SOME FURTHER REMARKS ON A PAPER OF K. RAMACHANDRA

N.L. Bassily (Cairo, Egypt)

I. Kátai¹ (Budapest, Hungary)

Dedicated to Professor János Galambos on his seventieth anniversary

1. Introduction

Let \mathcal{P} be the whole set of primes. Let D > 1 be an integer, l_1, \ldots, l_k be distinct residues mod D coprime to D, $k < \varphi(D)$. Let $\tilde{\mathcal{P}}$ be the set of the primes $p \equiv l_1, \ldots, l_k \pmod{D}$, and $\tilde{\mathcal{N}} = \mathcal{N}\left(\tilde{\mathcal{P}}\right)$ be the semigroup generated by $\tilde{\mathcal{P}}$. Let $\tilde{\mathcal{P}}_k := \{n | n \in \mathcal{N}\left(\tilde{\mathcal{P}}\right), \omega(n) = k\}, \quad \tilde{\mathcal{N}}_k = \{n | n \in \mathcal{N}\left(\tilde{\mathcal{P}}\right), \Omega(n) = k\},$ where $\omega(n), \Omega(n)$ are additive arithmetical functions defined for prime power p^{α} by $\omega(p^{\alpha}) = 1, \quad \Omega(p^{\alpha}) = \alpha$.

Let

$$\pi_k(x) := \#\{n | n \le x\},$$

$$\tilde{\Pi}_k(x) := \#\{n \le x | n \in \tilde{\mathcal{P}}_k\},$$

$$\tilde{N}_k(x) := \#\{n \le x | n \in \tilde{\mathcal{N}}_k\}.$$

Our purpose in this paper is to give the asymptotic of $\tilde{\Pi}_k(x+y) - \tilde{\Pi}_k(x)$, and that of $\tilde{N}_k(x+y) - \tilde{N}_k(x)$, where $y \simeq x^{\theta}$, $\theta < 1$. This can be done by combining the method of Sathe-Selberg, and that of K. Ramachandra ([1], [6], [7]).

¹The European Union and the European Social Fund have provided financial support to the project under the grant agreement TÁMOP-4.2.1/B- 09/1/KMR-2010-0003. https://doi.org/10.71352/ac.34.033

2. The method of Ramachandra

2.1. Ramachandra [1] proved the following assertion:

Let S_1, S_2 and S_3 be the sets of *L*-series, the derivatives, and the logarithms of *L*-series, respectively. $\log L(s, \chi)$ is defined by analytic continuation from the halfplane $\sigma = \text{Re}s > 1$; for some complex *z*, we define

$$L(s,\chi)^{z} = \exp(z \log L(s,\chi))$$

Let $P_1(s)$ be any finite power product (with complex exponents) of functions of S_1 . Let $P_2(s)$ be any finite power product (with nonnegative integral exponents) of functions of S_2 . Let also $P_3(s)$ denote any finite power product with nonnegative integral exponents of functions of S_3 . Let c_n be a sequence of complex numbers such that $|c_n| \ll n^{\varepsilon}$ for every $\varepsilon > 0$ and

$$\sum \frac{|c_n|}{n^{\sigma}} < \infty \qquad \text{for} \quad \sigma > 1/2$$

Let $F_0(s) = \sum_n \frac{c_n}{n^s}$. Furthermore, let

$$F_1(s) = P_1(s) P_2(s) P_3(s) F_o(s) = \sum_{n=1}^{\infty} \frac{g_n}{n^s}$$

and

$$E\left(x\right) = \sum_{n \le x} g_n.$$

Let $r (\leq 1/2)$ be a positive number. We define the contour C(r) by starting from the circle $\{s | |s-1| = r\}$, removing the point 1-r, and proceeding on the remaining portion of the circle in the anticlockwise direction. Let $C_0 = C(r)$.

Assume that r is so small that $F_1(s)$ has no singularities on the boundary and in interior of it, except, possibly, the places s = 1.

Let $C_1 = C\left(\frac{1}{\log x}\right)$, and let L^-, L^+ be defined as the intervals on straightlines

$$L^{-} = \left[\left(1 - \frac{1}{r} \right) e^{-i\pi}, \left(1 - \frac{1}{\log x} \right)^{-i\pi} \right],$$
$$L^{+} = \left[\left(1 - \frac{1}{\log x} \right) e^{i\pi}, \left(1 - \frac{1}{r} \right)^{i\pi} \right].$$

Let C^* be the contour going along L^- starting from $(1-\frac{1}{2})e^{-i\pi}$, then on C_1 , and, finally, on L^+ .

