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ON THE PAIRS OF MULTIPLICATIVE FUNCTIONS

WITH A SPECIAL RELATION

Bui Minh Phong (Budapest, Hungary)

Dedicated to Professor János Galambos on his 70th anniversary

Abstract. It is proved that if f and g are complex-valued multiplica-
tive functions satisfying g(An + 1) − Cf(n) = o(1) as n → ∞ with
some positive integer A and non-zero complex constant C, then either
f(n) = o(1), g(An + 1) = o(1) as n → ∞ or there exist a complex num-
ber s and multiplicative functions F, G such that f(n) = nsF (n), g(n) =
= nsG(n), (0 ≤ Re s < 1) and G(An+ 1) = 1

F (2)
F (n) are satisfied for all

n ∈ N. All solutions of G(An+ 1) = 1
F (2)

F (n) are given.

1. Introduction

Let N, P, R and C denote the set of all positive integers, prime numbers,
real and complex numbers, respectively. We denote by (m,n) the greatest
common divisor of the integers m and n. For each positive integer k, let Nk

be the set of the natural numbers coprime to k and let Lk be the set of those
arithmetical functions f for which f(n) = o(1) as n → ∞, n ∈ Nk. Let Mk

(M∗
k) be the set of complex-valued multiplicative (completely multiplicative)

functions f : Nk → C. In the case k = 1, let

L := L1, M := M1 and M∗ := M∗
1.
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For positive integers n and k let n = Dk(n)Ek(n), where Dk(n) is the
product of prime power divisors pα of n for which p|k and (Ek(n), k) = 1.

P. Erdős proved in 1946 [2] that if f : N → R is an additive function such
that Δf(n) := f(n + 1) − f(n) = o(1) as n → ∞, then f(n) is a constant
multiple of log n. This assertion has been generalized in several directions (e.g.
see [1, 5]). The characterization of multiplicative functions f : N → C under
suitable regularity conditions even in the simplest case Δf(n) = o(1) is much
harder.

In 1984, I. Kátai stated as a conjecture that f ∈ M, Δ f(n) = o(1) as n →
→ ∞ imply that either f ∈ L or f(n) = ns (n ∈ N), 0 ≤ Re s < 1. This was
proved by E. Wirsing in a letter to Kátai and later in a paper [16]. It is not
hard to deduce from Wirsing’s theorem that if

f, g ∈ M, g(n+ 1)− f(n) = o(1) as n → ∞,

then either g ∈ L, f ∈ L or

f(n) = g(n) = ns (n ∈ N), 0 ≤ Re s < 1.

More than 10 years ago, improving the above results, in the joint paper
with I. Kátai, we proved in [10] that if k ∈ N is given and f, g ∈ M satisfy the
condition

g(n+ k)− f(n) = o(1) as n → ∞,

then either f ∈ L, g ∈ L or there are F, G ∈ M and a complex constant s such
that

f(n) = nsF (n), g(n) = nsG(n), 0 ≤ Re s < 1

and
G(n+ k) = F (n)

are satisfied for all n ∈ N. In [3, 7, 8, 9, 13, 14], by using the result of [4], the
equation G(n+ k) = F (n) is solved completely.

The general case concerning the characterization of those f, g ∈ M for
which

g(an+ b)− Cf(An+B) = o(1) as n → ∞,

where a > 0, b, A > 0, B are fixed integers and C is a non-zero complex
constant, seems to be a hard problem. This question was solved in [11, 12] for
B = 0 under the conditions |f(n)| = |g(n)| = 1 (n ∈ N). A similar result was
obtained in [15] under the conditions

f = g, f(n+ b)− f(n) = o(1) as n → ∞, n ∈ Nb.

N.L. Bassily and I. Kátai [6] showed that if f, g ∈ M satisfy

g(2n+ 1)− Cf(n) = o(1) (n → ∞)
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with some non-zero constant C, then either f ∈ L, g ∈ L2 or

C = f(2), f(n) = ns, 0 ≤ Re s < 1, and f(m) = g(m)

for all n ∈ N, m ∈ N2.

The main purpose of this paper is to improve this result of N.L. Bassily and
I. Kátai. We prove

Theorem 1. Assume that A ∈ N, C ∈ C \ {0} and f, g ∈ M satisfy the
condition

(1) g(An+ 1)− Cf(n) = o(1) as n → ∞.

Then either f(n) = o(1) and g(An + 1) = o(1) as n → ∞ or there exist a
complex number s and functions F, G ∈ M such that

f(n) = nsF (n), g(m) = nsG(n), (0 ≤ Re s < 1)

and

G(An+ 1) =
1

F (2)
F (n)

are satisfied for all n ∈ N.

In the proof of Theorem 1, we get

(2) F (2n) = F (2), G(m) = χ2A(m) for all n ∈ N, m ∈ N2A.

We shall prove

Theorem 2. Assume that A ∈ N, D ∈ C \ {0} and F, G ∈ M, F �∈ L
satisfy the equation

(3) G(An+ 1) = DF (n).

