to 0$ as $n \to \infty$.

The proof of Lemma 6 is thus complete.

Lemma 7. Assume that $A \in \mathbb{N}$, $C \in \mathbb{C} \setminus \{0\}$ and $f, g \in \mathcal{M}$ satisfy the relation

$$g(An+1) - Cf(n) = o(1)$$
 as $n \to \infty$

Let P, Q and N be positive integers satisfying the conditions

(6)
$$Q \equiv 1 \pmod{A} \quad and \quad N = P(Q-1) + 1.$$

If $f \notin \mathcal{L}$, then

(7)
$$g(N) f(PQd) = f(P)g(Q)f(N) f(d),$$

where

$$d = d(P,Q) := \begin{cases} 2, & \text{if } (P-1)\frac{Q-1}{A} \text{ is odd} \\ 1, & \text{otherwise.} \end{cases}$$

Proof. Let P, Q and N be positive integers satisfying (6). Let

$$N_1 := E_Q(N), \ P_1 := E_Q(P), \ Q_1 := E_N(Q)$$

where $E_k(n)$ is the product of all prime power divisors of n which are prime to k and $\left(\frac{n}{E_k(n)}, E_k(n)\right) = 1$.

First we prove that there is a positive integer n_0 such that

(8)
$$\begin{cases} (N_1, \ APQn_0 + 1) = 1, \\ \left(P_1, \ NQn_0 + \frac{Q-1}{A}\right) = 1, \\ (Q_1, \ ANn_0 + 1) = 1, \\ (N_1P_1Q_1, \ n_0) = d(P,Q). \end{cases}$$

We infer from the facts N = P(Q-1) + 1 and $(N_1, Q) = 1$ that $N_1 = E_Q(N)$ is an odd positive integer. By (6), we have $(N_1, PQ) = (N_1, A) = 1$ and so an application of the Chinese Remainder Theorem shows that there exists an n_1 for which

$$(N_1, APQn_1 + 1) = (N_1, n_1) = 1.$$

It is clear to check from the definition of $P_1 = E_Q(P)$ that if P_1 is odd, then there is an $n'_2 \in \mathbb{N}$ such that

$$(P_1, ANQn'_2 + 1) = (P_1, n'_2) = 1.$$

Assume that $P_1 = E_Q(P)$ is even. Then Q and N = P(Q-1) + 1 are odd numbers. In this case there is an n_2'' for which

$$\left(P_1, NQn_2'' + \frac{Q-1}{A}\right) = 1$$
 and $(P_1, n_2'') = d_2(P, Q),$

where

$$d_2(P,Q) := \begin{cases} 2, & \text{if } (P-1)Q\frac{Q-1}{A} \text{ is odd} \\ 1, & \text{otherwise.} \end{cases}$$

Consequently, we can find an n_2 for which

$$\left(P_1, NQn_2 + \frac{Q-1}{A}\right) = 1$$
 and $(P_1, n_2) = d_2(P, Q).$

Finally, we infer from the definition of $Q_1 = E_N(Q)$ and A|Q - 1 that $(Q_1, AN) = 1$. Hence, if Q_1 is odd, then there exists an n'_3 for which

$$(Q_1, ANn'_3 + 1) = 1$$
 and $(Q_1, n'_3) = 1.$

Assume that Q_1 is even. Then (AN, 2) = 1 and so there is a n''_3 for which

$$(Q_1, ANn''_3 + 1) = 1$$
 and $(Q_1, n''_3) = d_3(P, Q),$

where

$$d_3(P,Q) := \begin{cases} 2, & \text{if } (P-1)(Q-1) \text{ is odd} \\ 1, & \text{otherwise.} \end{cases}$$

Consequently, we can find an n_3 for which

$$(Q_1, ANn_3 + 1) = 1$$
 and $(Q_1, n_3) = d_3(P, Q)$.

