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Abstract. In this paper are presented results connected to the voice

transform of the Blaschke group generated by a representation of the group

on the weighted Bergman spaces Hm(D). These results are generalizations

of the results obtained in [15] which are in connection to the Bergman

space. Sections 1 and 2 contain the basic notations, definitions and results.

In Section 3 we give a representation of Blaschke group on the weighted

Bergman spaces Hm(D), we compute the matrix elements of the repre-

sentation. It is proved that the representation is irreducible on Hm(D).
Using the representation Ua we construct a rational orthonormal wavelet

system and we prove that the weighted Bergman projection operator can be

expressed using the voice transform and the wavelet system. The analogue

of the Plancherel formula is proved and the square integrability of the

representation is studied. Sections 4 contains the proofs.

1. The voice transform

In this section are included the basic notations, definitions and results
connected to the general theory of the voice transform (see [5], [6], [7], [8], [10],
[16]).
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In signal processing and image reconstruction the wavelet and Gábor trans-
forms play an important role. H. Feichtinger and K. Gröchening unified the
Gábor and wavelet transforms into a single theory. The common generalization
of these transforms is the so-called voice-transform (see [5], [6], [7], [8]).

In the construction of the voice transform the starting point will be a
representation of a locally compact topological group (G, ·) on the Hilbert space
H. It is known that every locally compact topological group has nontrivial left-
and right-translation invariant Borel measures, called left invariant and right
invariant Haar measures. Let m be a left-invariant Haar measure of G. Let
f : G → C be a Borel measurable function which is integrable with respect
to the left invariant Haar measure m, the integral of f will be denoted by∫
G

f dm =
∫
G

f(x) dm(x). Because of left-translation invariance of the measure

m it follows that∫
G

f(x) dm(x) =
∫
G

f(a−1 · x) dm(x) (a ∈ G).

There exist groups whose left invariant Haar measure is not right invariant. If
the left invariant Haar measure of G is in the same time right invariant then we
say that G is unimodular. Such measure will be called Haar measure of G. On a
given group, Haar measure is unique only up to constant multiples. It is trivial
that the commutative groups are unimodular. Furthermore it can be proved
that if the left Haar measure is invariant under the inverse transformation
G " x → x−1 ∈ G, then G is unimodular.

In the definition of the voice transform a unitary representation of the
group (G, ·) is used. Let us consider a Hilbert-space (H, 〈·, ·〉) and let U denote
the set of unitary bijections U : H → H. Namely, the elements of U are
bounded linear operators which satisfy 〈Uf, Ug〉 = 〈f, g〉 (f, g ∈ H). The set
U with the composition operation (U ◦ V )f := U(V f) (f ∈ H) is a group
the neutral element of which is I, the identity operator on H and the inverse
element of U ∈ U is the operator U−1, which is equal to the adjoint of U :
U−1 = U∗. The homomorphism U of the group (G, ·) on the group (U , ◦)
satisfying

i) Ux·y = Ux ◦ Uy (x, y ∈ G),

(1.1) ii) G " x → Uxf ∈ H is continuous for all f ∈ H

is called a unitary representation of (G, ·) on H.
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The voice transform of f ∈ H generated by the representation U and by
the parameter ρ ∈ H is the (complex-valued) function on G defined by

(1.2) (Vρf)(x) := 〈f, Uxρ〉 (x ∈ G, f, ρ ∈ H).

For any representation U : G → U and for each f, ρ ∈ H the voice transform
Vρf is a continuous and bounded function on G.

The set of continuous bounded functions defined on the group G with the
supremum norm form a Banach space and Vρ : H → C(G) is a bounded linear
operator. From the unitarity of Ux : H → H follows that, for all x ∈ G

|(Vρf)(x)| = |〈f, Uxρ〉| ≤ ‖f‖‖Uxρ‖ = ‖f‖‖ρ‖,

consequently ‖Vρ‖ ≤ ‖ρ‖.
The invertibility of Vρ is connected to the irreducibility of the representa-

tion U .
A representation U is called irreducible if the only closed invariant sub-

spaces of H, i.e. closed subspaces H0 which satisfy UxH0 ⊂ H0, are {0} and
H. Since the closure of the linear span of the set

(1.3) {Uxρ : x ∈ G}

is always a closed invariant subspace of H, it follows that U is irreducible if
and only if the collection (1.3) is a closed system for any ρ ∈ H, ρ �= 0.

The property of irreducibility gives a simple criterion for deciding when a
voice transform is one to one:

Theorem 1 [10], [16]. A voice transform Vρ generated by a unitary
representation U is one to one for all ρ ∈ H \{0} if and only if U is irreducible.