Let
I(n) = 1 and Ψ(n) = (−1)n−1 for all n ∈ N.

Then the following assertions hold:
(a) If A is even, then all solutions (D, F, G) of (3) have the form

(D, F, G) = (1, I, χA) and (D, F, G) = (−1, Ψ, χ2A),

where χ2A is an arbitrary nonprincipal character (mod 2A).
(b) If A is odd, then all solutions of (3) have the form

(D, F, G) = (1, I, χA)



48 Bui Minh Phong

and
(D, F, G) = (z, B(1, 1

z )
, B(A, z)χA),

where z is an arbitrary non-zero complex number, χA is an arbitrary character
(mod A) and multiplicative functions B(k, �) are defined as follows:

B(k, �) ∈ Mk, B(k, �)(2n) = � for all n ∈ Nk

2. Lemmas

Lemma 1. Assume that A ∈ N, D ∈ C \ {0} and F, G ∈ M satisfy the
condition

G(An+ 1) = DF (n) (n ∈ N).

Let

SF := {n ∈ N | F (n) �= 0} and SG := {n ∈ N | (n,A) = 1, G(n) �= 0}.
Then either the set SF is finite or

SF = N and SG = {n ∈ N | (n,A) = 1}.

Proof. Lemma 1 is a consequence of Theorem 1 in [14]. �

Lemma 2. Assume that k0, K ∈ N and Ψ ∈ M satisfy the condition

(4) Ψ(k0m+ 1) → 0 as m → ∞, (k0m+ 1,K) = 1.

Then there is a positive integer k such that Ψ ∈ Lk.

Proof. Assume that (4) holds for some positive integers k0,K. We shall
prove that there is a k ∈ N such that Ψ ∈ Lk. For every reduced residue

class l (mod k0K) let E
(l)
1 , . . . , E

(l)
ϕ(k0K)−1 be coprime integers belonging to

l (mod k0K) , and satisfying Ψ(E
(l)
j ) �= 0 (j = 1, . . . , ϕ(k0K)− 1), if there

exist so many E
(l)
j . Let E(l) := E

(l)
1 . . . E

(l)
ϕ(k0K)−1. Then Ψ(E(l)) �= 0 and for

all x ∈ N, x ≡ l (mod k0K), (x,E(l)) = 1, we have xE(l) ≡ 1 (mod k0K),
and so by (9) and our assumptions, we get

Ψ(x) → 0 as x → ∞, x ≡ l (mod k0K), (x,E(l)) = 1.
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If for some l the maximal size t of the set E
(l)
1 , . . . , E

(l)
t constructed above is

less than ϕ(k0K) − 1, then Ψ(x) = 0 if x ≡ l (mod k0K) and (x,E(l)) = 1,

where E(l) := E
(l)
1 . . . E

(l)
t . Hence Ψ ∈ Lk follows, where

k := k0K
∏

1≤l≤k0K

(l,k0K)=1

E(l).

Lemma 2 is proved. �

In the following we assume that the functions f, g ∈ M satisfy the condi-
tion (1), i.e.

g(An+ 1)− Cf(n) = o(1) as n → ∞
with some fixed positive integer A and a non-zero complex constant C.

We say that a function Ψ ∈ M is of a finite support if there is a finite set
A of distinct primes p1 < p2 < . . . < pr such that

Ψ(pα) = 0 (α = 1, 2 . . .) if p �∈ A.

Lemma 3. If f or g is of a finite support, then f ∈ L and g ∈ LD hold for
some D ∈ N.

Proof. Let

Sf = {n ∈ N | f(n) �= 0} and Sg := {n ∈ N | (n,A) = 1, g(n) �= 0}.
Assume first that f is of a finite support, that is f(pα) = 0 (α = 1, 2 . . .) if p �∈
�∈ A := {p1, p2, . . . , pr}. Let Δ = p1 · · · pr. For an arbitrary positive integer n
let n = DΔ(n)EΔ(n), whereDΔ(n) is the product of those prime power divisors
pα of n for which p|Δ, and EΔ(n) is coprime to Δ. Then g(Am + 1) → 0 as
m → ∞ and EΔ(m) > 1.

Assume that f �∈ L. Then g(Am+1) �= 0 holds for infinitely many integers
m. It is obvious that there are an infinite sequence of primes q1 < q2 < q3 <
< · · · and suitable exponents αj such that

{qα1
1 , qα2

2 , qα3
3 , . . .} ⊆ Sg.

In this case there are a positive integer �, (�, A) = 1 and an infinite sequence
of prime powers

{Q1, Q2, Q3, . . .} ⊆ {qα1
1 , qα2

2 , qα3
3 , . . .} ⊆ Sg,

for which Qj ≡ � (mod A). This shows that there exist a positive Q for which
Q ∈ Sg, Q ≡ 1 (mod A) and an infinite sequence of positive integers m1 <
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< m2 < . . . for which (Q,Amν + 1) = 1 and lim inf |g(Amν + 1)| > 0. Then
lim inf |g (Q(Amν + 1)) | > 0 and so

EΔ

(
Qmν +

Q− 1

A

)
= 1, EΔ(mν) = 1

hold for every larger ν.