We can check from definitions of d(P,Q), $d_2(P,Q)$ and $d_3(P,Q)$ that

$$d_2(P,Q)d_3(P,Q) = d(P,Q).$$

Since $(N_1, P_1) = (N_1, Q_1) = (P_1, Q_1) = 1$ it follows from the Chinese Remainder Theorem that there is an n_0 such that

$$n_0 \equiv n_1 \pmod{N_1}, \ n_0 \equiv n_2 \pmod{P_1}, \ n_0 \equiv n_3 \pmod{Q_1}.$$

Hence, the proof of (8) is finished.

Next, we shall prove (7). Let n_0 be a positive integer which satisfies (8). By considering $n = N_1 P_1 Q_1 m + n_0$, it is clear to check from (8)

(9)
$$\begin{cases} (N, \ APQn+1) = 1, \\ \left(P, \ NQn + \frac{Q-1}{A}\right) = 1, \\ (Q, \ ANn+1) = 1. \end{cases}$$

By using the multiplicativity of f and g, we get from (9) the following relations:

$$Cg(N)f(PQn) = g(N)g(APQn + 1) + o(1) =$$

$$= g\left[A\left(NPQn + \frac{N-1}{A}\right) + 1\right] + o(1) =$$

$$= Cf\left(NPQn + \frac{N-1}{A}\right) + o(1) =$$

$$= Cf(P)f\left(NQn + \frac{Q-1}{A}\right) + o(1) =$$

$$= f(P)g\left[A\left(NQn + \frac{Q-1}{A}\right) + 1\right] + o(1) =$$

$$= f(P)g(Q)g[ANn + 1] + o(1) =$$

$$= Cf(P)g(Q)f(Nn) + o(1),$$

which imply

(10)
$$g(N)f(PQn) - f(P)g(Q)f(Nn) = o(1)$$

as $m \to \infty$, $n = N_1 P_1 Q_1 m + n_0 \to \infty$.

It follows from (8) that we can choose a positive integer m_0 such that

$$t_0 := \frac{N_1 P_1 Q_1}{d} m_0 + \frac{n_0}{d}$$
 and $(t_0, dPQN) = 1.$

Taking $m = D_Q(N)D_Q(P)D_N(Q)d^2t + m_0$, from (10) we have $n = N_1P_1Q_1m + n_0 = d(NPQdt + t_0)$, consequently

$$\left(g(N)f\left(PQd\right) - f(P)g(Q)f\left(Nd\right)\right)f(NPQdt + t_0) = o(1)$$

as $t \to \infty$. It is obvious that g(N)f(PQd) - f(P)g(Q)f(Nd) = 0, because in the other case, we have $f(NPQdt + t_0) = o(1)$ as $t \to \infty$, therefore we get from Lemma 2 and Lemma 5 that $f \in \mathcal{L}$. Since (N, d) = 1, we have

$$g(N)f(PQd) = f(P)g(Q)f(Nd) = f(P)g(Q)f(N) f(d)$$

which completes the proof of (7).

Lemma 7 is proved.

Lemma 8. Assume that $A \in \mathbb{N}$, $C \in \mathbb{C} \setminus \{0\}$ and $f, g \in \mathcal{M}$ satisfy the relation

$$g(An+1) - Cf(n) = o(1)$$
 as $n \to \infty$.

If $f \notin \mathcal{L}$, then

(11)
$$f \in \mathcal{M}_{2A}^*, g \in \mathcal{M}_{2A}^*$$
 and $H(n) := \frac{g(n)}{f(n)} = \chi_{2A}(n) \quad (n \in \mathbb{N}_{2A}).$

Hence χ_k denotes the character (mod k).

Proof. First we prove

$$H(n) := \frac{g(n)}{f(n)} = \chi_{2A}(n) \ (n \in \mathbb{N}_{2A}).$$

Let $Q \in \mathbb{N}$ be a positive integer such that $Q \equiv 1 \pmod{A}$ and let P = 2Qm+1, $(m \in \mathbb{N})$. Then d = d(P, Q) = 1, (P, Q) = 1, N = 2(Q-1)Qm + Q and by (7), we have

(12)
$$H[2(Q-1)Qm+Q] = \frac{f(P)g(Q)}{f(PQ)} = H(Q).$$

Thus, we infer from Lemma 19.3 of [1] that

(13)
$$H(n) = \chi_{2Q(Q-1)}(n)$$
 on the set $(n, 2Q(Q-1)) = 1.$

It is clear to see that there is a number $M \in \mathbb{N}$ for which

$$(M(AM+1), A+1) \in \{1, 2\}.$$

Then by applying (12) and (13) for the cases when Q = A+1, and Q = AM+1, respectively, we infer that

$$H \in \mathcal{M}^*_{2A(A+1)}$$
 and $H \in \mathcal{M}^*_{2AM(AM+1)}$.

