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ON THE PAIRS OF MULTIPLICATIVE FUNCTIONS
WITH A SPECIAL RELATION

Bui Minh Phong (Budapest, Hungary)

Dedicated to Professor Janos Galambos on his 70th anniversary

Abstract. It is proved that if f and g are complex-valued multiplica-
tive functions satisfying g(An + 1) — Cf(n) = o(1) as n — oo with
some positive integer A and non-zero complex constant C, then either
f(n) =o0(1), g(An+ 1) = o(1) as n — oo or there exist a complex num-
ber s and multiplicative functions F, G such that f(n) = n°F(n), g(n) =
=n°G(n), (0 <Res<1)and G(An + 1) = == F(n) are satisfied for all

F(2)
n € N. All solutions of G(An + 1) = ﬁz)F(n) are given.

1. Introduction

Let N, P, R and C denote the set of all positive integers, prime numbers,
real and complex numbers, respectively. We denote by (m,n) the greatest
common divisor of the integers m and n. For each positive integer k, let N
be the set of the natural numbers coprime to k and let Ly be the set of those
arithmetical functions f for which f(n) = o(1) as n — oo, n € Nj. Let M,
(M%) be the set of complex-valued multiplicative (completely multiplicative)
functions f : Ny — C. In the case k =1, let

L:=Ly, M:=M; and M*:= MjJ.
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For positive integers n and k let n = Dy (n)Eg(n), where Dg(n) is the
product of prime power divisors p® of n for which p|k and (Ex(n), k) = 1.

P. Erdés proved in 1946 [2] that if f : N — R is an additive function such
that Af(n) := f(n+ 1) — f(n) = o(1) as n — oo, then f(n) is a constant
multiple of logn. This assertion has been generalized in several directions (e.g.
see [1,5]). The characterization of multiplicative functions f : N — C under
suitable regularity conditions even in the simplest case Af(n) = o(1) is much
harder.

In 1984, I. Kdtai stated as a conjecture that f € M, A f(n) =o(1) as n —
— oo imply that either f € £ or f(n) =n® (n € N),0 < Re s < 1. This was
proved by E. Wirsing in a letter to Kétai and later in a paper [16]. It is not
hard to deduce from Wirsing’s theorem that if

frgeM, gln+1)— f(n)=0(1) as n — oo,
then either g € L, f € L or
f(n)=g(n)=n"> (neN), 0<Res<1.

More than 10 years ago, improving the above results, in the joint paper
with I. Katai, we proved in [10] that if & € N is given and f, g € M satisfy the
condition

gln+k)— f(n)=0(1) as n— oo,
then either f € £, g € L or there are F, G € M and a complex constant s such
that
f(n)=n°F(n), g(n)=n°G(n), 0<Res<1
and
G(n+k)=F(n)

are satisfied for all n € N. In [3,7,8,9,13,14], by using the result of [4], the
equation G(n+ k) = F(n) is solved completely.

The general case concerning the characterization of those f, g € M for
which

glan+b) —Cf(An+ B) =o0(1) as n— oo,
where a > 0, b, A > 0, B are fixed integers and C is a non-zero complex
constant, seems to be a hard problem. This question was solved in [11, 12] for

B = 0 under the conditions |f(n)| = [¢g(n)] =1 (n € N). A similar result was
obtained in [15] under the conditions

f=g, f(n+b)—f(n)=0(l) as n — oco,n € Ny.
N.L. Bassily and I. Kétai [6] showed that if f, g € M satisfy
9@2n+1) = Cf(n) =o(1) (n— o0)
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with some non-zero constant C, then either f € L, g € L5 or
C=7f2), f(ny=n*, 0<Res<1, and f(m)=g(m)

for all n € N, m € Ny.

The main purpose of this paper is to improve this result of N.L. Bassily and
I. Kéatai. We prove

Theorem 1. Assume that A € N, C € C\ {0} and f, g € M satisfy the
condition
(1) g(An+1)—Cf(n)=0(1) as n— oo.