This contradicts Thue’s theorem. Consequently f ∈ L, and so it follows by
Lemma 3 that g ∈ LD holds for some D ∈ N. Lemma 3 is proved. �

The case, when g is of a finite support can be treated similarly.

Lemma 4. If there are positive integers Δ and D such that f ∈ LΔ and
g ∈ LD, then f ∈ L.

Proof. By using Lemma 3 we can assume that f, g are not of finite
supports. Let Δ = πδ1

1 . . . πδr
r and D = qd1

1 . . . qds
s , where {π1, . . . , πr} ⊆ P and

{q1, . . . , qs} ⊆ P.

We may assume that for each πj there exists at least one lj (≥ 1) such that

f(π
lj
j ) �= 0. Let

E(t1, . . . , tr) := πt1
1 . . . πtr

r .

Assume that Q1, . . . , Qs are positive integers for which (Qi, Qj) = 1 (1 ≤ i <

< j ≤ s) and f(Qi) �= 0, (Qi,Δ) = 1. For u, v, j ∈ N, u �= v let q
βu,v,j

j ‖ Qu−Qv

and
T := max

u,v,j
u�=v

βu,v,j .

Then there is a j0 ∈ {1, . . . , s} for which

qT+1
j � | AE(t1, . . . , tr)Qj0 + 1 (j = 1, . . . , s).

Let now j be fixed, l1, . . . , lj−1, lj+1, . . . , lr be so chosen that f(πli
i ) �= 0 (i =

= 1, . . . , j − 1, j + 1, . . . r). Let tj → ∞. Then

f (E(l1, . . . , tj , . . . , lr)) → 0 as lj → ∞,

consequently f(π
tj
j ) → 0 (tj → ∞). Thus f ∈ L and so Lemma 4 is proved. �

Lemma 5. If there are positive integers Δ and D such that f ∈ LΔ or
g ∈ LD, then f ∈ L.

Proof. By using Lemma 3 we can assume that f, g are not of finite
supports. We shall prove only the first assertion. Assume that that f ∈ LΔ
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holds for some positive integer Δ, Δ = πδ1
1 . . . πδr

r . It is obvious that given
an arbitrary constant c, f(n) → 0 as n → ∞ under the condition DΔ(n) ≤ c,
where

DΔ(n) :=
∏

pα‖ n
p |Δ

pα.

Since g is not of a finite support, there are coprime integers Q1, . . . , Qt for

which Qj ≡ 1 (mod A) and g(Qj) �= 0 (j = 1, . . . , t). Let π
βu,v,j

j ‖ Qu − Qv

and T := maxu,v,j
u �=v

βu,v,j . Let m run over the set of those integers for which

(Am+ 1, Q1 . . . QtΔ) = 1. Then

(5) g (Qj(Am+ 1))− Cf

(
Qjm+

Qj − 1

A

)
= o(1)

as m → ∞, (Am+ 1, Q1 . . . QtΔ) = 1. For each fixed πl no more than one j

exists for which πT+1
l |Qjm+

Qj−1
A . Thus, if t > r, then for each m there is a

j such that

DΔ

(
Qjm+

Qj − 1

A

)
|(π1 . . . πr)

T

on the set of those integers for which (Am+ 1, Q1 . . . QtΔ) = 1. Hence, by (5)
we get that g(Am + 1) → 0 as m → ∞ and (Am+ 1, Q1 . . . QtΔ) = 1. By
Lemma 2 there is a D ∈ N such that g ∈ LD. Lemma 4 completes the proof of
Lemma 5. �

Lemma 6. If there is a positive integer n0 or a positive integer m0 such
that f(n0) = 0 or g(Am0 + 1) = 0, then f ∈ L.

Proof. Applying (1) with n = N [N(AN + 1)2m+ 1], we have

g(AN + 1)g
(
N2(AN + 1)m+ 1

)− Cf(N)f
(
(AN + 1)2Nm+ 1

)
= o(1)

as m → ∞. If g(AN +1) �= 0 and f(N) = 0, then one can deduce from the last
relation and Lemma 2–5 that f ∈ L. If there is an N ∈ N such that f(N) �= 0
and g(AN + 1) = 0, then we also have f ∈ L.

Finally, assume that for every positive integerN either f(N) = g(AN+1) =
= 0, or f(N)g(AN + 1) �= 0. Let

F (n) =

{
1, if f(n) �= 0

0, if f(n) = 0
and G(m) =

{
1, if g(m) �= 0

0, if g(m) = 0.

Then G(An+ 1) = F (n) holds for all n ∈ N and F,G ∈ M. Let

SF := {n ∈ N | F (n) �= 0} and SG := {n ∈ N | G(n) �= 0}.
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Since f(n0) = 0 (or g(Am0 +1) = 0), it follows from Lemma 1 that |SF | < ∞,
thus f(n) → 0 and g(An+ 1) → 0 as n → ∞.