Since

$$(2A(A+1), 2AM(AM+1)) = 2A(A+1, M(AM+1)) \in \{2A, 4A\},\$$

we get from the above relations that

 $H \in \mathcal{M}_{2A}^*$.

On the other hand, we have (2(Q-1)m+1, Q, 2A) = 1, consequently

$$H\Big[2(Q-1)Qm+Q\Big] = H(Q)H\Big[2(Q-1)m+1)\Big].$$

Thus, (12) gives $H\Big[2(Q-1)m+1\Big]=1$ and

$$H(n) = \chi_{2A}(n)$$
 and $g(n) = \chi_{2A}(n)f(n) \ (n \in \mathbb{N}_{2A}).$

Now we prove that

(14)
$$f, g \in \mathcal{M}_{2A}^*$$

Let Q = 2Ax + 1, P = 2Ay + 1, $N = (2A)^2xy + Q$. It is obvious that d(P,Q) = 1. From (7), (11) and (14) we have

(15)
$$H(N) = H(Q) = H(PQ) = 1$$

and

(16)
$$g(N)f(PQ) = f(P)g(Q)f(N).$$

From (15) and (16) we have

(17)
$$f(PQ) = f(P)g(Q) = f(P)f(Q)$$
 and $g(PQ) = f(PQ) = g(P)g(Q)$.

Now let $(nm, 2A) = 1, n, m \in \mathbb{N}$. We can choose two positive integers z, t such that

$$nz \equiv 1 \pmod{2A}, \ (z, nm) = 1, \ mt \equiv 1 \pmod{2A}, \ (t, nmz) = 1.$$

We infer from (17) that

$$f(nzmt) = f(nz)f(mt) = f(n)f(z)f(m)f(t),$$

$$g(nzmt) = g(nz)g(mt) = g(n)g(z)g(m)g(t)$$

and

$$f(nzmt) = f(nm)f(z)f(t), \quad g(nzmt) = g(nm)g(z)g(t).$$

Hence

$$f(nm) = f(n)f(m) \quad \text{and} \quad g(nm) = g(n)g(m),$$

and so (14) and (11) are proved. Lemma 8 is proved.

Lemma 9. Assume that $a, b \in \mathbb{N}, D \in \mathbb{C} \setminus \{0\}$ and $T \in \mathcal{M}^*, T \notin \mathcal{L}$ satisfy the relations

(18)
$$T(n) \neq 0 \quad (\forall n \in \mathbb{N}), \quad T(an+b) - DT(n) = o(1) \quad as \quad n \to \infty.$$

Then T(a) = D and there is a complex number s such that

$$T(n) = n^s, \quad (0 \le \operatorname{Re} \, s < 1)$$

holds for all $n \in \mathbb{N}$.

Proof. Assume that $a, b \in \mathbb{N}, D \in \mathbb{C} \setminus \{0\}$ and $T \in \mathcal{M}^*$ satisfy the relations (18). Since $T \in \mathcal{M}^*$ and

$$\left(a^2m+b\right)(a+1) = a\left[a(a+1)m+b\right] + b,$$

we get from (18) that

$$DT(am)T(a+1) = T(a^{2}m+b)T(a+1) + o(1) =$$

= $T[a(a(a+1)m+b) + b] + o(1) =$
= $DT(a(a+1)m+b) + o(1) =$
= $D^{2}T(a+1)T(m) + o(1)$

which from the fact $T \notin \mathcal{L}$ implies T(a) = D.

