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HOW LARGE CAN THE COEFFICIENTS

OF A POWER SERIES BE?
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Dedicated to Professor János Galambos on the occasion of his 70th birthday

Abstract. The paper is inspired by the problem of estimating the deviation of two
discrete probability distributions in terms of the supremum distance between their
generating functions over the interval [0, 1]. Under certain conditions on the tail
it is clarified how large can the terms of a real sequence be if the sup norm of its
generating function is known.

1. Introduction

Let A1, . . . , An be an arbitrary collection of events in an arbitrary probability
space. Let N denote the number of events that occur. In many cases we have to deter-
mine the distribution of the random variable N , or, at least, to estimate the probability
that none of the events occur. Such problems typically arise when stochastic methods
are applied in combinatorics, see [1].

The probability P (N = 0) can be estimated in several ways. In messy situtations,
where the dependence structure of the events is rather complicated, sieve methods,
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like the Rényi sieve, can sometimes help. Those methods provide Bonferroni type
lower or upper bounds of the form

(1.1) P (N = 0) ≤ (≥)
∑
M

c(M)P

(⋂
i∈M

Ai

)
,

where in the sum M runs over the subsets of {1, 2, . . . , n}, and the c(M) are real
constants. The interested reader is referred to the excellent monograph by Galambos
and Simonelli [3].

Such inequalities can easily be transformed into bounds for the probability gener-
ating function of N . By [4, Theorem 1], together with (1.1) we also have

(1.2) gN (x) = E(xN ) ≤ (≥)
∑
M

c(M)P

(⋂
i∈M

Ai

)
(1− x)|M |,

for 0 ≤ x ≤ 1. If we want to show the asymptotic Poissonity of N , in the way
above we can estimate the difference between gN (x) and the generating function of
the corresponding Poisson distribution (i.e., that with expectation equal to EN ). Now
the question is: how to estimate the difference of probabilities, if we have bounds for
the difference of generating functions?

This problem can be reformulated in the following way. Let F be the set of real
power series f(x) =

∑∞
k=0 akx

k such that
∑∞

k=0 |ak| ≤ 2 and
∑∞

k=0 ak = 0. When
we have two discrete probability distributions p = (p0, p1, . . . ) and q = (q0, q1, . . . )
with generating functions gp(x) and gq(x), resp., then f = gp − gq ∈ F , and ak =
= pk − qk. We want to estimate ak in terms of Δ = max0≤x≤1 |f(x)|.

The main difficulty of the problem is in the restriction that we only know f over
the real interval [0, 1], not in a whole neighbourhood of the origin on the complex
plane.

The first results in this direction appeared in [4]. It is shown there that the coef-
ficients can not be estimated uniformly, and that for every � = 0, 1, . . . and ε > 0
there exists a constant C, depending on � and ε, such that

|a�| ≤ CΔ1−ε.

This was improved in [5] to

|a�| ≤ Δ exp

(
2
(
� log

1

Δ

)4/5)
.

On the other hand, the limitations of such estimations are illustrated by the follow-
ing counterexamples, borrowed from [5].

Let p = (p0, p1, . . . ) be a fixed discrete probability distribution such that pk > 0
for every k = 0, 1, . . . , and

(1.3) lim sup
k→∞

1

2k
log

1

pk
< ∞.
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Let � be a positive integer and C a sufficiently small positive constant. Then for
every sufficiently small positive Δ there exists a discrete probability distribution q =
= (q0, q1, . . . ), such that max

0≤x≤1
|gp(x)− gq(x)| = Δ, and

(1.4) |p� − q�| > CΔ

(
log

1

Δ

)2�
.

Analogous result holds for probability distributions p having a tail that is lighter
than exponential.

Suppose that, instead of (1.3), we have

(1.5) lim sup
k→∞

1

h(k)
log

1

pk
= v,

where v is positive and finite, h is a positive, continuous, increasing function, regularly
varying at infinity with exponent α, and limk→∞ h(k)/k = ∞ (hence α ≥ 1). Let
� be a positive integer and C a sufficiently small positive constant. Then for every
sufficiently small positive Δ there exists a discrete probability distribution q, such
that max

0≤x≤1
|gp(x)− gq(x)| = Δ, and

(1.6) |p� − q�| > CΔ

(
h−1
(
log

1

Δ

))2�
.

