
Annales Univ. Sci. Budapest., Sect. Comp. 34 (2011) 33–44

SOME FURTHER REMARKS ON A PAPER

OF K. RAMACHANDRA

N.L. Bassily (Cairo, Egypt)

I. Kátai1 (Budapest, Hungary)

Dedicated to Professor János Galambos on his seventieth anniversary

1. Introduction

Let P be the whole set of primes. Let D > 1 be an integer, l1, . . . , lk be dis-
tinct residues mod D coprime to D, k < ϕ (D). Let P̃ be the set of the primes
p ≡ l1, . . . , lk (mod D), and Ñ = N

(
P̃
)

be the semigroup generated by P̃.

Let P̃k := {n|n ∈ N
(
P̃
)
, ω (n) = k}, Ñk = {n|n ∈ N

(
P̃
)
,Ω (n) = k},

where ω (n) ,Ω (n) are additive arithmetical functions defined for prime power pα by
ω (pα) = 1, Ω (pα) = α.

Let

πk(x) :=#{n|n ≤ x},
Π̃k (x) :=#{n ≤ x|n ∈ P̃k},
Ñk (x) :=#{n ≤ x|n ∈ Ñk}.

Our purpose in this paper is to give the asymptotic of Π̃k (x+ y) − Π̃k (x), and
that of Ñk (x+ y)− Ñk (x), where y � xθ, θ < 1.
This can be done by combining the method of Sathe-Selberg, and that of K. Ra-
machandra ([1], [6], [7]).
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2. The method of Ramachandra

2.1. Ramachandra [1] proved the following assertion:

Let S1, S2 and S3 be the sets of L-series, the derivatives, and the logarithms of L-
series, respectively. logL (s, χ) is defined by analytic continuation from the halfplane
σ = Res > 1; for some complex z, we define

L (s, χ)
z
= exp (z logL (s, χ)) .

Let P1 (s) be any finite power product (with complex exponents) of functions of
S1. Let P2 (s) be any finite power product (with nonnegative integral exponents) of
functions of S2. Let also P3 (s) denote any finite power product with nonnegative
integral exponents of functions of S3. Let cn be a sequence of complex numbers such
that |cn| � nε for every ε > 0 and∑ |cn|

nσ
< ∞ for σ > 1/2.

Let F0 (s) =
∑
n

cn
ns . Furthermore, let

F1 (s) = P1 (s)P2 (s)P3 (s)Fo (s) =

∞∑
n=1

gn
ns

and
E (x) =

∑
n≤x

gn.

Let r (≤ 1/2) be a positive number. We define the contour C (r) by starting from
the circle {s∣∣|s− 1| = r}, removing the point 1− r, and proceeding on the remaining
portion of the circle in the anticlockwise direction. Let C0 = C (r).

Assume that r is so small that F1 (s) has no singularities on the boundary and in
interior of it, except, possibly, the places s = 1.

Let C1 = C
(

1
log x

)
, and let L−, L+ be defined as the intervals on straightlines

L− =

[(
1− 1

r

)
e−iπ,

(
1− 1

log x

)−iπ
]
,

L+ =

[(
1− 1

log x

)
eiπ,

(
1− 1

r

)iπ
]
.
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Let C∗ be the contour going along L− starting from
(
1− 1

2

)
e−iπ , then on C1,

and, finally, on L+.
Let B be the constant occurring in the density result

Nχ (α, T ) = O
(
TB(1−α) (log T )

2
)
,

which is valid for all characters occurring in P1, P2 and P3. Let ϕ = 1 − 1/B + ε
with arbitrary ε > 0.

Remark. According to Huxley’s result, ϕ can be any constant greater than 7/12.

Theorem of Ramachandra. Let x be sufficiently large and 1 ≤ h ≤ x. Let

I (x, h) =
1

2πi

h∫
0

⎛⎝∫
C0

F1 (s) (v + x)
s−1

ds

⎞⎠ dv.(2.1)

Then

E (x+ h)− E (x) = I (x, h) +Oε

(
h · exp

(
− (log x)

1/6
)
+ xϕ

)
.(2.2)

Ramachandra used the Hooley-Huxley contour for proving his very general theo-
rem. Kátai [2] applied Ramachandra’s theorem to obtain the uniform result

1

h

∑
ω(n)=k

x≤n≤x+h

1 = (1 + o (1))
πk(x)

x
,

uniformly for any k ≤ log log x + cx
√
log log x, where cx → ∞ sufficiently slowly,

and x ≥ h ≥ xϕ+ε.
Sankaranarayanan and Srinivas [3] gave a version of Ramachandra’s result in

which the function F1 (s) may depend on a parameter.