The proof of Lemma 6 is thus complete. �

Lemma 7. Assume that A ∈ N, C ∈ C \ {0} and f, g ∈ M satisfy the
relation

g(An+ 1)− Cf(n) = o(1) as n → ∞.

Let P,Q and N be positive integers satisfying the conditions

(6) Q ≡ 1 (mod A) and N = P (Q− 1) + 1.

If f �∈ L, then
(7) g (N) f(PQd) = f(P )g(Q)f (N) f(d),

where

d = d(P,Q) :=

{
2, if (P − 1)Q−1

A is odd

1, otherwise.

Proof. Let P,Q and N be positive integers satisfying (6). Let

N1 := EQ(N), P1 := EQ(P ), Q1 := EN (Q),

where Ek(n) is the product of all prime power divisors of n which are prime to

k and
(

n
Ek(n)

, Ek(n)
)
= 1.

First we prove that there is a positive integer n0 such that

(8)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(N1, APQn0 + 1) = 1,(
P1, NQn0 +

Q−1
A

)
= 1,

(Q1, ANn0 + 1) = 1,

(N1P1Q1, n0) = d(P,Q).

We infer from the facts N = P (Q− 1) + 1 and (N1, Q) = 1 that N1 = EQ(N)
is an odd positive integer. By (6), we have (N1, PQ) = (N1, A) = 1 and so an
application of the Chinese Remainder Theorem shows that there exists an n1

for which
(N1, APQn1 + 1) = (N1, n1) = 1.

It is clear to check from the definition of P1 = EQ(P ) that if P1 is odd, then
there is an n′

2 ∈ N such that

(P1, ANQn′
2 + 1) = (P1, n′

2) = 1.
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Assume that P1 = EQ(P ) is even. Then Q and N = P (Q − 1) + 1 are odd
numbers. In this case there is an n′′

2 for which(
P1, NQn′′

2 +
Q− 1

A

)
= 1 and (P1, n′′

2) = d2(P,Q),

where

d2(P,Q) :=

{
2, if (P − 1)QQ−1

A is odd

1, otherwise.

Consequently, we can find an n2 for which(
P1, NQn2 +

Q− 1

A

)
= 1 and (P1, n2) = d2(P,Q).

Finally, we infer from the definition of Q1 = EN (Q) and A|Q − 1 that
(Q1, AN) = 1. Hence, if Q1 is odd, then there exists an n′

3 for which

(Q1, ANn′
3 + 1) = 1 and (Q1, n′

3) = 1.

Assume that Q1 is even. Then (AN, 2) = 1 and so there is a n′′
3 for which

(Q1, ANn′′
3 + 1) = 1 and (Q1, n′′

3) = d3(P,Q),

where

d3(P,Q) :=

{
2, if (P − 1)(Q− 1) is odd

1, otherwise.

Consequently, we can find an n3 for which

(Q1, ANn3 + 1) = 1 and (Q1, n3) = d3(P,Q).

We can check from definitions of d(P,Q), d2(P,Q) and d3(P,Q) that

d2(P,Q)d3(P,Q) = d(P,Q).

Since (N1, P1) = (N1, Q1) = (P1, Q1) = 1 it follows from the Chinese Remain-
der Theorem that there is an n0 such that

n0 ≡ n1 (mod N1), n0 ≡ n2 (mod P1), n0 ≡ n3 (mod Q1).

Hence, the proof of (8) is finished.

Next, we shall prove (7). Let n0 be a positive integer which satisfies (8).
By considering n = N1P1Q1m+ n0, it is clear to check from (8)

(9)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(N, APQn+ 1) = 1,(
P, NQn+ Q−1

A

)
= 1,

(Q, ANn+ 1) = 1.
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By using the multiplicativity of f and g, we get from (9) the following relations:

Cg(N)f (PQn) = g(N)g (APQn+ 1) + o(1) =

= g

[
A

(
NPQn+

N − 1

A

)
+ 1

]
+ o(1) =

= Cf

(
NPQn+

N − 1

A

)
+ o(1) =

= Cf(P )f

(
NQn+

Q− 1

A

)
+ o(1) =

= f(P )g

[
A

(
NQn+

Q− 1

A

)
+ 1

]
+ o(1) =

= f(P )g(Q)g [ANn+ 1] + o(1) =

= Cf(P )g(Q)f (Nn) + o(1),

which imply

(10) g(N)f (PQn)− f(P )g(Q)f (Nn) = o(1)

as m → ∞, n = N1P1Q1m+ n0 → ∞.

It follows from (8) that we can choose a positive integer m0 such that

t0 :=
N1P1Q1

d
m0 +

n0

d
and (t0, dPQN) = 1.

Taking m = DQ(N)DQ(P )DN (Q)d2t+m0, from (10) we have n = N1P1Q1m+
+n0 = d(NPQdt+ t0), consequently(

g(N)f (PQd)− f(P )g(Q)f (Nd)
)
f(NPQdt+ t0) = o(1)

as t → ∞. It is obvious that g(N)f (PQd)− f(P )g(Q)f (Nd) = 0, because in
the other case, we have f(NPQdt+ t0) = o(1) as t → ∞, therefore we get from
Lemma 2 and Lemma 5 that f ∈ L. Since (N, d) = 1, we have

g(N)f (PQd) = f(P )g(Q)f (Nd) = f(P )g(Q)f (N) f (d) ,

which completes the proof of (7).