Let B be the constant occurring in the density result

$$N_{\chi}(\alpha, T) = \mathcal{O}\left(T^{B(1-\alpha)} \left(\log T\right)^2\right),$$

which is valid for all characters occurring in P_1, P_2 and P_3 . Let $\varphi = 1 - 1/B + \varepsilon$ with arbitrary $\varepsilon > 0$.

Remark. According to Huxley's result, φ can be any constant greater than 7/12.

Theorem of Ramachandra. Let x be sufficiently large and $1 \le h \le x$. Let

(2.1)
$$I(x,h) = \frac{1}{2\pi i} \int_{0}^{h} \left(\int_{C_0} F_1(s) (v+x)^{s-1} ds \right) dv.$$

Then

(2.2)
$$E(x+h) - E(x) = I(x,h) + \mathcal{O}_{\varepsilon}\left(h \cdot \exp\left(-\left(\log x\right)^{1/6}\right) + x^{\varphi}\right).$$

Ramachandra used the Hooley-Huxley contour for proving his very general theorem. Kátai [2] applied Ramachandra's theorem to obtain the uniform result

$$\frac{1}{h} \sum_{\substack{\omega(n)=k\\x \le n \le x+h}} 1 = (1+o(1)) \frac{\pi_k(x)}{x},$$

uniformly for any $k \leq \log \log x + c_x \sqrt{\log \log x}$, where $c_x \to \infty$ sufficiently slowly, and $x \geq h \geq x^{\varphi + \varepsilon}$.

Sankaranarayanan and Srinivas [3] gave a version of Ramachandra's result in which the function $F_1(s)$ may depend on a parameter.

2.2. Some consequence proved in [4]

Integrating on the same contour as Ramachandra did, we have

(2.3)
$$E(x) = J(x) + \mathcal{O}\left(x \cdot \exp\left(-\left(\log x\right)^{1/6}\right)\right),$$

where

(2.4)
$$J(x) = \frac{1}{2\pi i} \int_{C_0} F_1(s) \frac{x^s}{s} ds.$$

Furthermore, I(x, h) can be written as

(2.5)
$$I(x,h) = \frac{1}{2\pi i} \int_{C_0} F_1(s) \frac{(x+h)^s - x^s}{s} ds$$

Let

(2.6)
$$D(x,h,s) := \frac{1}{s} \left(\frac{(x+h)^s - x^s}{h} - x^{s-1} \right)$$

Assume that $\frac{1}{2} \le |s| \le 2$ and that $h = x^{\eta}, \eta < \frac{2}{3} - \frac{2r}{3}$ with small r. Then

$$\frac{(x+h)^{s} - x^{s}}{sh} = x^{s-1} + \frac{hx^{s-2}(1-s)}{2} + \mathcal{O}\left(h^{3}x^{\sigma-3}\right)$$

and, thus,

$$D(x,h,s) = x^{s-1} \left(1 - \frac{1}{s}\right) + \mathcal{O}\left(h^3 \cdot x^{\sigma-3}\right),$$

which by $h^3 \cdot x^{\sigma-3} \ll x^{2-2r+r-2} \ll x^{-r}$ and $hx^{\sigma-2} \ll x^{-r}$ implies that

$$D(x, h, s) = x^{s-1} \frac{(s-1)}{s} + \mathcal{O}(x^{-r}).$$

Hence, we obtain that

(2.7)
$$\frac{E(x+h) - E(x)}{h} - \frac{E(x)}{x} = \frac{1}{2\pi i} \int_{C_0} F_1(s) \frac{x^{s-1}}{s} (s-1) ds + \mathcal{O}(x^{-r}) + \mathcal{O}\left(\exp\left(-(\log x)^{1/6}\right)\right)$$

and, thus, by (2.3) and (2.4) we have

(2.8)
$$\frac{E(x+h) - E(x)}{h} = \frac{1}{2\pi i} \int_{C_0} F_1(s) x^{s-1} ds + \mathcal{O}\left(\exp\left(-\left(\log x\right)^{1/6}\right)\right) + \mathcal{O}\left(x^{-r}\right).$$

Since $F_1(s)$ is analytic on the domain with boundary $C_o \cup C^*$, we can transform the integration line on the right side of (2.8) to the contour C^* .