2.2. Some consequence proved in [4]

Integrating on the same contour as Ramachandra did, we have

E (x) = J (x) +O
(
x · exp

(
− (log x)

1/6
))

,(2.3)

where

J (x) =
1

2πi

∫
C0

F1 (s)
xs

s
ds.(2.4)
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Furthermore, I (x, h) can be written as

I (x, h) =
1

2πi

∫
C0

F1 (s)
(x+ h)

s − xs

s
ds.(2.5)

Let

D (x, h, s) :=
1

s

(
(x+ h)

s − xs

h
− xs−1

)
.(2.6)

Assume that 1
2 ≤ |s| ≤ 2 and that h = xη, η < 2

3 − 2r
3 with small r. Then

(x+ h)
s − xs

sh
= xs−1 +

hxs−2 (1− s)

2
+O (h3xσ−3

)
and, thus,

D (x, h, s) = xs−1

(
1− 1

s

)
+O (h3 · xσ−3

)
,

which by h3 · xσ−3 � x2−2r+r−2 � x−r and hxσ−2 � x−r implies that

D (x, h, s) = xs−1 (s− 1)

s
+O (x−r

)
.

Hence, we obtain that

E (x+ h)− E (x)

h
− E (x)

x
=

1

2πi

∫
C0

F1 (s)
xs−1

s
(s− 1) ds+(2.7)

+O (x−r
)
+O

(
exp
(
− (log x)

1/6
))

and, thus, by (2.3) and (2.4) we have

E (x+ h)− E (x)

h
=

1

2πi

∫
C0

F1 (s)x
s−1ds+

+O
(
exp
(
− (log x)

1/6
))

+(2.8)

+O (x−r
)
.

Since F1 (s) is analytic on the domain with boundary Co ∪ C∗, we can transform
the integration line on the right side of (2.8) to the contour C∗.

We have proved the following:

Theorem A. Assume that F1 (s) satisfies the conditions stated in Ramachandra’s the-
orem. Let r > 0 and ε > 0 be sufficiently small constants, and let x7/12+ε ≤ h ≤
≤ x

2
3− 2r

3 . Then

E (x+ h)− E (x)

h
=

1

2πi

∫
C∗

F1 (s)x
s−1dx+O

(
exp
(
− (log x)

1/6
))

.(2.9)
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Let us assume that

F1 (s) =
U (s)

(s− 1)
z ,(2.10)

where the function U (s) is analytic in the disc |s− 1| ≤ r. Then, for each fixed k,

U (s) = A0 +A1 (s− 1) + . . .+Ak (s− 1)
k
+ (s− 1)

k+1
V (s) ,

where V (s) is bounded in |s− 1| ≤ r.

Furthermore, since

1

2πi

∫
C∗

xs−1 (s− 1)
a−z

ds =
Γ (a− z)

(log x)
a−z+1

sinπ (a− z)

π
+O

(
x−r/2

)
(2.11)

(for the proof, see Lemma 8 in [10]), we deduce the following:

Theorem B. Under the conditions stated above, we have

1

2πi

∫
C∗

U (s)

(s− 1)
z x

s−1ds =

k∑
l=0

Al
Γ (l − z)

(log x)
l−z+1

(−1)
l+1

sinπz

π
+(2.12)

+O
(

1

(log x)
k+2−Rez

)
,

whenever Rez ≤ k + 1.

Proof. By (2.11), we have only to prove that

1

2πi

∫
C∗

V (s) (s− 1)
k+1−z

ds(2.13)

can be majorated by the error term on the right-hand side of (2.12). The integral (2.13)
extended to the contour C (1/ log x) is obviously less than the error term of (2.12).