In the following we denote by J the set of those pairs (Q, R) of positive integers for which

$$T(Qn+R) - T(Qn) = o(1)$$
 as $n \to \infty$.

By using the same method that was applied in [11] and [12], we prove that the following assertions hold:

(a) $(Q, 1) \in J$ if $(q, 1) \in J$ and $Q \ge q$ (b) $(Q, R) \in J$ if $(q, 1) \in J$, $q \ge 2$ and 0 < R < Q/(q-1)(c) $(h, 1) \in J$ if $(h + 1, 1) \in J$ and $h \ge 2$.

Assume that $(k, 1) \in J$. By using $T \in \mathcal{M}^*$, we have

$$T(k)T((k+1)n+1) = T[k((k+1)n+1)+1] + o(1) =$$

= T(k+1)T(kn+1) + o(1) = T(k)T(k+1)T(n),

and so, we deduce that $(k+1, 1) \in J$. By using induction, we have proved that (a) holds.

Assume again that $(k, 1) \in J$ and $k \geq 2$. We shall prove (b) by induction on r. From (a) it is clear that (b) is satisfied for r = 1. Assume that $(q, r) \in J$ holds for all integers q and r satisfying 0 < r < q/(k-1) and $r < r_0$, where $r_0 \geq 1$ is an integer. Let q_0 be an integer such that

(19)
$$0 < r_0 < \frac{q_0}{k-1}.$$

In order to show (b) it suffices to prove that $(q_0, r_0) \in J$. Without loss of generality we may assume that q_0 and r_0 are coprimes.

Let q and r be positive integers such that

(20)
$$r_0 q = q_0 r + 1$$
 and $r < r_0$

It follows by (19) and (20) that

$$0 < r < (q_0 r + 1)/q_0 = r_0 q/q_0 < q/(k - 1).$$

Thus, by using our assumption and the fact $r < r_0$, we have $(q, r) \in J$.

On the other hand, by (20), we infer from the facts $(q_0, 1) \in J$ and $(q, r) \in J$ that

$$T(q)T(q_0n + r_0) = T(q_0(qn + r) + 1) = T(q_0(qn + r)) + o(1) =$$

= $T(q_0)T(qn + r) + o(1) =$
= $T(q_0)T(qn) + o(1),$

which shows that $(q_0, r_0) \in J$. Thus, we have proved (b).

Finally, we prove (c). Assume that $(h + 1, 1) \in J$ and $h \ge 2$. For each $\ell \in \mathbb{N}, 0 \le \ell \le h - 1$ let

$$\mathcal{A}_{\ell} := \{ n \in \mathbb{N} \mid n \equiv \ell \pmod{h} \}$$

and we can choose positive integers $q = q(\ell)$ and $r = r(\ell)$ such that

(21)
$$(h\ell + 1)q = h^2r + 1.$$

We shall prove that

(22)
$$T(hn+1) - T(hn) = o(1) \text{ as } n \to \infty, \ n \in \mathcal{A}_{\ell}.$$

Let $n = hm + \ell \in \mathcal{A}_{\ell}$. Since $(h+1, 1) \in J$ and $h \ge 2$, by (a) we have $(h^2, 1) \in J$. Thus

$$T(q)T(hn + 1) = T(qhn + q) = T(qh^{2}m + q(h\ell + 1)) =$$

= $T(h^{2}(qm + r) + 1) =$
= $T(h^{2}(qm + r)) + o(1) =$
= $T(h)T(q(hm + \ell) + hr - q\ell) + o(1) =$
= $T(h)T(q(hm + \ell)) + o(1) =$
= $T(h)T(q(nm + \ell)) + o(1).$

In the last step, the assertion is true if $hr - q\ell = 0$. If $hr - q\ell \neq 0$, then we get from (21) that

$$0 < hr - q\ell = \frac{(q-1)}{h} < \frac{q}{h},$$

which, by applying (b) with k = h + 1, implies that $(q, hr - q\ell) \in J$. This, with $(h^2, 1) \in J$ shows that (22) is true. This completes the proof of (c).