Lemma 7 is proved. �

Lemma 8. Assume that A ∈ N, C ∈ C \ {0} and f, g ∈ M satisfy the
relation

g(An+ 1)− Cf(n) = o(1) as n → ∞.
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If f �∈ L, then

(11) f ∈ M∗
2A, g ∈ M∗

2A and H(n) :=
g(n)

f(n)
= χ2A(n) (n ∈ N2A).

Hence χk denotes the character (mod k).

Proof. First we prove

H(n) :=
g(n)

f(n)
= χ2A(n) (n ∈ N2A).

Let Q ∈ N be a positive integer such that Q ≡ 1 (mod A) and let P = 2Qm+1,
(m ∈ N). Then d = d(P,Q) = 1, (P,Q) = 1, N = 2(Q− 1)Qm+Q and by (7),
we have

(12) H [2(Q− 1)Qm+Q] =
f(P )g(Q)

f(PQ)
= H(Q).

Thus, we infer from Lemma 19.3 of [1] that

(13) H(n) = χ2Q(Q−1)(n) on the set
(
n, 2Q(Q− 1)

)
= 1.

It is clear to see that there is a number M ∈ N for which(
M(AM + 1), A+ 1

)
∈ {1, 2}.

Then by applying (12) and (13) for the cases when Q = A+1, and Q = AM+1,
respectively, we infer that

H ∈ M∗
2A(A+1) and H ∈ M∗

2AM(AM+1).

Since(
2A(A+ 1), 2AM(AM + 1)

)
= 2A

(
A+ 1,M(AM + 1)

)
∈ {2A, 4A},

we get from the above relations that

H ∈ M∗
2A.

On the other hand, we have (2(Q− 1)m+ 1, Q, 2A) = 1, consequently

H
[
2(Q− 1)Qm+Q

]
= H(Q)H

[
2(Q− 1)m+ 1)

]
.

Thus, (12) gives H
[
2(Q− 1)m+ 1

]
= 1 and

H(n) = χ2A(n) and g(n) = χ2A(n)f(n) (n ∈ N2A).
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Now we prove that

(14) f, g ∈ M∗
2A.

Let Q = 2Ax + 1, P = 2Ay + 1, N = (2A)2xy + Q. It is obvious that
d(P,Q) = 1. From (7), (11) and (14) we have

(15) H(N) = H(Q) = H(P ) = H(PQ) = 1

and

(16) g(N)f(PQ) = f(P )g(Q)f(N).

From (15) and (16) we have

(17) f(PQ) = f(P )g(Q) = f(P )f(Q) and g(PQ) = f(PQ) = g(P )g(Q).

Now let (nm, 2A) = 1, n,m ∈ N. We can choose two positive integers z, t such
that

nz ≡ 1 (mod 2A), (z, nm) = 1, mt ≡ 1 (mod 2A), (t, nmz) = 1.

We infer from (17) that

f(nzmt) = f(nz)f(mt) = f(n)f(z)f(m)f(t),

g(nzmt) = g(nz)g(mt) = g(n)g(z)g(m)g(t)

and
f(nzmt) = f(nm)f(z)f(t), g(nzmt) = g(nm)g(z)g(t).

Hence
f(nm) = f(n)f(m) and g(nm) = g(n)g(m),

and so (14) and (11) are proved. Lemma 8 is proved. �

Lemma 9. Assume that a, b ∈ N, D ∈ C \ {0} and T ∈ M∗, T �∈ L satisfy
the relations

(18) T (n) �= 0 (∀n ∈ N), T (an+ b)−DT (n) = o(1) as n → ∞.

Then T (a) = D and there is a complex number s such that

T (n) = ns, (0 ≤ Re s < 1)

holds for all n ∈ N.
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Proof. Assume that a, b ∈ N, D ∈ C\{0} and T ∈ M∗ satisfy the relations
(18). Since T ∈ M∗ and(

a2m+ b
)
(a+ 1) = a

[
a(a+ 1)m+ b

]
+ b,

we get from (18) that

DT (am)T (a+ 1) = T
(
a2m+ b

)
T (a+ 1) + o(1) =

= T
[
a
(
a(a+ 1)m+ b

)
+ b
]
+ o(1) =

= DT
(
a(a+ 1)m+ b

)
+ o(1) =

= D2T (a+ 1)T (m) + o(1)

which from the fact T �∈ L implies T (a) = D.

In the following we denote by J the set of those pairs (Q,R) of positive
integers for which

T (Qn+R)− T (Qn) = o(1) as n → ∞.

