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CONVERGENCE
OF FILTERED WALSH–FOURIER SERIES

W.R. Wade (Knoxville, USA)

Dedicated to Prof. Ferenc Schipp on his 70th birthday and
to Prof. Péter Simon on his 60th birthday

Abstract. What happens to almost everywhere convergence and Lp

boundedness of Walsh-Fourier series when some coefficients are suppressed?

To answer this question, we introduce a modified Walsh-Dirichlet kernel

that blocks out certain frequencies, and examine the partial sums it

generates.

1. Introduction

Let N := {0, 1, 2, . . .} denote the set of nonnegative integers and let ⊕
denote addition modulo two, i.e., if m,n ∈ N, then

m ⊕ n :=

{ 0 when m + n is even,

1 when m + n is odd.

Each n ∈ N has a unique binary expansion, i.e., for each n ∈ N there exists
an integer nk = 0 or 1 (called the binary coefficient of n of order k) such
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that n =
∞∑

k=0

nk2k. The dyadic sum of two integers and n =
∞∑

k=0

nk2k and

m =
∞∑

k=0

mk2k is defined by

n
·
+m =

∞∑
k=0

(nk ⊕ mk)2k.

This makes (N,
·
+) a group.

Similarly, the set G := {(x0, x1, . . .) : xk = 0 or 1} becomes a group (called
the dyadic group) if for each x = (x0, x1, . . .) and y = (y0, y1, . . .) in G we define

x
·
+ y := (x0 ⊕ y0, x1 ⊕ y1, . . .).

It is well known that (G,
·
+) is a compact group and that (N,

·
+) is its dual

group. Let Q represent the set dyadic rationals, i.e.,

Q :=
{

k

2n
: k = 0, 1, . . . , 2n − 1, n ∈ N

}
,

and let I := [0, 1] denote the unit interval. Fine’s map, defined by

ϕ(x0, x1, . . .) =
∞∑

k=0

xk

2k+1
,

identifies G with the interval [0, 1]. Although Fine’s map is not 1-1 (since
dyadic rationals have two binary expansions), it is 1-1 on the subset ϕ−1(I\Q)
of G. (For details of everything mentioned so far, see the original source Fine
[1], or the monograph [3].)

The dual group of G can be identified with the system (wn, n ∈ N) defined
by

wn(x) :=
∞∏

k=0

(−1)nkxk , x = (x0, x1, . . .) ∈ G,

where the nk’s are the binary coefficients of n. In particular, wn(x)wn(y) =

= wn(x
·
+ y) and w

n
·
+ m

= wnwm for all x, y ∈ G and all n,m ∈ N. The

characters {wn} are called the Walsh functions because under Fines’s map,
each wn gets pulled back to the classical Walsh function of order n, also denoted
by wn (e.g., see [3]). The Walsh functions of order 2n are called Rademacher
functions, and are denoted by rn := w2n .
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Denote the integral of a function f on G with respect to Haar measure, if
it exists, by ∫

G

f(x)dx.

For each 1 ≤ p < ∞, let Lp(G) represent the collection of real-valued functions
f on G whose pth powers, |f |p, are integrable with respect to Haar measure
and set

‖f‖p :=

⎛⎝∫
G

|f(x)|pdx

⎞⎠1/p

.

Let C(G) represent all real-valued functions which are continuous on G and set

‖f‖∞ := sup
x∈G

|f(x)|.

The dyadic convolution of two functions f and g on G is defined by

(f ∗ g)(x) :=
∫
G

f(x
·
+ y)g(y)dy.

It is well known that convolution makes L1(G) a commutative Banach algebra,
and that if f ∈ Lp(G) for some 1 ≤ p ≤ ∞ and g ∈ L1(G), then

(1) ‖f ∗ g‖p ≤ ‖f‖p‖g‖1.

(See, for example, [3], page 24.)

A Walsh series with coefficients ak is an infinite series of the form S :=

:=
∞∑

k=0

akwk. The partial sums of S of order n are defined by Sn :=
n−1∑
k=0

akwk(x).

The Walsh-Fourier coefficients of an integrable function on G are defined by

f̂(k) :=
∫
G

f(x)wk(x)dx, k ∈ N.