Then either f(n) = o(1) and g(An + 1) = o(1) as n — oo or there exist a
complex number s and functions F, G € M such that

f(n) =n°F(n), g(m) =n°G(n), (0 <Res<1)

and ]
A )= ——F
GAn+1) = 5 F()
are satisfied for all n € N.
In the proof of Theorem 1, we get
(2) F(2n) =F(2), G(m)=x24(m) for all n €N, m € Nag.

We shall prove

Theorem 2. Assume that A€ N, D € C\ {0} and F, Ge M, F ¢ L
satisfy the equation

(3) G(An+1) = DF(n).

Let
I(n)=1 and ¥(n)=(=1)""' forall n€N.

Then the following assertions hold:
(a) If A is even, then all solutions (D, F, G) of (3) have the form

(Dv Fv G):(lu I7 XA) and (D7 F7 G):(_lv \Ijv XZA)»

where x24 18 an arbitrary nonprincipal character (mod 2A).
(b) If A is odd, then all solutions of (3) have the form

(D, F, G)=(1, I, xa)
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and

(Da F, G) = (Zv B(l, 1) B(A, z)XA)a

where z is an arbitrary non-zero complex number, x 4 is an arbitrary character
(mod A) and multiplicative functions By, ¢y are defined as follows:

B, o) € M, B, o(2n) =L for all n € Ny,

2. Lemmas

Lemma 1. Assume that A € N, D € C\ {0} and F, G € M satisfy the
condition
G(An+1)=DF(n) (n€N).

Let
Spi={neN| F(n)#0} and Sg:={neN| (n,A) =1, G(n) #0}.
Then either the set Sg is finite or
Sr=N and S¢ ={neN| (n,A)=1}.

Proof. Lemma 1 is a consequence of Theorem 1 in [14]. |

Lemma 2. Assume that kg, K € N and ¥ € M satisfy the condition
(4) U(kgm+1) =0 as m — oo, (kgm+1,K)=1.

Then there is a positive integer k such that U € L.

Proof. Assume that (4) holds for some positive integers ko, K. We shall
prove that there is a k € N such that ¥ € L. For every reduced residue

class | (mod koK) let Eil), . ’Eg()koK)q be coprime integers belonging to

[ (mod koK) , and satisfying \I/(E](-l)) #0 (j=1,...,0(kgK) — 1), if there
exist so many EJ(-I). Let ED .= E%l) e Eg()kOK)il. Then U(E®) # 0 and for
allz € N, z =1 (mod koK), (z,E®) =1, we have zE®) =1 (mod kyK),
and so by (9) and our assumptions, we get

U(z) =0 as z =00, z=1 (modkK), (z,ED)=1.
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If for some [ the maximal size ¢ of the set Eil), ey Et(l) constructed above is
less than ¢(koK) — 1, then ¥(z) = 0 if x =1 (mod koK) and (z, ED) = 1,
where BV .= Egl) - Et(l). Hence ¥ € £}, follows, where

k= koK I] EW,

1<1<kgK
(I,kgK)=1

Lemma 2 is proved. |

In the following we assume that the functions f, g € M satisfy the condi-
tion (1), i.e.
g(An+1) —Cf(n) =0(1) as n—
with some fixed positive integer A and a non-zero complex constant C.

We say that a function ¥ € M is of a finite support if there is a finite set
A of distinct primes p; < p2 < ... < p,- such that

T(p) =0 (a=1,2...) if pg A.

Lemma 3. If f or g is of a finite support, then f € L and g € Lp hold for
some D € N.

Proof. Let
Sf={neN| f(n)#0} and S;:={neN|(n,A) =1, g(n) #0}.

Assume first that f is of a finite support, that is f(p®) =0 (e =1,2...)ifp &
g A:={p1,p2,...,pr}. Let A =py---p.. For an arbitrary positive integer n
let n = Da(n)Ea(n), where Da(n) is the product of those prime power divisors
p® of n for which p|A, and Fa(n) is coprime to A. Then g(Am + 1) — 0 as
m — oo and FEa(m) > 1.