By using the same method that was applied in [11] and [12], we prove that
the following assertions hold:

(a) (Q, 1) ∈ J if (q, 1) ∈ J and Q ≥ q

(b) (Q,R) ∈ J if (q, 1) ∈ J , q ≥ 2 and 0 < R < Q/(q − 1)

(c) (h, 1) ∈ J if (h+ 1, 1) ∈ J and h ≥ 2.

Assume that (k, 1) ∈ J . By using T ∈ M∗, we have

T (k)T
(
(k + 1)n+ 1

)
= T

[
k
(
(k + 1)n+ 1

)
+ 1
]
+ o(1) =

= T (k + 1)T (kn+ 1) + o(1) = T (k)T (k + 1)T (n),

and so, we deduce that (k+1, 1) ∈ J . By using induction, we have proved that
(a) holds.

Assume again that (k, 1) ∈ J and k ≥ 2. We shall prove (b) by induction
on r. From (a) it is clear that (b) is satisfied for r = 1. Assume that (q, r) ∈ J
holds for all integers q and r satisfying 0 < r < q/(k − 1) and r < r0, where
r0 ≥ 1 is an integer. Let q0 be an integer such that

(19) 0 < r0 <
q0

k − 1
.

In order to show (b) it suffices to prove that (q0, r0) ∈ J . Without loss of
generality we may assume that q0 and r0 are coprimes.
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Let q and r be positive integers such that

(20) r0q = q0r + 1 and r < r0.

It follows by (19) and (20) that

0 < r < (q0r + 1)/q0 = r0q/q0 < q/(k − 1).

Thus, by using our assumption and the fact r < r0, we have (q, r) ∈ J .

On the other hand, by (20), we infer from the facts (q0, 1) ∈ J and (q, r) ∈ J
that

T (q)T (q0n+ r0) = T
(
q0(qn+ r) + 1

)
= T

(
q0(qn+ r)

)
+ o(1) =

= T (q0)T (qn+ r) + o(1) =

= T (q0)T (qn) + o(1),

which shows that (q0, r0) ∈ J . Thus, we have proved (b).

Finally, we prove (c). Assume that (h + 1, 1) ∈ J and h ≥ 2. For each
� ∈ N, 0 ≤ � ≤ h− 1 let

A� := {n ∈ N | n ≡ � (mod h)}

and we can choose positive integers q = q(�) and r = r(�) such that

(21) (h�+ 1)q = h2r + 1.

We shall prove that

(22) T (hn+ 1)− T (hn) = o(1) as n → ∞, n ∈ A�.

Let n = hm+� ∈ A�. Since (h+1, 1) ∈ J and h ≥ 2, by (a) we have (h2, 1) ∈ J .
Thus

T (q)T (hn+ 1) = T (qhn+ q) = T
(
qh2m+ q(h�+ 1)

)
=

= T
(
h2(qm+ r) + 1

)
=

= T (h2(qm+ r)) + o(1) =

= T (h)T
(
q(hm+ �) + hr − q�

)
+ o(1) =

= T (h)T (q(hm+ �)) + o(1) =

= T (h)T (q)T (n) + o(1).
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In the last step, the assertion is true if hr− q� = 0. If hr− q� �= 0, then we get
from (21) that

0 < hr − q� =
(q − 1)

h
<

q

h
,

which, by applying (b) with k = h+1, implies that (q, hr−q�) ∈ J . This, with
(h2, 1) ∈ J shows that (22) is true. This completes the proof of (c).

By (18) and using T (a) = D, one can deduce that (a, b) ∈ J and (a, 1) ∈ J .
If a = 1, then Lemma 9 follows from the Wirsing’s theorem. If a ≥ 2, then by
using (c) one can deduce that (2, 1) ∈ J , and so

T (2n+ 1)− T (2n) = o(1) as n → ∞.

By using the result of Bassily and Kátai [6], it follows that there is a complex
number s such that 0 ≤ Re s < 1 and T (n) = ns for all n ∈ N.

Lemma 9 is proved. �

3. Proof of Theorem 1

Assume that A ∈ N, C ∈ C \ {0} and the functions f, g ∈ M satisfy (1).
Then from Lemma 8 we have

(23) f, g, H ∈ M∗
2A, H = χ2A.

Let a := 2A+ 1. From (1) and (23) we obtain

Cg(a)f(n) = g(a)g(An+ 1) + o(1) =

= g
[
A
(
an+ 2

)
+ 1
]
+ o(1) = Cf

(
an+ 2

)
+ o(1),

therefore

(24) f
(
an+ 2

)
− g(a)f(n) = o(1) as n → ∞.

Next, we prove that

(25) f
(
2pk
)
=

f(2p)k

f(2)k−1

holds for all p ∈ P and k ∈ N.