These examples inspired our results in Section 2. We are going to drop the condi-
tion

∑∞
k=0 |ak| ≤ 2, but in that case (for � > 0) |a�| can be arbitrary large, no matter

how small Δ is, see Theorem 2.
In order to derive upper bounds in the form of the right hand sides of (1.4) and

(1.6) we have to impose additional conditions on the sequence (ak) in consideration.

2. Results

Let us start with a fundamental lemma.
The following theorem is a variant of a result by V. A. Markov, who proved a

similar theorem on the extremal properties of Chebyshev polynomials over the interval
[−1, 1] (see Chapter 2 of [2]).

Theorem 1. Consider an arbitrary polynomial of the form Qn(x) =
∑n

k=0 akx
k.

Introduce Δ = max0≤x≤1 |Qn(x)|. Then

(2.1) |ak| ≤ n

k + n

(
k + n

2k

)
22k Δ.
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For k > 0 equality holds if and only if Qn(x) = ±ΔTn(2x − 1), where Tn is the
degree n Chebyshev polynomial of the first kind, defined as Tn(cos θ) = cos(nθ).

Let us remark that

(2.2)
n

k + n

(
k + n

2k

)
22k ≤ (2n)2k

(2k)!

by the inequality of arithmetic and geometric means, and the ratio of the two sides
tends to 1 as k is fixed and n → ∞.

Proof. We may assume that ak = 1. Then Tn(2xi−1) = (−1)i for xi = cos2 iπ
2n ,

i = 0, 1, . . . , n. Let Tn(2x− 1) =
∑n

k=0 dkx
k. Suppose

|dk|Δ < 1 = max
0≤x≤1

|Tn(2x− 1)|.

Let p(x) = Tn(2x − 1) − dkQn(x), then p(xi) is positive or negative, according as
i is even or odd. Thus p(x) has n distinct roots in the interval (0, 1). Let them be
denoted by y1, y2, . . . , yn, then

p(x) = (dn − dkan)

n∏
i=1

(x− yi),

hence the coefficient of xk in p(x) is equal to

(−1)n−k(dn − dkan)
∑

1≤i1<···<in−k≤n

yi1 . . . yin−k
.

It should be 0, which is a contradiction. Consequently, |ak| = 1 ≤ |dk|Δ.
Suppose k > 0 and ak = Δdk. Let p(x) = ΔTn(2x− 1)−Qn(x), and suppose

that p is not identically equal to 0. Then p(xi) ≥ 0 for even values of i, and p(xi) ≤ 0
for odd i. Hence p has a zero in every closed interval [xi, xi−1], i = 1, 2, . . . , n. If
p(xi) = 0 for some 1 < i < n, it must be a multiple root, since p does not change
sign at xi. This shows that there are exactly n zeros in [0, 1], if each root is counted
up to its multiplicity. In addition, if xn = 0 is a root, it must be single. Again, let
y1, y2, . . . , yn be the roots, and consider the coefficient of xk in p(x),

0 = (−1)n−k(Δdn − an)
∑

1≤i1<···<in−k≤n

yi1 . . . yin−k
.

Since k > 0, the sum on the right-hand side must have at least one positive term,
leading to a contradiction.

Finally, it is known [5] that

dk = (−1)n−k n

k + n

(
k + n

2k

)
22k.
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This can be shown by induction on n, basing on the recursion formula Tn(2x− 1) =
= 2(2x− 1)Tn−1(2x− 1)− Tn−2(2x− 1). �

Let us add that for k = 0 equality can also hold for polynomials other than
Qn(x) = ±ΔTn(2x − 1). For example, every polynomial of the form Qn(x) =
= ±Δ

(
1− xPn−1(x)

)
will do, where degPn−1 ≤ n− 1, and 0 ≤ Pn−1(x) ≤ 2 on

[0, 1].
In what follows we consider real sequences (ak) such that the series

∑∞
k=0 ak is

absolutely convergent. As in Section 1, we introduce the generating function

(2.3) f(x) =

∞∑
k=0

akx
k, 0 ≤ x ≤ 1,

and the notation

(2.4) Δ = sup
0≤x≤1

|f(x)|.

First we point out that a� cannot be estimated without any further restriction.

Theorem 2. For arbitrary � > 0 and Δ > 0 we have

sup

{
|a�| : max

0≤x≤1
|f(x)| = Δ

}
= ∞.