Assume that f ¢ £. Then g(Am + 1) # 0 holds for infinitely many integers
m. It is obvious that there are an infinite sequence of primes ¢; < g2 < g3 <
< --- and suitable exponents «; such that

{ai" 457, 45%,...} © S,

In this case there are a positive integer ¢, (¢, A) = 1 and an infinite sequence
of prime powers

{QlaQ?aQBw"} g {q(lxl,q(;zaqsaa"'} g Sg7

for which @; = ¢ (mod A). This shows that there exist a positive @ for which
Q€eS;, Q=1 (mod A) and an infinite sequence of positive integers m; <
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< mg < ... for which (Q,Am, +1) =1 and liminf |g(Am, + 1)| > 0. Then
liminf |g (Q(Am, +1))| > 0 and so

N (me + Q;l> =1, EA(m,,) =1

hold for every larger v.

This contradicts Thue’s theorem. Consequently f € £, and so it follows by
Lemma 3 that g € Lp holds for some D € N. Lemma 3 is proved. ]

The case, when g is of a finite support can be treated similarly.

Lemma 4. If there are positive integers A and D such that f € LA and
g € Lp, then f € L.

Proof. By using Lemma 3 we can assume that f, g are not of finite
supports. Let A = 77?1 ...mdrand D = qfl ...q% where {r,...,m.} CP and
{QI7~-~7QS} cP.

We may assume that for each 7; there exists at least one [; (> 1) such that
f(m7) # 0. Let

E(ty,...,t,) =nm ... ¢l

Assume that Q1,...,Q, are positive integers for which (Q;,Q;) =1 (1 <i<

<j<s)and f(Qi) #0, (Qi,A) = 1. Foru,v,j € Nyu #vlet ;" || Qu—Qy
and
T :=max Byv,;j-
i

Then there is a jo € {1,..., s} for which
g T JAE(ty, . )Qj + 1 (F=1,...,8).

Let now j be fixed, l1,...,l;-1,lj41,...,1 be so chosen that f(wi) #0 (1=
=1,...,5—1,j+1,...7r). Let t; — co. Then

f(E(ll,...,tj,...7l7~))—>0 as lj-)OO7

consequently f (71';’) — 0 (t; = o0). Thus f € £ and so Lemma 4 is proved. B

Lemma 5. If there are positive integers A and D such that f € LA or
g€ Lp, then f e L.

Proof. By using Lemma 3 we can assume that f, g are not of finite
supports. We shall prove only the first assertion. Assume that that f € La
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holds for some positive integer A, A = 7% ... 70 Tt is obvious that given
an arbitrary constant c, f(n) — 0 as n — oo under the condition Da(n) < ¢,
where
Da(n) = H p.
P n
p |A
Since g is not of a finite support, there are coprime integers @1, ..., Q; for

which @Q; =1 (mod A) and g(@Q;) #0 (j =1,...,t). Let wf’ | Qu — Qu

and T := MaX g Bu,v,j- Let m run over the set of those integers for which
(Am+1,Q;...Q+A) =1. Then

Q-1
) 7(@;m+ 1)~ Cf (Qum-+ L) = ot
as m— o0, (Am+1,Q1...Q:A) = 1. For each fixed m; no more than one j
exists for which ﬂ'lT'H\Qjm + Q]Xl. Thus, if ¢ > r, then for each m there is a
j such that

Da (Qjm—l— Q]A_ 1) |(my .. .7TT)T

on the set of those integers for which (Am +1,Q1 ... Q:A) = 1. Hence, by (5)
we get that g(Am +1) — 0as m — oo and (Am+1,Q1...Q:A) = 1. By
Lemma 2 there is a D € N such that g € Lp. Lemma 4 completes the proof of
Lemma 5. ]

Lemma 6. If there is a positive integer ng or a positive integer mqg such
that f(no) =0 or g(Amo+1) =0, then f € L.

Proof. Applying (1) with n = N[N(AN + 1)?m + 1], we have
g(AN +1)g (N*(AN + 1)m + 1) — Cf(N)f ((AN + 1)>’Nm + 1) = o(1)

asm — oo. If (AN +1) # 0 and f(N) = 0, then one can deduce from the last
relation and Lemma 2-5 that f € £. If there is an N € N such that f(N) #0
and g(AN + 1) = 0, then we also have f € L.