We have proved the following:

Theorem A. Assume that $F_1(s)$ satisfies the conditions stated in Ramachandra's theorem. Let r > 0 and $\varepsilon > 0$ be sufficiently small constants, and let $x^{7/12+\varepsilon} \le h \le x^{\frac{2}{3}-\frac{2r}{3}}$. Then

(2.9)
$$\frac{E(x+h) - E(x)}{h} = \frac{1}{2\pi i} \int_{C^*} F_1(s) x^{s-1} dx + \mathcal{O}\left(\exp\left(-\left(\log x\right)^{1/6}\right)\right).$$

Let us assume that

(2.10)
$$F_1(s) = \frac{U(s)}{(s-1)^z}$$

where the function U(s) is analytic in the disc $|s - 1| \le r$. Then, for each fixed k,

$$U(s) = A_0 + A_1 (s - 1) + \ldots + A_k (s - 1)^k + (s - 1)^{k+1} V(s),$$

where V(s) is bounded in $|s-1| \leq r$.

Furthermore, since

(2.11)
$$\frac{1}{2\pi i} \int_{C^*} x^{s-1} \left(s-1\right)^{a-z} ds = \frac{\Gamma\left(a-z\right)}{\left(\log x\right)^{a-z+1}} \frac{\sin \pi \left(a-z\right)}{\pi} + \mathcal{O}\left(x^{-r/2}\right)$$

(for the proof, see Lemma 8 in [10]), we deduce the following:

Theorem B. Under the conditions stated above, we have

(2.12)
$$\frac{1}{2\pi i} \int_{C^*} \frac{U(s)}{(s-1)^z} x^{s-1} ds = \sum_{l=0}^k A_l \frac{\Gamma(l-z)}{(\log x)^{l-z+1}} \frac{(-1)^{l+1} \sin \pi z}{\pi} + \mathcal{O}\left(\frac{1}{(\log x)^{k+2-\operatorname{Re}z}}\right),$$

whenever $\operatorname{Re} z \leq k+1$.

Proof. By (2.11), we have only to prove that

(2.13)
$$\frac{1}{2\pi i} \int_{C^*} V(s) \left(s - 1\right)^{k+1-z} ds$$

can be majorated by the error term on the right-hand side of (2.12). The integral (2.13) extended to the contour $C(1/\log x)$ is obviously less than the error term of (2.12).

To estimate the integral on L^+ and L^- , let us write $s = 1 - \tau$. Then

$$\begin{split} \frac{1}{2\pi} \int_{L^{\pm}} |V\left(s\right)|| \left(s-1\right)|^{k+1-\operatorname{Rez}} x^{-\tau} ds \leq & \frac{K}{2\pi} \int_{1/\log x}^{r} x^{-\tau} \tau^{k+1-\operatorname{Rez}} d\tau \ll \\ \ll & \frac{1}{\left(\log x\right)^{k+2-\operatorname{Rez}}}, \end{split}$$

and the proof is completed.

3. Short interval version theorems for $\tilde{N}_{k}\left(\mathbf{x}\right),\tilde{\Pi}_{k}\left(\mathbf{x}\right)$

Let χ run over the Dirichlet characters $\mod D$, $L(s,\chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}$, $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$, χ_0 be the principal character $\mod D$, $L(s,\chi_0) = \zeta(s) \prod_{p|D} \left(1 - \frac{1}{p^s}\right)$. Let

(3.1)
$$c(\chi) := \frac{1}{\varphi(D)} \sum_{j=1}^{k} \bar{\chi}(l_j),$$

especially

(3.2)
$$c(\chi_0) = \frac{k}{\varphi(D)}.$$

Let $z \in \mathbb{C}$

(3.3)
$$F(s,z) := \sum_{n \in \tilde{\mathcal{N}}} \frac{z^{\Omega(n)}}{n^s} = \prod_{p \in \tilde{\mathcal{P}}} \frac{1}{1 - \frac{z}{p^s}},$$

(3.4)
$$G(s,z) := \sum_{n \in \tilde{\mathcal{N}}} \frac{z^{\omega(n)}}{n^s} = \prod_{p \in \tilde{\mathcal{P}}} \left(1 + \frac{z}{p^s - 1} \right),$$

(3.5)
$$H(s,z) := \sum_{n \in \tilde{\mathcal{N}}} \frac{z^{\omega(n)} |\mu(n)|}{n^s} = \prod_{p \in \tilde{\mathcal{P}}} \left(1 + \frac{z}{p^s} \right).$$

Let p^* be the smallest element of $\tilde{\mathcal{P}}$.