A Walsh series S :=
∞∑

k=0

akwk is called the Walsh-Fourier series of an integrable

function f (notation: Sf := S) if ak = f̂(k) for all k ∈ N. It is well known, and
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easy to see, that the Walsh-Dirichlet kernel D :=
∞∑

k=0

wk satisfies (Sf)n(x) =

= (Dn ∗ f)(x) for x ∈ G and n ∈ N. Define

In(k) :=

⎧⎨⎩(x0, x1, . . .) ∈ G :
n−1∑
j=0

xk

2k+1
=

k

2n

⎫⎬⎭ , n ∈ N, 0 ≤ k < 2n,

and observe that for each n ∈ N, the values of the Rademacher function rn are
given by

(2) rn(x) := w2n(x) =

⎧⎨⎩ 1 x ∈ In+1(2k),

−1 x ∈ In+1(2k + 1)

for k = 0, 1, . . . , 2n+1 − 1. Thus 1 + rn(x) = 2 for x ∈ In+1(2k) and zero
elsewhere.

The In(k)’s are called intervals in G because Fine’s map carries them to
dyadic intervals in I:

ϕ(In(k)) = [k2−n, (k + 1)2−n).

The Haar measure of each interval In(k) is exactly 2−n. Intervals in G play
a special role for Walsh functions. The reasons for this are three fold. 1)
Each In(k) is compact in G; 2) for each n, G is the disjoint union of In(k) for
k = 0, 1, . . . , 2n − 1; and 3) the Walsh functions are constant on the In(k)’s
with values ±1. Specifically, if n,m ∈ N satisfy 2n ≤ m < 2n+1, then wm is
constant on In+1(k) for all k, and changes signs exactly once on each In(k).
In particular, a convergent Walsh series usually does so because of cancellation
within dyadic intervals.

The dyadic partial sums of the Walsh-Dirichlet kernel satisfy

D2n(x) =

{
2n x ∈ In(0),

0 otherwise.

Since (Sf)n
2 = D2n ∗ f , we have by (1) that if f ∈ Lp(G), for some 1 ≤ p ≤ ∞,

and if εk = 1 for all k ∈ N, then the dyadic partial sums of Sf :=
∞∑

k=0

εkf̂(k)wk

satisfy

(3) sup
n∈N

∥∥∥∥∥
2n−1∑
k=0

εkf̂(k)wk

∥∥∥∥∥
p

≤ ‖f‖p,



Convergence of filtered Walsh-Fourier series 369

and it is well-known that if f ∈ Lp(G) for some p > 1, then the full partial
sums of Sf satisfy

(4) lim
n→∞

n∑
k=0

εkf̂(k)wk = h(x) almost everywhere on G,

where h = f (see [3], p. 142).

Watari [4] examined random Walsh-Fourier, i.e.,
∞∑

k=0

εkf̂(k)wk, where ε =

= ±1. He showed that if f ∈ L2(G) and if

(5)
∞∑

k=0

|f̂(k)|2 log1+ε k < ∞

for some ε > 0, then there is a continuous function h such that
∞∑

k=0

εkf̂(k)wk =

= h(x) uniformly on G for almost all sign changes εk = ±1. In particular, (3)
and (4) hold not only when all the εk’s are 1 but also can hold when some of
the εk’s are −1.

What happens to filtered Walsh-Fourier series? That is, what happens if
some of the εk’s are zero? In view of the cancellation that takes place within
dyadic intervals, it seems unlikely that either (3) or (4) will still hold in this
case. Nevertheless, we will show that they both do hold in a wide variety of
cases. Here are two sample results (see (6) and (7), and Theorems 1 and 4
below):
1) For all f ∈ Lp(G) for p > 1, a condition much more general than (5), if

εk = 1 for all even k and εk = 0 for all odd k, or vice versa, then (3) and
(4) hold.

2) We will also obtain the same results when εk = 0 on increasingly larger
intervals, e.g., εk = 1 for k = 0, 1, 210, 210 + 1, 2102

, 2102
+ 1, 2102

+
+210, 2102

+ 210 + 1, 2103
, . . . , and εk = 0 otherwise.

2. Filtered Walsh-Fourier series

For each strictly increasing sequence of nonnegative integers m = (m1,m2,
. . .), define the modified Walsh-Dirichlet kernel by

W (m) :=
∞∑

k=0

ε
(m)
k wk,
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where

ε
(m)
k :=

⎧⎨⎩ 1 there exist j ∈ N and η�’s in {0, 1} such that k =
j∑

�=1

η�2m� ,

0 otherwise.