Finally, assume that for every positive integer N either f(N) = g(AN+1) =
=0, or f(N)g(AN +1) #0. Let

)1, if f(n) #£0 )1, ifg(m) #
F(n>_{o, it fy =0 G(m)_{o, if g(m) =

Then G(An + 1) = F(n) holds for all n € N and F,G € M. Let

0
0.

Sp:={neN| F(n)#0} and Sg:={neN]|G(n)#0}
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Since f(ng) =0 (or g(Amg + 1) = 0), it follows from Lemma 1 that |Sr| < oo,
thus f(n) — 0 and g(An+1) — 0 as n — oc.

The proof of Lemma 6 is thus complete. |

Lemma 7. Assume that A € N, C € C\ {0} and f, g € M satisfy the
relation
g(An+1) —Cf(n) =0(1) as n — oco.

Let P,Q and N be positive integers satisfying the conditions

(6) Q=1 (mod A) and N=P(Q-1)+1.
If f ¢ L, then
(7) g (N) f(PQd) = f(P)g(Q)f (N) f(d),
where

LR

Proof. Let P,@ and N be positive integers satisfying (6). Let
Ny = EqQ(N), P1:=Eq(P), Qi := En(Q),
where Fj(n) is the product of all prime power divisors of n which are prime to

kand (g2, Ex(n)) = 1

First we prove that there is a positive integer ng such that

—~

N17 APQ?’],O + 1) = 17

N

P, NQno+ %) =1,
Ql; ANng + 1) =1,
N1P1Q1, no) = d(P,Q).

We infer from the facts N = P(Q —1) +1 and (N1, Q) =1 that Ny = Eg(N)
is an odd positive integer. By (6), we have (N1, PQ) = (N1, A) =1 and so an
application of the Chinese Remainder Theorem shows that there exists an n
for which

(8)

o~ o~

(Nl, APQn1 + 1) = (Nl, Tll) =1.

It is clear to check from the definition of P; = Eg(P) that if Py is odd, then
there is an n), € N such that
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Assume that P, = Eg(P) is even. Then @Q and N = P(Q — 1) + 1 are odd
numbers. In this case there is an n} for which

-1
(Pla NQnIQI—"_C?‘A) =1 and (P17 ng):dQ(P7Q)a
where o
2, if (P —1)Q%2 is odd
day(P,Q) =14’ A
2(P.Q) {1, otherwise.

Consequently, we can find an ny for which

(Pl, NQn2+QAl> =1 and (P, n2) = da(P, Q).

Finally, we infer from the definition of @1 = En(Q) and A|Q — 1 that
(Q1, AN) = 1. Hence, if Q)7 is odd, then there exists an nj for which
(Q1, ANn5+1)=1 and (Q1, nj) = 1.
Assume that @ is even. Then (AN, 2) =1 and so there is a nj for which
(Q1, ANng +1) =1 and (Q1, ng) = ds(P,Q),

where
Q= {} i e
Consequently, we can find an ng for which
(Q1, ANn3+1) =1 and (Q1, n3) = d3(P, Q).
We can check from definitions of d(P, Q), d2(P, @) and d3(P, Q) that
d2(P, Q)ds(P, Q) = d(P, Q).

Since (N1, P1) = (N1,Q1) = (P1,Q1) = 1 it follows from the Chinese Remain-
der Theorem that there is an ng such that

ng =n1; (mod Ny), ng =ny (mod Py), ng =n3g (mod Q).

Hence, the proof of (8) is finished.