We can write

(3.6)
$$F(s,z) = F(s,1)^{z} Q(s,z),$$

where

(3.7)
$$Q(s,z) = \prod_{p \in \tilde{\mathcal{P}}} \frac{\left(1 - \frac{1}{p^s}\right)^z}{\left(1 - \frac{z}{p^s}\right)}.$$

The product on the right-hand side of (3.7) is absolutely and uniformly convergent in $\operatorname{Res} > \frac{1}{2} + \delta$, $|z| \le p^{*\frac{1}{2}+\delta} - \varepsilon$, if δ, ε are arbitrary positive constants.

Let

(3.8)
$$T(s) := \prod_{\chi} L(s,\chi)^{c(\chi)}, \quad A(s) = T(s) \cdot (s-1)^{c(\chi_0)}.$$

Thus

(3.9)
$$A(s) := \zeta(s) (s-1)^{c(\chi_0)} \prod_{p|D} \left(1 - \frac{1}{p^s}\right)^{c(\chi_0)} \prod_{\chi \neq \chi_0} L(s,\chi)^{c(\chi)}.$$

Let

(3.10)
$$K(s) := \frac{F(s,1)}{T(s)},$$

(3.11)
$$U(s,z) := (A(s) K(s))^{z} Q(s,z),$$

(3.12)
$$F(s,z) := \frac{U(s,z)}{(s-1)^{(\chi_0)z}}$$

F(s, z) satisfies the conditions stated for $F_1(s)$ in 2.1. We can use Theorem A and B.

Let

(3.13)
$$U(s,z) = B_0(z) + B_1(z)(s-1) + B_2(z)(s-1)^2 + \cdots$$

It is easy to prove that there exists r > 0 and a constant c such that

(3.14)
$$\sup_{n \ge 0} \max_{|z| \le 2-\varepsilon} |B_n(z)| \cdot r^n \le c.$$

We have

(3.15)
$$B_0(z) = U(1,z) = (A(1)K(1))^z Q(1,z),$$

(3.16)
$$A(1) = \left(\frac{\varphi(D)}{D}\right)^{c(\chi_0)} \prod_{\chi = \chi_0} L(1,\chi)^{c(\chi)}$$

Let

(3.17)
$$u(s) := \sum_{p \in \bar{\mathcal{P}}} \frac{1}{p^s}; \quad t(s,\chi) := \sum_{p \in \mathcal{P}} \frac{\chi(p)}{p^s}.$$

Then

$$\log K(s) = \log F(s, 1) - \log T(s) =$$
$$= \sum_{l \ge 2} \frac{1}{l} \left\{ u(ls) - \sum_{\chi} c(\chi) t(ls, \chi^l) \right\},$$

and so

(3.18)
$$\log K(1) = \sum_{l \ge 2} \frac{1}{l} \left\{ u(l) - \sum_{\chi} c(\chi) t(l, \chi^l) \right\},$$

the right-hand side is absolute convergent.

Since

$$\log Q\left(s,z\right) = \sum_{l\geq 2} \frac{1}{l} \left(z-z^{l}\right) u\left(ls\right),$$

therefore
$$\log Q(1,z) = \left(\sum_{l=2}^{\infty} \frac{u(l)}{l}\right) z - \sum_{l=2}^{\infty} \frac{u(l)}{l} z^l$$
. Let

$$(3.19) C = \sum_{l=2}^{\infty} \frac{u(l)}{l},$$

(3.20)
$$Q^*(1,z) = \exp\left(-\sum \frac{u(l)}{l} z^l\right) \\ = Q_0 + Q_1 z + Q_2 z^2 + \cdots.$$