To estimate the integral on L+ and L−, let us write s = 1− τ . Then

1

2π

∫
L±

|V (s) || (s− 1) |k+1−Rezx−τds ≤K

2π

∫ r

1/ log x

x−τ τk+1−Rezdτ �

� 1

(log x)
k+2−Rez ,

and the proof is completed. �
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3. Short interval version theorems for Ñk (x) , Π̃k (x)

Let χ run over the Dirichlet characters mod D, L (s, χ) =
∞∑

n=1

χ(n)
ns , ζ (s) =

=
∞∑

n=1

1
ns , χ0 be the principal character mod D, L (s, χ0) = ζ (s)

∏
p|D

(
1− 1

ps

)
.

Let

c (χ) :=
1

ϕ (D)

k∑
j=1

χ̄ (lj) ,(3.1)

especially

c (χ0) =
k

ϕ (D)
.(3.2)

Let z ∈ C

F (s, z) :=
∑
n∈Ñ

zΩ(n)

ns
=
∏
p∈P̃

1

1− z
ps

,(3.3)

G (s, z) :=
∑
n∈Ñ

zω(n)

ns
=
∏
p∈P̃

(
1 +

z

ps − 1

)
,(3.4)

H (s, z) :=
∑
n∈Ñ

zω(n)|μ (n) |
ns

=
∏
p∈P̃

(
1 +

z

ps

)
.(3.5)

Let p∗ be the smallest element of P̃ .

We can write

F (s, z) = F (s, 1)
z
Q (s, z) ,(3.6)

where

Q (s, z) =
∏
p∈P̃

(
1− 1

ps

)z
(
1− z

ps

) .(3.7)
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The product on the right-hand side of (3.7) is absolutely and uniformly convergent in
Res > 1

2 + δ, |z| ≤ p∗
1
2+δ − ε, if δ, ε are arbitrary positive constants.

Let

T (s) :=
∏
χ

L (s, χ)
c(χ)

, A (s) = T (s) · (s− 1)
c(χ0) .(3.8)

Thus

A (s) := ζ (s) (s− 1)
c(χ0)

∏
p|D

(
1− 1

ps

)c(χ0) ∏
χ �=χ0

L (s, χ)
c(χ)

.(3.9)

Let

K (s) :=
F (s, 1)

T (s)
,(3.10)

U (s, z) := (A (s)K (s))
z
Q (s, z) ,(3.11)

F (s, z) :=
U (s, z)

(s− 1)
(χ0)z

.(3.12)

F (s, z) satisfies the conditions stated for F1 (s) in 2.1. We can use Theorem A and
B.

Let

U (s, z) = B0 (z) +B1 (z) (s− 1) +B2 (z) (s− 1)
2
+ · · · .(3.13)

It is easy to prove that there exists r > 0 and a constant c such that

sup
n≥0

max
|z|≤2−ε

|Bn (z) | · rn ≤ c.(3.14)

We have

B0 (z) = U (1, z) = (A (1)K (1))
z
Q (1, z) ,(3.15)

A (1) =

(
ϕ (D)

D

)c(χ0) ∏
χ=χ0

L (1, χ)
c(χ)

.(3.16)

Let

u (s) :=
∑
p∈P̃

1

ps
; t (s, χ) :=

∑
p∈P

χ (p)

ps
.(3.17)
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Then

logK (s) = logF (s, 1)− log T (s) =

=
∑
l≥2

1

l

{
u (ls)−

∑
χ

c (χ) t
(
ls, χl

)}
,

and so

logK (1) =
∑
l≥2

1

l

{
u (l)−

∑
χ

c (χ) t
(
l, χl
)}

,(3.18)

the right-hand side is absolute convergent.

Since

logQ (s, z) =
∑
l≥2

1

l

(
z − zl

)
u (ls) ,

therefore logQ (1, z) =

(∞∑
l=2

u(l)
l

)
z −

∞∑
l=2

u(l)
l zl. Let

C =

∞∑
l=2

u (l)

l
,(3.19)

Q∗ (1, z) = exp

(
−
∑ u (l)

l
zl
)

(3.20)

=Q0 +Q1z +Q2z
2 + · · · .

Then Q0 = 1,

∑
ν

|Qν | · |z|ν ≤ exp

(∑ u (l)

l
|z|l
)
,(3.21)

the right-hand side is finite if |z| < p∗ − ε.