Next, we shall prove (7). Let ng be a positive integer which satisfies (8).
By considering n = N1 Pi@Q1m + ny, it is clear to check from (8)

(N, APQn+1)=1,
9) (P, NOn + %) —1,
(Q, ANn+1)=1.
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By using the multiplicativity of f and g, we get from (9) the following relations:
Cyg(N)f (PQn) = g(N)g (APQn+1) 4+ o(1) =

=g [A (NPQn+ 1\7;1) + 1} +o(l) =

=Cf (NPQn+ N;1> +o(1) =

=Cf(P)f (NQn + fo) +o(l) =

= f(P)g {A (NQn + Q;ll) + 1} +o(1) =

= [(P)9(@)g[ANn + 1] +o(1) =
=Cf(P)g(Q)f (Nn) +o(1),

which imply
(10) g(N)f (PQn) — f(P)g(Q)f (Nn) = o(1)

asm — oo, n=N{PQim+ ng — oo.
It follows from (8) that we can choose a positive integer mg such that

_ N1 PQ:
d

Taking m = Dg(N)Dg(P)Dn(Q)d*t+my, from (10) we have n = Ny PiQim—+
+ng = d(NPQdt + t), consequently

(9(V)F (PQd) = £(P)g(@Q)f (Nd) ) F(NPQt +1t0) = o(1)

as t — oo. It is obvious that g(N)f (PQd) — f(P)g(Q)f (Nd) = 0, because in
the other case, we have f(NPQdt+tg) = o(1) as t — oo, therefore we get from
Lemma 2 and Lemma 5 that f € £. Since (N,d) = 1, we have

g(N)f (PQd) = f(P)g(Q)f (Nd) = f(P)g(Q)f (N) f (d),
which completes the proof of (7).

to mo + % and (tg, dPQN) = 1.

Lemma 7 is proved. |

Lemma 8. Assume that A € N, C € C\ {0} and f, g € M satisfy the
relation
g(An+1) —Cf(n) =0(1) as n— oo.
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If f ¢ L, then

(11) feMsy, ge M54  and H(n) :—ch((z))—ng(n) (n € Nag).
Hence xy, denotes the character (mod k).
Proof. First we prove
H(n) = ';((Z; = X2A(n) (n S NQA).

Let @ € N be a positive integer such that Q@ =1 (mod A) and let P = 2Qm+1,
(meN). Thend =d(P,Q)=1, (P,Q)=1, N =2(Q —1)Qm+ Q and by (7),
we have

(12) H12Q - 1em+ Q) = LAY _ g (),
Thus, we infer from Lemma 19.3 of [1] that
(13) H(n) = x20(-1)(n) on the set (n 20(Q — 1)) ~ 1
It is clear to see that there is a number M € N for which
(M(AM T1),A+ 1) e {1, 2}.

Then by applying (12) and (13) for the cases when Q@ = A+1,and Q = AM+1,
respectively, we infer that

H e M5aa41) and H € M5 pcangr)-
Since
(2A(A 1), 2AM(AM + 1)) - 2A(A 41, M(AM + 1)) € {24, 44},
we get from the above relations that
He M5,
On the other hand, we have (2(Q — 1)m + 1, @, 24) = 1, consequently

H([2(Q - 1)Qm + Q| = H(QH [2(Q - )m +1)].
Thus, (12) gives H[Q(Q —1)m+ 1}: 1 and

H(n) = x24(n) and g(n) = x24(n)f(n) (n € Naa).
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Now we prove that
(14) [, 9€ My

Let Q = 24z +1, P = 2Ay + 1, N = (24)%2y + Q. It is obvious that
d(P,Q) = 1. From (7), (11) and (14) we have

(15) H(N) = H(Q) = H(P) = H(PQ) = 1
and
(16) g(N)F(PQ) = f(P)g(Q)f(N).

From (15) and (16) we have

(17)  f(PQ) = f(P)g(Q) = f(P)f(Q) and ¢(PQ) = f(PQ) = g(P)g(Q).

Now let (nm,2A4) =1, n,m € N. We can choose two positive integers z, ¢ such
that

nz=1 (mod 2A4), (z,nm)=1, mt=1 (mod 24), (¢t,nmz)=1.
We infer from (17) that
f(nzmt) = f(nz)f(mt) = f(n)f(2)f(m)f(?),

g(nzmt) = g(nz)g(mt) = g(n)g(z)g(m)g(t)

and
f(nzmt) = f(nm)f(2)f(t), g(nzmt) = g(nm)g(z)g(t).
Hence
f(nm) = f(n)f(m) and  g(nm) = g(n)g(m),
and so (14) and (11) are proved. Lemma 8 is proved. [ ]