For example, if mj = j, then

(6) W (m) =
∞∑

k=0

w2k,

and if

mj =

{ 0 j = 1,

10j−1 for j ≥ 2,

then
(7)
W (m) = w0 +w1 +w210 +w210+1 +w2102 +

∑
j∈{1,210,210+1}

w2102+j +w2103 + . . . .

Given a Walsh series S =
∞∑

k=0

akwk, define the m-filtering of S by

S̃ := S̃(m) :=
∞∑

k=0

ε
(m)
k akwk.

If f ∈ L1(G),then it is easy to check that the filtered Walsh-Fourier series S̃f
satisfies

(8) (S̃f)n(x) = (f ∗ W (m)
n )(x) :=

∫
G

f(x
·
+ t)

n−1∑
k=0

ε
(m)
k wk(t)dt.

Our first result shows that a filtered Walsh-Fourier series always satisfies
(3).

Theorem 1. Suppose that 1 ≤ p ≤ ∞ and that f ∈ Lp(G). If m is a
strictly increasing sequence of nonnegative integers, then the m-filtering of the
Walsh-Fourier series of f satisfies

sup
n∈N

‖(S̃f)2n‖p ≤ ‖f‖p.
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Proof. Define a sequence qj ∈ {0, 1} by

qj :=

{ 1 if j = mk for some k,

0 otherwise,

and set

(9) Fn :=
n−1∏
k=0

(1 + rk)qk , n ∈ N.

If we expand this product, using the definition of dyadic addition and the wk’s,
we see that

Fn = (1 + rm0)(1 + rm1) · · · (1 + rmn−1) =
2mn−1∑

k=0

ε
(m)
k wk = W

(m)
2mn .

In particular, (2) implies that W
(m)
2mn = Fn ≥ 0 everywhere on G. Since Fn

always includes the constant function w0 ≡ 1, we also have, by orthogonality,

that ‖W2mn‖1 =
2mn−1∑

k=0

ε
(m)
k

∫
G

wk(x)dx = 1 for all n ∈ N. Because of the gaps,

however, it is also clear that if mn < N ≤ mn+1, then S̃2N = S̃2mn . We
conclude by (8) and (1) that

sup
N∈N

‖(S̃f)2N ‖p = sup
n∈N

‖(S̃f)2mn‖p = sup
n∈N

‖f ∗ W
(m)
2mn‖p ≤

≤ sup
n∈N

‖f‖p‖W (m)
2mn‖1 = ‖f‖p.

Thus any m-filtering of a Walsh-Fourier series satisfies (3).

To investigate (4), recall that the Walsh-Fourier-Stieltjes coefficients of a
finite Borel measure μ on G are defined by μ̂(k) :=

∫
G

wkdμ and the Walsh-

Fourier-Stieltjes series of μ is defined by

(Sμ)(x) =
∞∑

k=0

μ̂(k)wk(x).
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The usual relationship between Walsh-Fourier-Stieltjes series and Dirichlet
kernels holds. Indeed, by interchanging the order of summation, it is easy
to verify that

(10) (Sμ)n(x) =
∫
G

Dn(x
·
+ t)dμ(t), n ∈ N.

The next result, which is in some sense dual to Theorem 1, shows that the
dyadic partial sums of Walsh series behave like Cesàro summability (compare
with Fine [2]).

Theorem 2. Let S =
∞∑

k=0

akwk be a Walsh series. Then S is the Walsh-

Fourier-Stieltjes series of a finite Borel measure μ on G whose total variation
satisfies ‖μ‖ ≤ M if and only if there exists a strictly increasing sequence of
nonnegative integers {mn} such that

(11) sup
n∈N

‖S2mn‖1 ≤ M.

Proof. Let n ∈ N and suppose that S = Sμ. By (10), S satisfies

‖S2n‖1 = ‖W2n ∗ μ‖1 ≤ ‖W2n‖1‖μ‖ ≤ 1 · M = M.