By (18) and using T(a) = D, one can deduce that $(a, b) \in J$ and $(a, 1) \in J$. If a = 1, then Lemma 9 follows from the Wirsing's theorem. If $a \ge 2$, then by using (c) one can deduce that $(2, 1) \in J$, and so

$$T(2n+1) - T(2n) = o(1)$$
 as $n \to \infty$.

By using the result of Bassily and Kátai [6], it follows that there is a complex number s such that $0 \leq \text{Re } s < 1$ and $T(n) = n^s$ for all $n \in \mathbb{N}$.

Lemma 9 is proved.

3. Proof of Theorem 1

Assume that $A \in \mathbb{N}$, $C \in \mathbb{C} \setminus \{0\}$ and the functions $f, g \in \mathcal{M}$ satisfy (1). Then from Lemma 8 we have

$$(23) f, g, H \in \mathcal{M}_{2A}^*, H = \chi_{2A}.$$

Let a := 2A + 1. From (1) and (23) we obtain

$$Cg(a)f(n) = g(a)g(An + 1) + o(1) =$$

= $g[A(an + 2) + 1] + o(1) = Cf(an + 2) + o(1),$

therefore

(24)
$$f(an+2) - g(a)f(n) = o(1) \text{ as } n \to \infty.$$

Next, we prove that

(25)
$$f(2p^k) = \frac{f(2p)^k}{f(2)^{k-1}}$$

holds for all $p \in \mathcal{P}$ and $k \in \mathbb{N}$.

For each $p \in \mathcal{P}$ and $k \in \mathbb{N}$, we define the sequence $T_k(n, p)$ by the formula

$$T_k(n,p) := (ap)^k D_p(2)n + 2\frac{(ap)^k - 1}{ap - 1},$$

where $D_p(2) = (p, 2)$ and $E_p(2) = \frac{2}{D_p(2)}$. Since

$$T_k(n,p) = ap \left[(ap)^{k-1} D_p(2)n + 2\frac{(ap)^{k-1} - 1}{ap - 1} \right] + 2 = ap T_{k-1}(n,p) + 2$$

and

$$\left(pD_p(2), \frac{T_{k-1}(n,p)}{D_p(2)}\right) = 1,$$

we obtain from (24) that

$$\begin{split} f\Big(T_k(n,p)\Big) &= f\Big(apT_{k-1}(n,p)+2\Big) = \\ &= g(a)f\Big(pT_{k-1}(n,p)\Big) + o(1) = \\ &= \frac{g(a)f(pD_p(2))}{f(D_p(2))}f\Big(T_{k-1}(n,p)\Big) + o(1) \\ &= \frac{g(a)f(2p)}{f(2)}f\Big(T_{k-1}(n,p)\Big) + o(1), \end{split}$$

because

$$\frac{g(a)f(pD_p(2))}{f(D_p(2))} = \frac{g(a)f(2p)}{f(2)}.$$

This implies

(26)
$$f\left[(ap)^k D_p(2)n + 2\frac{(ap)^k - 1}{ap - 1}\right] = g(a) \left(\frac{g(a)f(2p)}{f(2)}\right)^{k-1} f\left(pD_p(2)n\right) + o(1).$$

as $n \to \infty$.

On the other hand, since (a, 2) = 1 and $p \in \mathcal{P}$, we can find some $m_0 \in \mathbb{N}$ such that

$$((ap)^k m_0 + E_p(2), 2A) = (m_0, 2A) = 1$$

Choosing the subset of n's of the form

$$n = \frac{(ap)^k - 1}{ap - 1} \Big(2Am + m_0 \Big),$$

then

$$((ap)^k(2Am + m_0) + E_p(2), 2A) = (2Am + m_0, 2A) = 1,$$

which with (23) and (26) implies

$$\left[f\left(2p^{k}\right) - \frac{f(2p)^{k}}{f(2)^{k-1}}\right]g(a)^{k}f\left[\frac{(ap)^{k} - 1}{ap - 1}\right]f\left(2Am + m_{0}\right) = o(1).$$

This completes the proof of (25).