Lemma 9. Assume that a, b€ N, D € C\{0} and T € M*, T & L satisfy
the relations

(18) T(n)#0 (YneN), T(an+b)—DT(n)=0(1) as n — oco.
Then T'(a) = D and there is a complex number s such that
T(n)=n°, (0<Res<1)

holds for all n € N.
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Proof. Assume that a, b € N, D € C\{0} and T' € M* satisty the relations
(18). Since T' € M* and

<a2m+b>(a+ 1) = a{a(a+ 1)m+b} +b,
we get from (18) that

DT(am)T(a+1) = T(an n b)T(a +1) +o(l) =

- T[a(a(a—i— 1)m—|—b) +b} +o(1) =
— DT (a(a+ )m+b) +o(1) =
= D?*T(a+ 1)T(m) + o(1)

which from the fact T ¢ £ implies T'(a) = D.

In the following we denote by J the set of those pairs (@, R) of positive
integers for which

T(@n+R)—T(Qn) =0o(1) as n — co.

By using the same method that was applied in [11] and [12], we prove that
the following assertions hold:

(a) (Q,1)e Jif (¢g,1) e Jand Q > ¢

b)) (Q,R)e Jif(¢g,1)eJ,g>2and0< R< Q/(g—1)
(¢) (h,1) e Jif (h+1,1) € J and h > 2.

Assume that (k,1) € J. By using T' € M*, we have

TR)T((k+ )0+ 1) =T [k((k + n+1) +1] +0(1) =

= T(k+1)T(kn+1) +o(1) = T(k)T(k + 1)T(n),

and so, we deduce that (k+1,1) € J. By using induction, we have proved that
(a) holds.

Assume again that (k,1) € J and k > 2. We shall prove (b) by induction
on r. From (a) it is clear that (b) is satisfied for » = 1. Assume that (¢,r) € J
holds for all integers ¢ and r satisfying 0 < r < ¢/(k — 1) and r < ro, where
ro > 1 is an integer. Let ¢p be an integer such that

q0
(19) 0<r0<k_1.

In order to show (b) it suffices to prove that (go,79) € J. Without loss of
generality we may assume that gg and rg are coprimes.
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Let g and r be positive integers such that
(20) roq = qor +1 and r <Tg.
It follows by (19) and (20) that

0 <7< (qr+1)/q =r0q/q < q/(k —

Thus, by using our assumption and the fact r < ro, we have (g,7) € J.

On the other hand, by (20), we infer from the facts (¢o,1) € J and (¢,7) € J
that

T(q)T(gon +19) = T(qo(qn +7)+ 1) = T(qo(qn + r)) +o(1) =

(90)T(qn +7) 4 o(1) =
(90)T(gn) + o(1),

T
T

which shows that (go,r0) € J. Thus, we have proved (b).

Finally, we prove (c). Assume that (h 4+ 1,1) € J and h > 2. For each
LeN,0<l<h—1let

={neN|n={¢ (modh)}
and we can choose positive integers ¢ = ¢(¢) and r = r(¢) such that
(21) (ht +1)q = h2r + 1.
We shall prove that
(22) T(hn+1)—T(hn) =0(1) as n— oo, n € Ay.

Let n = hm+{ € A,. Since (h+1,1) € J and h > 2, by (a) we have (h?,1) € J.
Thus

T(q)T(hn + 1) = T(qghn + q) = T(qth +q(ht + 1)) -

(h2 qm +r) +1)

h?(gm + 1)) + o(1) =

WT (alhm + 0) + hr = qt) + o(1) =
h)T(g(hm +£)) +o(1) =
hT(g)T(n) + o(1).

T
T
T
T
T

(
(
(
(
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In the last step, the assertion is true if hr — ¢f = 0. If hr — ¢f # 0, then we get
from (21) that
(-1 _4q
oS
which, by applying (b) with k = h+ 1, implies that (q, hr —¢f) € J. This, with
(h?,1) € J shows that (22) is true. This completes the proof of (c).