Then $Q_0 = 1$,

(3.21)
$$\sum_{\nu} |Q_{\nu}| \cdot |z|^{\nu} \leq \exp\left(\sum \frac{u\left(l\right)}{l} |z|^{l}\right),$$

the right-hand side is finite if $|z| < p^* - \varepsilon.$

We can write

$$B_{0}(z) = (A(1) K(1) e^{C})^{z} \cdot Q^{*}(1, z).$$

Let $y = x^{7/12 + \varepsilon}$. From Theorem A and B we have that

$$\begin{split} \mathcal{L}(z) &:= \frac{1}{y} \left(\sum_{\substack{x \le n \le x+y \\ n \in \mathcal{N}}} z^{\Omega(n)} \right) = \frac{1}{2\pi i} \int_{C^*} F(s, z) \, x^{s-1} ds + \\ &+ \mathcal{O}\left(\exp\left(- (\log x)^{1/6} \right) \right) = \\ &= \frac{1}{2\pi i} \int_{C^*} \frac{U(s, z)}{(s-1)^{c(\chi_0)z}} x^{s-1} dx + \mathcal{O}\left(\exp\left(- (\log x)^{1/6} \right) \right) = \\ &= B_0\left(z\right) \frac{\Gamma\left(- c\left(\chi_0\right) z\right) \left(-1 \right) \sin \pi c\left(\chi_0\right) z}{\pi \left(\log x\right)^{1-c(\chi_0)z}} + \mathcal{O}\left(\frac{1}{(\log x)^{2-\operatorname{Re}z}} \right) + \\ &+ \mathcal{O}\left(\exp\left(- (\log x)^{1/6} \right) \right). \end{split}$$

From $\frac{1}{\Gamma(w-k)} = \frac{\sin \pi w}{\pi} \cdot (-1)^k \Gamma(k+1-w)$, applied for k = -1, $w = c(\chi_0)$, we have

$$\frac{\Gamma\left(-c\left(\chi_{0}\right)z\right)\left(-1\right)\sin\pi c\left(\chi_{0}\right)z}{\pi} = \frac{1}{\Gamma\left(1+c\left(\chi_{0}\right)z\right)} = \frac{1}{c\left(\chi_{0}\right)z} \cdot \frac{1}{\Gamma c\left(\chi_{0}\right)z}$$

It is well known that $\frac{1}{\Gamma(w)}$ is an entire function. Let

(3.22)
$$R(z) := \frac{Q^*(1,z)}{\Gamma(c(\chi_0)z)} = T_0 + T_1 z + T_2 z^2 + \cdots$$

It is clear that

$$\sum |T_{\nu}||z|^{\nu}$$

is convergent for $|z| \leq p^* - \varepsilon$.

Since

$$\begin{split} \frac{\tilde{N}_k\left(x+y\right) - \tilde{N}_k\left(x\right)}{y} &= \int_0^1 \mathcal{L}\left(e^{2\pi i\theta}\right) e^{-2\pi i k\theta} d\theta = \\ &= \underset{z^{k-1}}{\operatorname{coeff}} \frac{\left(A\left(1\right) K\left(1\right) e^C\left(\log x\right)^{c\left(\chi_0\right)z}\right)}{c\left(\chi_0\right)\left(\log x\right)} R\left(z\right) + \\ &+ \mathcal{O}\left(\frac{1}{\log x}\right) = \frac{S_k}{\log x} + \mathcal{O}\left(\frac{1}{\log x}\right). \end{split}$$

Let

$$l(x) := c(\chi_0) \log \log x + C + \log A(1) K(1).$$

We have

$$S_k = \operatorname{coeff}_{z^{k-1}} e^{zl(x)} \cdot \frac{R(z)}{c(\chi_0)},$$

- / `

and so

$$S_{k} = \sum_{l+m=k-1} \frac{T_{l}}{m!} l^{m}(x) = \frac{l(x)^{k-1}}{(k-1)!c(\chi_{0})} \sum_{l \le (k-1)} \frac{(k-1)!}{(k-l)!} T_{l} \cdot l(x)^{-l}$$
$$= \frac{l(x)^{k-1}}{c(\chi_{0})(k-1)!} U_{k},$$

where

$$U_{k} = \sum_{l \le k-1} \frac{(k-1)!}{(k-1-l)!} T_{l} \cdot l(x)^{-l}.$$

Since

$$\frac{(k-1)!}{(k-1-l)!} = (k-1)^l + \mathcal{O}\left(l^2 \cdot k^{l-1}\right),$$

we have

$$U_k = \sum_{l=0}^{k-1} T_l \cdot \left(\frac{k-1}{l(x)}\right)^l + \mathcal{O}\left(\frac{1}{k}\sum_{l=0}^{\infty} l^2 T_l \left(\frac{k-1}{l(x)}\right)^l\right).$$

Collecting our inequalities we obtain the following assertion.