We define $f^* \in \mathcal{M}^*$ as

$$f^*(p) = \frac{f(2p)}{f(2)} \quad (\forall p \in \mathcal{P}).$$

Let

(27)
$$f(n) := f^*(n)F(n) \quad \text{for all} \ n \in \mathbb{N}.$$

Then one can check from (25) that

$$F(2p^k) = F(2)$$
 for all $p \in \mathcal{P}, k \in \mathbb{N}$

Consequently

F(n) = 1 for all $n \in \mathbb{N}$, (n, 2) = 1

and

$$F(2^{\alpha}) = F(2)$$
 for all $\alpha \in \mathbb{N}$.

Hence

(28)
$$F(2n) = F(2)$$
 for all $n \in \mathbb{N}$.

Now we prove the theorem.

From (1) and (23), we have

$$g(2An+1) = \chi_{2A}(2An+1)f(2An+1) = f(2An+1)$$

and

$$f(2An+1) - Cf(2n) = o(1)$$
 as $n \to \infty$.

This with (28) gives

$$f^*(2An+1) - Cf^*(2)F(2)f^*(n) = o(1)$$
 as $n \to \infty$.

By using Lemma 9, the last relation implies that there is a complex number \boldsymbol{s} such that

$$f^*(n) = n^s \ (0 \le \text{Re s} < 1), \text{ and } f(n) = n^s F(n) \ (n \in \mathbb{N}).$$

Now let

$$g(n) = n^s G(n) \quad (n \in \mathbb{N}).$$

It is clear to see from the fact $f^*(2A) = Cf^*(2)F(2)$ that $A^s = CF(2)$. Thus, by using (1), we have

$$(An + 1)^{s}G(An + 1) = g(An + 1) = Cf(n) + o(1) = Cn^{s}F(n) + o(1),$$

which gives

$$G(An+1) - \frac{1}{F(2)}F(n) = o(1) \text{ as } n \to \infty.$$

Finally, by (11), (23) and (28) we have

$$G(2An+1) = \frac{g(2An+1)}{(2An+1)^s} = \frac{H(2An+1)f(2An+1)}{(2An+1)^s} = F(2An+1) = 1$$

and

$$(29) G(m) = \chi_{2A}(m)$$

hold for all $n \in \mathbb{N}$, $m \in \mathbb{N}_{2A}$. Hence

$$G(AN + 1) = G(AN + 1)G(2ANn + 1) =$$

= $G\left[A\left(2(AN + 1)Nn + N\right) + 1\right] =$
= $\frac{1}{F(2)}F\left(2(AN + 1)Nn + N\right) + o(1) =$
= $\frac{1}{F(2)}F(N)F\left(2(AN + 1)n + 1\right) + o(1) =$
= $\frac{1}{F(2)}F(N) + o(1)$

as $n \to \infty$. Thus $G(AN + 1) = \frac{1}{F(2)}F(N)$ holds for each $N \in \mathbb{N}$. Theorem 1 is proved.

4. Proof of Theorem 2

It is obvious that the functions defined in a) and b) of Theorem 2 satisfy (3). We note that in the case when A is even, for any nonprincipal character $\chi_{2A} \pmod{2A}$, we have (A + 1, 2A) = 1 and

$$(\chi_{2A}(A+1))^2 = \chi_{2A}(A^2+2A+1) = 1, \ \chi_{2A}(A+1) = -1.$$

Now we assume that $A \in \mathbb{N}$, $D \in \mathbb{C} \setminus \{0\}$ and $F, G \in \mathcal{M}, F \notin \mathcal{L}$ satisfy the equation (3), i.e.

$$G(An+1) = DF(n)$$
 for all $n \in \mathbb{N}$.

From Theorem 1, we infer that F and G satisfy (28) and (29), consequently

(30) F(n) = F[(n,2)] and $G(m) = \chi_{2A}(m)$ for all $n \in \mathbb{N}, m \in \mathbb{N}_{2A}$.