Conversely, suppose that S is a Walsh series which satisfies (11) for some
integers 0 ≤ m1 < m2 < · · ·. Then the operator

Tn(f) :=
∫
G

S2mn (x)f(x)dx

is a bounded, linear functional on C(G), with |Tn(f)| ≤ ‖f‖∞‖S2mn‖1 ≤
≤ M‖f‖∞ for n = 1, 2, . . .. It follows from the Banach-Alaoglu Theorem
that there is a subsequence nj such that Tnj

converges pointwise on C(G) to a
bounded linear operator T on C(G) whose operator norm satisfies ‖T‖ ≤ M .
Hence, by the Riesz Representation Theorem, there is a finite Borel measure μ
on G which satisfies ‖μ‖ ≤ M such that

Tf =
∫
G

fdμ
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for all f ∈ C(G). Since each Walsh function is continuous on the group, it
follows from the definition of T and orthogonality that for any k ∈ N,

μ̂(k) :=
∫
G

wkdμ = T (wk) = lim
j→∞

∫
G

S2
mnj (x)wk(x)dx = ak.

Thus S = Sμ as promised.

We now show (see (13) below) that a filtered Walsh-Fourier series always
satisfies an averaged version of (4).

Theorem 3. Suppose that m is a strictly increasing sequence in N and
that f ∈ L1(G). Then there is a finite Borel measure μ̃ on G such that the
m-filtering S̃f satisfies

(12) lim
n→∞

(S̃f)n(x)
n

= μ̃(ϕ−1({x})), x ∈ I\Q.

Moreover, if F is the distribution function of μ̃, i.e., if F (x) := μ̃(ϕ−1([0, x)))
for x ∈ I, then

(13) lim
n→∞

x∫
0

(S̃f)n(t)dt = F (x)

for all x ∈ Q and for all x which are points of continuity of F.

Proof. By Theorems 1 and 2, the m-filtering of the Walsh-Fourier series
Sf is the Walsh-Fourier-Stieltjes series of some finite, Borel measure μ̃ on G.
Hence, (12) and (13) follow immediately from Theorems 3 and 7 in Fine [2].

3. Pointwise convergence of filtered Walsh-Fourier series.

If S̃f is itself a Walsh-Fourier series of some g ∈ L1(G), then we will say
that the m-conjugate function of f exists, and denote it by f̃ := g.

The following result shows that if 1 < p < ∞, then the m-conjugate map,
f �→ f̃ takes f ∈ Lp(G) into Lp(G). It also proves that the m-filtering of a
Walsh-Fourier series of an f ∈ Lp(G) always satisfies (3) and (4).

Theorem 4. Suppose that m is a strictly increasing sequence in N and
that f ∈ Lp(G) for some p > 1. Then f̃ exists and the m-filtering S̃f converges
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to f̃ almost everywhere on G. Moreover, if 1 < p < ∞, then the m-conjugate
function f̃ belongs to Lp(G) and there is a constant Cp, which depends only on
p, such that

(14) ‖f̃‖p ≤ Cp‖f‖p.

Proof. Suppose that 1 < p < ∞. By the proof of Theorem 1,

‖S̃f2n‖p ≤ ‖f‖p

for all n ∈ N, i.e. S̃f satisfies (3). Repeat the proof of Theorem 2. The only
essential change is that the operators Tj are uniformly bounded on Lp′

(G),
where p′ is the index conjugate to p, so by the Riesz Representation Theorem,
that there is an h ∈ Lp(G) such that

Tf =
∫
G

f(x)h(x)dx

for all f ∈ Lp′
(G). As before, orthogonality implies that ĥ(k) = ak for k ∈ N,

i.e., S̃f is the Walsh-Fourier series of some f̃ := h ∈ Lp(G). Hence, f̃ exists,
(S̃f)n := (Sf̃)n → f̃ almost everywhere on G and in Lp norm, and

(15) ‖(S̃f)n‖p ≤ Cp‖f‖p

for all n ∈ N. (See, e.g., [3], pp. 135 and 142.) Taking the limit of (15), as
n → ∞, verifies (14).

Finally, if f ∈ L∞(G), then f ∈ Lp(G) for all 1 ≤ p ≤ ∞. Hence by what
we just proved, f̃ exists and belongs to Lp(G) for all 1 ≤ p < ∞.

It follows that if f ∈ Lp(G) for some 1 < p < ∞, then

g :=
∞∑

k=0

f̂(2k)w2k and h :=
∞∑

k=0

f̂(2k + 1)w2k+1

are both Lp(G) functions and converge almost everywhere because g is a
conjugate function and h = f − g.
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