For each p ∈ P and k ∈ N, we define the sequence Tk(n, p) by the formula
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Tk(n, p) := (ap)kDp(2)n+ 2
(ap)k − 1

ap− 1
,

where Dp(2) = (p, 2) and Ep(2) =
2

Dp(2)
. Since

Tk(n, p) = ap
[
(ap)k−1Dp(2)n+ 2

(ap)k−1 − 1

ap− 1

]
+2 = apTk−1(n, p) + 2

and (
pDp(2),

Tk−1(n, p)

Dp(2)

)
= 1,

we obtain from (24) that

f
(
Tk(n, p)

)
= f
(
apTk−1(n, p) + 2

)
=

= g(a)f
(
pTk−1(n, p)

)
+o(1) =

=
g(a)f(pDp(2))

f(Dp(2))
f
(
Tk−1(n, p)

)
+ o(1)

=
g(a)f(2p)

f(2)
f
(
Tk−1(n, p)

)
+ o(1),

because
g(a)f(pDp(2))

f(Dp(2))
=

g(a)f(2p)

f(2)
.

This implies

(26) f
[
(ap)kDp(2)n+2

(ap)k − 1

ap− 1

]
= g(a)

(g(a)f(2p)
f(2)

)k−1

f
(
pDp(2)n

)
+o(1).

as n → ∞.

On the other hand, since (a, 2) = 1 and p ∈ P, we can find some m0 ∈ N
such that (

(ap)km0 + Ep(2), 2A
)
= (m0, 2A) = 1.

Choosing the subset of n′s of the form

n =
(ap)k − 1

ap− 1

(
2Am+m0

)
,

then (
(ap)k(2Am+m0) + Ep(2), 2A

)
= (2Am+m0, 2A) = 1,
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which with (23) and (26) implies[
f
(
2pk
)− f(2p)k

f(2)k−1

]
g(a)kf

[ (ap)k − 1

ap− 1

]
f (2Am+m0) = o(1).

This completes the proof of (25).

We define f∗ ∈ M∗ as

f∗(p) =
f(2p)

f(2)
(∀p ∈ P).

Let

(27) f(n) := f∗(n)F (n) for all n ∈ N.

Then one can check from (25) that

F (2pk) = F (2) for all p ∈ P, k ∈ N,

Consequently

F (n) = 1 for all n ∈ N, (n, 2) = 1

and

F (2α) = F (2) for all α ∈ N.

Hence

(28) F (2n) = F (2) for all n ∈ N.

Now we prove the theorem.

From (1) and (23), we have

g(2An+ 1) = χ2A(2An+ 1)f(2An+ 1) = f(2An+ 1)

and

f(2An+ 1)− Cf(2n) = o(1) as n → ∞.

This with (28) gives

f∗(2An+ 1)− Cf∗(2)F (2)f∗(n) = o(1) as n → ∞.

By using Lemma 9, the last relation implies that there is a complex number
s such that

f∗(n) = ns (0 ≤ Re s < 1), and f(n) = nsF (n) (n ∈ N).
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Now let
g(n) = nsG(n) (n ∈ N).

It is clear to see from the fact f∗(2A) = Cf∗(2)F (2) that As = CF (2). Thus,
by using (1), we have

(An+ 1)sG(An+ 1) = g(An+ 1) = Cf(n) + o(1) = CnsF (n) + o(1),

which gives

G(An+ 1)− 1

F (2)
F (n) = o(1) as n → ∞.

Finally, by (11), (23) and (28) we have

G(2An+ 1) =
g(2An+ 1)

(2An+ 1)s
=

H(2An+ 1)f(2An+ 1)

(2An+ 1)s
= F (2An+ 1) = 1

and

(29) G(m) = χ2A(m)

hold for all n ∈ N, m ∈ N2A. Hence

G(AN + 1) = G(AN + 1)G(2ANn+ 1) =

= G
[
A
(
2(AN + 1)Nn+N

)
+ 1
]
=

=
1

F (2)
F
(
2(AN + 1)Nn+N

)
+ o(1) =

=
1

F (2)
F (N)F

(
2(AN + 1)n+ 1

)
+ o(1) =

=
1

F (2)
F (N) + o(1)

as n → ∞. Thus G(AN + 1) = 1
F (2)F (N) holds for each N ∈ N.

Theorem 1 is proved.

4. Proof of Theorem 2

It is obvious that the functions defined in a) and b) of Theorem 2 satisfy
(3). We note that in the case when A is even, for any nonprincipal character
χ2A (mod 2A), we have (A+ 1, 2A) = 1 and(

χ2A(A+ 1)
)2

= χ2A(A
2 + 2A+ 1) = 1, χ2A(A+ 1) = −1.
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Now we assume that A ∈ N, D ∈ C \ {0} and F, G ∈ M, F �∈ L satisfy
the equation (3), i.e.

G(An+ 1) = DF (n) for all n ∈ N.

From Theorem 1, we infer that F and G satisfy (28) and (29), consequently

(30) F (n) = F [(n, 2)] and G(m) = χ2A(m) for all n ∈ N, m ∈ N2A.

Case I. A is even

In this case we have (An+1, 2A) = 1, therefore we infer from (3) and (30)
that

DF (n+ 1) = DF
(
(A+ 1)n+ 1)

)
= G

[
A
(
(A+ 1)n+ 1)

)
+ 1
]
=

= G
[
(An+ 1)(A+ 1)

]
= G(An+ 1)G(A+ 1) =

= D2F (n)F (1) = D2F (n)

and so
F (n+ 1) = DF (n), F (n+ 1) = Dn

hold for all n ∈ N. Since F (3) = F [(3, 2)] = F (1) = 1, we obtain from the
above relation

1 = F (3) = F (2 + 1) = D2, D ∈ {1, − 1}.