Case I. A is even

In this case we have (An + 1, 2A) = 1, therefore we infer from (3) and (30) that

$$DF(n+1) = DF((A+1)n+1) = G[A((A+1)n+1)) + 1] =$$
$$= G[(An+1)(A+1)] = G(An+1)G(A+1) =$$
$$= D^2F(n)F(1) = D^2F(n)$$

and so

$$F(n+1) = DF(n), F(n+1) = D^n$$

hold for all $n \in \mathbb{N}$. Since F(3) = F[(3, 2)] = F(1) = 1, we obtain from the above relation

$$1 = F(3) = F(2+1) = D^2, \quad D \in \{1, -1\}.$$

If D = 1, then $F(n) = D^{n-1} = 1$ and G(An + 1) = DF(n) = 1 for all $n \in \mathbb{N}$. Consequently

$$G(n) = \chi_A(n)$$
 for all $n \in \mathbb{N}_A$,

which proves that $(D, F, G) = (1, I, \chi_A)$.

If D = -1, then $F(n) = D^{n-1} = (-1)^{n-1} = \Psi(n)$. From (3) we deduce that

$$G(An+1) = DF(n) = (-1)^n$$

consequently

$$G(2An + 1) = 1$$
 and $G(2An + A + 1) = -1$

hold for all $n \in \mathbb{N}$. These imply that $G = \chi_{2A}$, where χ_{2A} is any nonprincipal character (mod 2A). Thus $(D, F, G) = (-1, \Psi, \chi_{2A})$, which completes the proof of the assertion (a).

Case II. A is odd

For each $\alpha \in \mathbb{N}$ let $n_{\alpha} \in \mathbb{N}$ such that $2^{\alpha} || An_{\alpha} + 1$. It is obvious from the fact (A, 2) = 1 that n_{α} is odd for all $\alpha \geq 1$. We get from (3) and (30) that

$$\begin{aligned} G(An_{\alpha}+1)G(An_{1}+1) &= \frac{G(2^{\alpha})G(2)}{G(2^{\alpha+1})}G\Big[(An_{\alpha}+1)(An_{1}+1)\Big] = \\ &= \frac{G(2^{\alpha})G(2)}{G(2^{\alpha+1})}G\Big[A(An_{\alpha}n_{1}+n_{\alpha}+n_{1})+1\Big] = \\ &= D\frac{G(2^{\alpha})G(2)}{G(2^{\alpha+1})}F(An_{\alpha}n_{1}+n_{\alpha}+n_{1}) = \\ &= D\frac{G(2^{\alpha})G(2)}{G(2^{\alpha+1})}.\end{aligned}$$

On the other hand, we obtain from (3) and (30) that

$$G(An_{\alpha}+1)G(An_{1}+1) = D^{2}F(n_{\alpha})F(n_{1}) = D^{2}$$

from which we get

(31)
$$G(2^{\alpha+1}) = \frac{G(2)}{D}G(2^{\alpha}) = \left(\frac{G(2)}{D}\right)^{\alpha}G(2) \text{ for all } \alpha \in \mathbb{N}.$$

Now we define $G^* \in \mathcal{M}^*$ in \mathbb{N}_A as

$$G^{*}(p) = \begin{cases} G(p), & \text{if } (p, 2A) = 1\\ \\ \frac{G(2)}{D}, & \text{if } p = 2. \end{cases}$$

Let

$$G(n) := G^*(n)\overline{G}(n) \quad \text{for all} \ n \in \mathbb{N}_A.$$

Then one can check from (30) and (31) that

(32)
$$\overline{G}(2n) = \overline{G}(2) \text{ for all } n \in \mathbb{N}_A,$$

which with (3) implies

$$G(An+1) = G^*(An+1)\overline{G}(An+1) = DF(n) \text{ for all } n \in \mathbb{N}.$$

By putting n = 2m + 1, using (3), (30) and (32), we infer that

$$G(2Am + A + 1) = G^*(2Am + A + 1)\overline{G}(2Am + A + 1) = G^*\left(Am + \frac{A+1}{2}\right)G(2)$$

and

$$G(2Am + A + 1) = DF(2m + 1) = D.$$

hold for all $m \in \mathbb{N}$. Consequently

$$G^*\left(Am + \frac{A+1}{2}\right) = \frac{D}{G(2)}$$

and so

(33)
$$G^*(n) = \chi_A(n), \ G(n) = \chi_A(n)\overline{G}(n) \text{ for all } n \in \mathbb{N}_A.$$