By (18) and using T'(a) = D, one can deduce that (a, b) € Jand (a,1) € J.
If a = 1, then Lemma 9 follows from the Wirsing’s theorem. If a > 2, then by
using (¢) one can deduce that (2,1) € J, and so

0< hr—gql=

T(2n+1)—T(2n) =0(l) as n — oo.

By using the result of Bassily and Kétai [6], it follows that there is a complex
number s such that 0 <Re s < 1 and T'(n) =n® for all n € N.

Lemma 9 is proved. |

3. Proof of Theorem 1

Assume that A € N, C' € C\ {0} and the functions f,g € M satisfy (1).
Then from Lemma 8 we have

(23) f7 9, H€M§A7 H:X2A-

Let a := 2A + 1. From (1) and (23) we obtain

Cg(a) F(n) = gla)g(An + 1) + o(1) =

- g[A(an+2) + 1} +o(l) = Cf(an+2) +o(1),
therefore
(24) f(an + 2) —g(a)f(n) =0(1) as n — 0.

Next, we prove that

(25) f (2" =

holds for all p € P and k € N.
For each p € P and k € N, we define the sequence Ty (n,p) by the formula
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= 9(a)f (PTi-1(n.p) ) +o(1) =

9(a)f(pDy(2))

iy () et
9(a)f(2p)

= B (T () o),

because
9(a)f(pDy(2)) _ g(a)f(2p)
f(Dp(2)) f2)

This implies

26) ¢ (e Dy@in+2 2= g (NI (0, 210) o)

as n — oQ.

On the other hand, since (a, 2) =1 and p € P, we can find some my € N
such that

((ap)kmo + Ep(Q), 2A) = (mg, 24) = 1.
Choosing the subset of n’s of the form
k

n= (CZ;) __1 1 (2Am + m0>,

then
((ap)k(QAm +mo) + E,(2), zA) = (24m +mo, 24) = 1,



On the pairs of multiplicative functions with a special relation 61

which with (23) and (26) implies

k ap)F —
7 20t) = Lo ot s [ 222 £ o) = o),

This completes the proof of (25).
We define f* € M* as

frp) = ff<(22p)) (Vp € P).

Let

(27) F(n) = f*()F(n) for all n €N,
Then one can check from (25) that

F(2p*)=F(2) forall pe P, keN,

Consequently
F(n)=1 forall neN, (n,2)=1
and
F(2*)=F(2) forall a eN.
Hence
(28) F(2n) = F(2) for all neN.

Now we prove the theorem.
From (1) and (23), we have

g(2An +1) = x24(2An + 1) f(2An + 1) = f(2An + 1)

and
f(2An+1) —Cf(2n) =0(1) as n — .

This with (28) gives

ffRAn+1) - Cf*(2)F(2)f*(n) =0(1) as n — occ.

By using Lemma 9, the last relation implies that there is a complex number
s such that

ff(n)=n° (0< Res <1), and f(n)=n°F(n) (n €N).
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Now let
g(n) =n°G(n) (n€N).
It is clear to see from the fact f*(24) = Cf*(2)F(2) that A®* = CF(2). Thus,
by using (1), we have
(An+1)°G(An+1) = g(An+1) = Cf(n) + o(1) = Cn°F(n) + o(1),

which gives
1

F(2)
Finally, by (11), (23) and (28) we have

g(2An+1)  H(2An+1)f(2An +1) _

G(An+1) — F(n)=o0(1) as n — oo.

G(2An+1) = QAnt 1) @An+ 1) F(2An+1) =1
and
(29) G(m) = x24(m)

hold for all n € N, m € Ny4. Hence
G(AN +1) = G(AN + 1)G(2ANn+1) =

G[ ( (AN +1) Nn+N>+1} _

:F12) (2(AN + 1)Nn+ N) +0(1) =

F(N)F(2(AN + 1)n+1) +o(1) =

F(N) +o(1)

(

1

T FR)

1

AP
)=

as n — 00. Thus G(AN +1

Theorem 1 is proved.

+= F(N) holds for each N € N.