If D = 1, then F (n) = Dn−1 = 1 and G(An + 1) = DF (n) = 1 for all
n ∈ N. Consequently

G(n) = χA(n) for all n ∈ NA,

which proves that (D, F, G) = (1, I, χA).

If D = −1, then F (n) = Dn−1 = (−1)n−1 = Ψ(n). From (3) we deduce
that

G(An+ 1) = DF (n) = (−1)n,

consequently

G(2An+ 1) = 1 and G(2An+A+ 1) = −1

hold for all n ∈ N. These imply that G = χ2A, where χ2A is any nonprincipal
character (mod 2A). Thus (D, F, G) = (−1, Ψ, χ2A), which completes the
proof of the assertion (a).
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Case II. A is odd

For each α ∈ N let nα ∈ N such that 2α‖ Anα + 1. It is obvious from the
fact (A, 2) = 1 that nα is odd for all α ≥ 1. We get from (3) and (30) that

G(Anα + 1)G(An1 + 1) =
G(2α)G(2)

G(2α+1)
G
[
(Anα + 1) (An1 + 1)

]
=

=
G(2α)G(2)

G(2α+1)
G
[
A (Anαn1 + nα + n1) + 1

]
=

= D
G(2α)G(2)

G(2α+1)
F (Anαn1 + nα + n1) =

= D
G(2α)G(2)

G(2α+1)
.

On the other hand, we obtain from (3) and (30) that

G(Anα + 1)G(An1 + 1) = D2F (nα)F (n1) = D2,

from which we get

(31) G(2α+1) =
G(2)

D
G(2α) =

(G(2)

D

)α
G(2) for all α ∈ N.

Now we define G∗ ∈ M∗ in NA as

G∗(p) =

⎧⎪⎨⎪⎩
G(p), if (p, 2A) = 1

G(2)
D , if p = 2.

Let
G(n) := G∗(n)G(n) for all n ∈ NA.

Then one can check from (30) and (31) that

(32) G(2n) = G(2) for all n ∈ NA,

which with (3) implies

G(An+ 1) = G∗(An+ 1)G(An+ 1) = DF (n) for all n ∈ N.

By putting n = 2m+ 1, using (3), (30) and (32), we infer that

G(2Am+A+1) = G∗(2Am+A+1)G(2Am+A+1) = G∗
(
Am+

A+ 1

2

)
G(2)
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and
G(2Am+A+ 1) = DF (2m+ 1) = D.

hold for all m ∈ N. Consequently

G∗
(
Am+

A+ 1

2

)
=

D

G(2)

and so

(33) G∗(n) = χA(n), G(n) = χA(n)G(n) for all n ∈ NA.

Finally, from (3) we get

G(An+ 1) = χA(An+ 1)G(An+ 1) = G(An+ 1) = DF (n).

Since A is odd, we deduce from (32) that G(An + 1) = G[(An + 1, 2)] =
= G[(n+ 1, 2)] = G(n+ 1), therefore

(34) G(n+ 1) = DF (n) for all n ∈ N.

It obvious from (30), (32) and (34) that G(2) = D and DF (2) = G(3) = 1,
which imply

F (2n) = F (2) =
1

D
and G(2m) = G(2) = D for all n ∈ N, m ∈ NA.

Therefore, we proved that F = B(1, 1
D ), G = B(A, D) and G = B(A, D)χA.

The assertion (b) and so Theorem 2 is proved. �
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[10] Kátai, I. and B.M. Phong, A characterization of ns as a multiplicative
function, Acta Math. Hungar., 87(4) (2000), 317–331.

[11] Phong, B.M., A characterization of some arithmetical multiplicative
functions, Acta Math. Hungar., 63(1) (1994), 29–43.

[12] Phong, B.M., A characterization of some unimodular multiplicative
functions, Publ. Math. Debrecen, 57(3–4) (2000), 339–366.

[13] Phong, B.M., Reduced residue systems and a problem for multiplicative
functions, Ann. Univ. Sci. Budapest., Sect. Comp., 18 (1999), 35–46.

[14] Phong, B.M., Reduced residue systems and a problem for multiplicative
functions II., Ann. Univ. Sci. Budapest., Sect. Comp., 20 (2001), 97–106.

[15] Tang, Yuansheng, A reverse problem on arithmetic functions, J. Number
Theory, 58 (1996), 130–138.

[16] Wirsing, E., Yuansheng Tang and Shao Pintsung, On a conjecture
of Kátai for additive functions, J. Number Theory, 56 (1996), 391–395.

Bui Minh Phong
Department of Computer Algebra
Faculty of Informatics
Eötvös Loránd University
H-1117 Budapest, Pázmány Péter sétány 1/C
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