Theorem 1. Let $\varepsilon > 0$ be fixed. Then, uniformly as

$$1 \le k \le (p^* - \varepsilon) c(\chi_0) \log \log x,$$

for $y = x^{7/12+\varepsilon}$ we have

$$\frac{\tilde{N}_{k}\left(x+y\right)-\tilde{N}_{k}\left(x\right)}{y} = \frac{\left(c\left(\chi_{0}\right)\log\log x+C+\log A\left(1\right)K\left(1\right)\right)^{k-1}}{c\left(\chi_{0}\right)\left(k-1\right)!} \times \\ \times R\left(\frac{k}{c\left(\chi_{0}\right)\log\log x+C+\log A\left(1\right)K\left(1\right)}\right) \times \\ \times \left(1+\mathcal{O}\left(\frac{1}{\log\log x}\right)\right).$$

A(1), K(1) are defined in (3.9), (3.11), and C in (3.19), (3.17), R in (3.22).

Arguing similarly, as above, we can prove Theorem 2.

Let

$$M(1,z) := \prod_{p \in \tilde{\mathcal{P}}} \frac{\left(1 - \frac{1}{p}\right)^z}{1 + \frac{z}{p-1}},$$
$$S(z) := \frac{Q^*(1,z) M(1,z)}{\Gamma(c(\chi_0) z)}$$

Theorem 2. Let $0 < B < \infty$, $\left(\frac{1}{2}\right) > \varepsilon > 0$ be fixed constants. Then, uniformly as $1 \le k \le B \log \log x$, we have

$$\frac{\tilde{\Pi}_{k}\left(x+y\right)-\tilde{\Pi}_{k}\left(x\right)}{y} = \frac{1}{c\left(\chi_{0}\right)\log x} \cdot \frac{l\left(x\right)^{k-1}}{(k-1)!} S\left(\frac{k-1}{l\left(x\right)}\right) \times \left(1+\mathcal{O}\left(\frac{1}{\log\log x}\right)\right),$$

where $y = x^{7/12+\varepsilon}$.

References

- Ramachandra, K., Some problems of analytic number theory, *Acta. Arith.*, 31 (1976), 313–324.
- [2] Kátai, I., A remark on a paper of Ramachandra, in: *Number Theory, Proc. Oota-camund* (ed.: K. Alladi), Lecture Notes in Math. 1122, Springer (1984), 147–152.
- [3] Sankaranarayanan, A. and K. Srinivas, On the papers of Ramachandra and Kátai, Acta Arith., 624 (1992), 373–382.
- [4] Kátai, I. and M.V. Subbarao, Some remarks on a paper of Ramachandra, *Liet. matem. rink.*, 43/4 (2003), 497–506.
- [5] Tenenbaum, G., Introduction to Analytic and Probabilistic Number Theory, Cambridge University Press, 1995.
- [6] Sathe, L.G., On a problem of Hardy and Ramanujan on the distribution of integers having a given number of prime factors, *J. Indian Math. Soc.*, 17 (1953), 63–141, and 18 (1954), 27–81.

- [7] Selberg, A., Note on a paper by L. G. Sathe, J. Indian Math. Soc., 18 (1954), 83–87.
- [8] Kátai, I. and M.V. Subbarao, On the local distribution of the iterated divisor function, *Mathematica Pannonica*, 15/1 (2004), 127–140.
- [9] **Kubilius, J.P.,** *Probabilistic Methods in the Theory of Numbers* (in Russian), Vilnius (1959).
- [10] Balasubramanian, R. and K. Ramachandra, On the theorem of integers n such that $nd(n) \le x$, Acta Arith., 49 (1988), 313–322.

N.L. Bassily Department of Mathematics Faculty of Sciences Ain Shams University Cairo Egypt

I. Kátai

Department of Computer Algebra Faculty of Informatics Eötvös Loránd University Pázmány Péter sétány 1/C H-1117 Budapest, Hungary katai@compalg.inf.elte.hu