We can write

B0 (z) =
(
A (1)K (1) eC

)z ·Q∗ (1, z) .
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Let y = x7/12+ε. From Theorem A and B we have that

L (z) :=
1

y

⎛⎜⎝ ∑
x≤n≤x+y

n∈Ñ

zΩ(n)

⎞⎟⎠ =
1

2πi

∫
C∗

F (s, z)xs−1ds+

+O
(
exp
(
− (log x)

1/6
))

=

=
1

2πi

∫
C∗

U (s, z)

(s− 1)
c(χ0)z

xs−1dx+O
(
exp
(
− (log x)

1/6
))

=

=B0 (z)
Γ (−c (χ0) z) (−1) sinπc (χ0) z

π (log x)
1−c(χo)z

+O
(

1

(log x)
2−Rez

)
+

+O
(
exp
(
− (log x)

1/6
))

.

From 1
Γ(w−k) =

sinπw
π ·(−1)

k
Γ (k + 1− w), applied for k = −1, w = c (χ0),

we have

Γ (−c (χ0) z) (−1) sinπc (χ0) z

π
=

1

Γ (1 + c (χ0) z)
=

=
1

c (χ0) z
· 1

Γc (χ0) z
.

It is wellknown that 1
Γ(w) is an entire function. Let

R (z) :=
Q∗ (1, z)

Γ (c (χ0) z)
= T0 + T1z + T2z

2 + · · · .(3.22)

It is clear that ∑
|Tν ||z|ν

is convergent for |z| ≤ p∗ − ε.
Since

Ñk (x+ y)− Ñk (x)

y
=

∫ 1

0

L (e2πiθ) e−2πikθdθ =

= coeff
zk−1

(
A (1)K (1) eC (log x)

c(χ0)z
)

c (χ0) (log x)
R (z)+

+O
(

1

log x

)
=

Sk

log x
+O

(
1

log x

)
.

Let
l (x) := c (χ0) log log x+ C + logA (1)K (1) .
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We have

Sk = coeff
zk−1

ezl(x) · R (z)

c (χ0)
,

and so

Sk =
∑

l+m=k−1

Tl

m!
lm (x) =

l (x)
k−1

(k − 1)!c (χ0)

∑
l≤(k−1)

(k − 1)!

(k − l)!
Tl · l (x)−l

=
l (x)

k−1

c (χ0) (k − 1)!
Uk,

where

Uk =
∑

l≤k−1

(k − 1)!

(k − 1− l)!
Tl · l (x)−l

.

Since
(k − 1)!

(k − 1− l)!
= (k − 1)

l
+O (l2 · kl−1

)
,

we have

Uk =

k−1∑
l=0

Tl ·
(
k − 1

l (x)

)l

+O
(
1

k

∞∑
l=0

l2Tl

(
k − 1

l (x)

)l
)
.

Collecting our inequalities we obtain the following assertion.

Theorem 1. Let ε > 0 be fixed. Then, uniformly as

1 ≤ k ≤ (p∗ − ε) c (χ0) log log x,

for y = x7/12+ε we have

Ñk (x+ y)− Ñk (x)

y
=
(c (χ0) log log x+ C + logA (1)K (1))

k−1

c (χ0) (k − 1)!
×

×R

(
k

c (χ0) log log x+ C + logA (1)K (1)

)
×

×
(
1 +O

(
1

log log x

))
.

A (1) ,K (1) are defined in (3.9), (3.11), and C in (3.19), (3.17), R in (3.22).

Arguing similarly, as above, we can prove Theorem 2.
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Let

M (1, z) :=
∏
p∈P̃

(
1− 1

p

)z
1 + z

p−1

,

S (z) :=
Q∗ (1, z)M (1, z)

Γ (c (χ0) z)
.

Theorem 2. Let 0 < B < ∞,
(
1
2

)
> ε > 0 be fixed constants. Then, uniformly

as 1 ≤ k ≤ B log log x, we have

Π̃k (x+ y)− Π̃k (x)

y
=

1

c (χ0) log x
· l (x)

k−1

(k − 1)!
S

(
k − 1

l (x)

)
×

×
(
1 +O

(
1

log log x

))
,

where y = x7/12+ε.
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