Proof. Let f(x) = ΔTn(2x − 1), then |a�| = Δ · 22� n

�+ n

(
�+ n

2�

)
, which

tends to infinity with n. �

This is the reason why we set additional conditions. We formulate them in the
flavor of (1.4) and (1.5).

Theorem 3. Let h be a positive function defined on [0,∞), such that
h(x)

x
tends

nondecreasingly to a limit 	 as x → ∞; 0 < 	 ≤ ∞. Suppose Δ ≤ e−h(�), and

(2.5)

∞∑
k=n+1

|ak| ≤ K e−h(n), n ∈ N,

with some positive constant K. Then

(2.6) |a�| ≤ (K + 1)C� Δ

⌈
h−1
(
log

1

Δ

)⌉2�
,
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where C� =
22�

(2�)!
. On the other hand, for every positive K ′ <

( 	

2 + 	

)2�
and every

sufficiently small Δ > 0 there exists a sequence (ak) such that (2.4) and (2.5) hold,
and

(2.7) |a�| ≥ K ′ C� Δ

⌈
h−1
(
log

1

Δ

)⌉2�
.

Theorem 4. Suppose the conditions of Theorem 3 are met except that

(2.5′)
∞∑
k=0

|ak| eh(k) ≤ K < ∞

is satisfied instead of (2.5). Then (2.6) follows. On the other hand, for every positive

K ′ <
( 	

2 + 	

)2�
and every sufficiently small Δ > 0 there exists a sequence (ak) such

that (2.4), (2.5′), and (2.7) hold.

Proof of Theorems 3 and 4. Note that condition (2.5′) implies (2.5), for

∞∑
k=n+1

|ak| ≤ e−h(n)
∞∑
k=0

|ak| eh(k).

Suppose (2.5) holds. Choose

n =

⌈
h−1
(
log

1

Δ

)⌉
,

then e−h(n) ≤ Δ. Cutting the power series (2.3) into two at the nth term we obtain
that

sup
[0,1]

∣∣∣∣∣
n∑

k=0

akx
k

∣∣∣∣∣ ≤ Δ+
∑
k>n

|ak| ≤ Δ+K e−h(n) ≤ (K + 1)Δ.

Hence Theorem 1 and inequality (2.2) immediately imply (2.6).
For the other direction choose n so that

2n+ h(n) ≤ log
K

Δ
< 2(n+ 1) + h(n+ 1),

and let f = QnΔ, where Qn(x) = Tn(2x − 1). Then (2.4) is fulfilled. For the
coefficient of x� in f(x) we have

|a�| = Δ · 22� n

�+ n

(
�+ n

2�

)
∼ C� Δn2�.
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Firstly, suppose that 	 < ∞. Then h−1(x) ∼ x/	 as x → ∞, and

(2 + 	)n ∼ 2n+ h(n) ∼ log
1

Δ

as Δ → 0, that is, as n → ∞. Hence

n ∼ 1

2 + 	
log

1

Δ
∼ 	

2 + 	
h−1
(
log

1

Δ

)
∼ 	

2 + 	

⌈
h−1
(
log

1

Δ

)⌉
.

Secondly, let 	 = ∞. Then h−1(x)/x converges nonincreasingly to 0. It follows that
h−1
(
h(n) + c

) ∼ n if c = c(n) = o
(
h(n)

)
. Indeed, for c ≥ 0 we have

n = h−1
(
h(n)

) ≤ h−1
(
h(n) + c

) ≤ h−1
(
h(n)

)
h(n)

(
h(n) + c

)
= n
(
1 +

c

h(n)

)
∼ n.

Similarly, for c < 0 all inequalities hold reversed. Since

h(n) + 2n− logK ≤ log
1

Δ
≤ h(n+ 1) + 2(n+ 1)− logK,

we obtain that

h−1
(
h(n) + 2n− logK

) ≤ h−1
(
log

1

Δ

)
≤ h−1

(
h(n+ 1) + 2(n+ 1)− logK

)
,

thus

n ∼ h−1
(
log

1

Δ

)
∼
⌈
h−1
(
log

1

Δ

)⌉
.

All we have left is to show that condition (2.5′) is satisfied.

n∑
k=m+1

|ak| eh(k) ≤
n∑

k=m+1

(2n)2k

(2k)!
Δ eh(k) ≤ Δ eh(n)+2n ≤ K. �
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