Finally, from (3) we get

$$G(An+1) = \chi_A(An+1)\overline{G}(An+1) = \overline{G}(An+1) = DF(n).$$

Since A is odd, we deduce from (32) that $\overline{G}(An + 1) = \overline{G}[(An + 1, 2)] = \overline{G}[(n + 1, 2)] = \overline{G}(n + 1)$, therefore

(34)
$$\overline{G}(n+1) = DF(n) \text{ for all } n \in \mathbb{N}.$$

It obvious from (30), (32) and (34) that $\overline{G}(2) = D$ and $DF(2) = \overline{G}(3) = 1$, which imply

$$F(2n) = F(2) = \frac{1}{D}$$
 and $\overline{G}(2m) = \overline{G}(2) = D$ for all $n \in \mathbb{N}, m \in \mathbb{N}_A$.

Therefore, we proved that $F = \mathcal{B}_{(1, \frac{1}{D})}, \overline{G} = \mathcal{B}_{(A, D)}$ and $G = \mathcal{B}_{(A, D)}\chi_A$. The assertion (b) and so Theorem 2 is proved.

References

- Elliott, P.D.T.A., Arithmetic Functions and Integer Products, Grund. der Math. Wiss. 272, Springer Verlang, New York, Berlin, 1985.
- [2] Erdős, P., On the distribution function of additive functions, Ann. Math., 47 (1946), 1–20.
- [3] Kátai, I., Multiplicative functions with regularity properties I, Acta Math. Hungar., 42(3-4) (1983), 295–308.
- [4] Kátai, I., Arithmetical functions satisfying some relations, Acta Sci. Math., 55 (1991), 249–268.
- [5] Kátai, I., Research problems in number theory II., Ann. Univ. Sci. Budapest., Sect. Comp., 16 (1996), 223–251.

- [6] Bassily, N.L. and I. Kátai, On the pairs of multiplicative functions satisfying some relations, *Aequationes Math.*, 55 (1998), 1–14.
- [7] Fehér, J., I. Kátai and B.M. Phong, On multiplicative functions satisfying a special relation, Acta Sci. Math. (Szeged), 64 (1998), no. 1-2, 49–57.
- [8] Kátai, I. and B.M. Phong, On some pairs of multiplicative functions correlated by an equation, *New trends in probability and statistics*, Vol. 4 (Palanga, 1996), 191–203.
- [9] Kátai, I. and B.M. Phong, On some pairs of multiplicative functions correlated by an equation. II, Aequationes Math., 59(3) (2000), 287–297.
- [10] Kátai, I. and B.M. Phong, A characterization of n^s as a multiplicative function, Acta Math. Hungar., 87(4) (2000), 317–331.
- [11] Phong, B.M., A characterization of some arithmetical multiplicative functions, Acta Math. Hungar., 63(1) (1994), 29–43.
- [12] Phong, B.M., A characterization of some unimodular multiplicative functions, Publ. Math. Debrecen, 57(3–4) (2000), 339–366.
- [13] Phong, B.M., Reduced residue systems and a problem for multiplicative functions, Ann. Univ. Sci. Budapest., Sect. Comp., 18 (1999), 35–46.
- [14] Phong, B.M., Reduced residue systems and a problem for multiplicative functions II., Ann. Univ. Sci. Budapest., Sect. Comp., 20 (2001), 97–106.
- [15] Tang, Yuansheng, A reverse problem on arithmetic functions, J. Number Theory, 58 (1996), 130–138.
- [16] Wirsing, E., Yuansheng Tang and Shao Pintsung, On a conjecture of Kátai for additive functions, J. Number Theory, 56 (1996), 391–395.

Bui Minh Phong

Department of Computer Algebra Faculty of Informatics Eötvös Loránd University H-1117 Budapest, Pázmány Péter sétány 1/C Hungary bui@compalg.inf.elte.hu