4. Proof of Theorem 2

It is obvious that the functions defined in a) and b) of Theorem 2 satisfy
(3). We note that in the case when A is even, for any nonprincipal character
X24 (mod 2A4), we have (A+1,24) =1 and

2
(XM(/H— 1)) = xoa(A2 4244 1) = 1, you(A+1) = 1.
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Now we assume that A € N, D € C\ {0} and F, G € M, F ¢ L satisty
the equation (3), i.e.

G(An+1) = DF(n) for all neN.
From Theorem 1, we infer that F' and G satisfy (28) and (29), consequently

(30) F(n)=F]|(n,2)] and G(m)= x24(m) for all n € N, m € Nay.

Case I. A is even

In this case we have (An+ 1, 2A) = 1, therefore we infer from (3) and (30)
that

DF(n+1) = DF((A+ D+ 1)) =G[A((A+Dn+1)) +1] =
= G[(An+1)(A+1)] = GAn+1)G(A+1) =
= D?*F(n)F(1) = D*F(n)
and so

F(n+1)=DF(n), F(n+1)=D"

hold for all n € N. Since F'(3) = F'[(3, 2)] = F(1) = 1, we obtain from the
above relation

1=F3)=F(2+1)=D* De{l, —1}.

If D=1, then F(n) = D" ' =1 and G(An+1) = DF(n) = 1 for all
n € N. Consequently

G(n) = xa(n) forall n € Ny,

which proves that (D, F, G) = (1, I, xa).

If D = —1, then F(n) = D" ! = (-=1)""! = ¥(n). From (3) we deduce
that
G(An+1) = DF(n) = (-1)",

consequently
G(2An+1)=1 and G2An+A+1)=-1

hold for all n € N. These imply that G = x24, where x24 is any nonprincipal
character (mod 24). Thus (D, F, G) = (=1, ¥, x24), which completes the
proof of the assertion (a).
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Case II. A is odd
For each a € N let n,, € N such that 2¢|| An, + 1. It is obvious from the
fact (A,2) =1 that n, is odd for all & > 1. We get from (3) and (30) that
G(27)G(2)
G(2a+1)
_ GEMGER)
 G(20t1)
G(2MG(2)
G(2a+1)
G(27)G(2)
G(20t1)

G(Ang + 1)G(Any +1) = G[(Ana 1) (Any + 1)} -

G[A (Angny +ng +n1) + 1} =

=D F (Angny +ng +ny) =

=D

On the other hand, we obtain from (3) and (30) that
G(Ang +1)G(Any + 1) = D*F(n,)F(ny) = D?,
from which we get

G(2)
D

(31) Gty = 22 ooy = (@)QG@) for all o€ N.

Now we define G* € M* in Ny as

G(p), if (p, 24)=1
G*(p) =
e ifp=2.

Let
G(n) :==G"(n

)G(n) for all n € Ny.
Then one can check from (30) and (3

1) that
(32) G(2n) = G(2) for all n € Ny,
which with (3) implies
G(An+1) =G (An+1)G(An+1) = DF(n) for all n€N.
By putting n = 2m + 1, using (3), (30) and (32), we infer that

G(24Am+A+1) = G*(2Am+ A+ 1)G(2Am+ A+1) = G* <Am + /1;1) G(2)
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and
G2Am+ A+1)=DF(2m+1)=D.

hold for all m € N. Consequently

. A+1\ D
and so
(33) G*(n) = xa(n), G(n) = xa(n)G(n) for all n € Ny.

Finally, from (3) we get

G(An+1) =xa(An+1)G(An+ 1) = G(An+ 1) = DF(n).

Since A is odd, we deduce from (32) that G(An + 1) = G[(An + 1, 2)] =
=G[(n+1, 2)] = G(n + 1), therefore

(34) G(n+1)=DF(n) for all neN.

It obvious from (30), (32) and (34) that G(2) = D and DF(2) = G(3) = 1,
which imply

F(2n) = F(2) = % and G(2m)=G(2) =D forall n €N, m € Ny.

Therefore, we proved that F' = B4 1y G = Ba, py and G = B4, pyxa-

The assertion (b) and so Theorem 2 is proved. [ ]
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