The function Vρf is continuous on G, but in general is not square
integrable. If there exists ρ ∈ H, ρ �= 0 such that Vρρ ∈ L2

m(G), then the
representation U is called square integrable and ρ is called admissible for U .
For a fixed square integrable U the collection of admissible elements of H
will be denoted by H∗. Choosing a convenient ρ ∈ H∗ the voice transform
Vρ : H → L2

m(G) will be unitary. This is a consequence of the following
theorem:

Theorem 2 [10], [16]. Let be Ux, (x ∈ G) an irreducible square integrable
representation of G in H. Then the collection of admissible elements H∗ is a
linear subspace of H and for every ρ ∈ H∗ the voice transform of the function
f is square integrable on G, namely Vρf ∈ L2

m(G), if f ∈ H. Moreover there
is a symmetric, positive bilinear map B : H∗ × H∗ → R such that

[Vρ1f, Vρ2g] = B(ρ1, ρ2)〈f, g〉 (ρ1, ρ2 ∈ H∗, f, g ∈ H)
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for all f, g ∈ H and ρ1, ρ2 ∈ H∗, where the inner product [·, ·] is the usual
inner product in L2

m(G). If the group G is unimodular then B(ρ, ρ) = c‖ρ‖2

(ρ ∈ H∗), where c > 0 is a constant. In this case if we choose ρ so that
〈ρ, ρ〉 = 1/c, then

[Vρf, Vρg] = 〈f, g〉 (f, g ∈ H).

In the next sections we will construct a voice transform using so called
multiplier representations generated by a collection of multiplier functions
defined in the following way: Fa : G → C∗ := C \ {0} (a ∈ G) is a collection of
multiplier functions if

Fe = 1, Fa1·a2(x) = Fa1(a2 · x)Fa2(x) (a1, a2, x ∈ G),

where e is the neutral element of G. It can be proved that

(Uaf)(x) := Fa−1(x)f(a−1 · x) (a, x ∈ G)

satisfies
Ua1 ◦ Ua2 = Ua1·a2 (a1, a2 ∈ G),

so is a representation of G on the space of all complex valued functions on G.

If Fa is continuous and bounded for every a ∈ G, then L2
m(G) is an invari-

ant subspace and Ua, a ∈ G is a representation on L2
m(G). The representations

obtained as below are named multiplier representations (see [18]).
Taking as starting point (not necessarily commutative) locally compact

groups we can construct in this way important transformations in signal
processing and control theory. For example the affine wavelet transform and
the Gábor transform are all special voice transforms (see [5], [6], [7], [8], [10],
[16]).

In this paper results connected to the voice transform generated by a
representation of the Blaschke group on the weighted Bergman spaces Hm(D)
are presented. These results are generalizations of the results obtained in [15]
which are in connection to the Bergman space.

2. The Blaschke group and the weighted Bergman spaces Hm(D)

2.1. The Blaschke group

The affine wavelet transform is a voice transform of the affine group
which is a subgroup of the Möbius group (i.e. the group of linear fractional
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transformations with the composition operation). In this section we will present
another subgroup of the Möbius group, namely the Blaschke group (see [3], [9],
[16]).

Let us denote by

(2.1) Ba(z) := ε
z − b

1 − b̄z
(z ∈ C, a = (b, ε) ∈ B := D × T, bz �= 1)

the so called Blaschke functions, where
(2.2)
D+ := D := {z ∈ C : |z| < 1}, T := {z ∈ C : |z| = 1}, D− := {z ∈ C : |z| > 1}.

If a ∈ B, then Ba is a 1-1 map on T, D and D−, respectively. The restrictions of
the Blaschke functions on the set D or on T with the operation (Ba1 ◦Ba2)(z) :=
:= Ba1(Ba2(z)) form a group. In the set of the parameters B let us define the
operation induced by the function composition in the following way: Ba1◦Ba2 =
= Ba1◦a2 . The group (B, ◦) will be isomorphic with the group ({Ba, a ∈ B}, ◦).
If we use the notations aj := (bj , εj), j ∈ {1, 2} and a := (b, ε) =: a1 ◦ a2, then

(2.3) b =
b1ε2 + b2

1 + b1b2ε2
= B(−b2,1)(b1ε2), ε = ε1

ε2 + b1b2

1 + ε2b1b2

= B(−b1b2,ε1)
(ε2).

The neutral element of the group (B, ◦) is e := (0, 1) ∈ B and the inverse
element of a = (b, ε) ∈ B is a−1 = (−bε, ε).

The integral of the function f : B → C, with respect to the left invariant
Haar-measure m of the group (B, ◦), is given by

(2.4)
∫
B

f(a) dm(a) =
1
2π

∫
I

∫
D

f(b, eit)
(1 − |b|2)2 db1db2dt,

where a = (b, eit) = (b1 + ib2, e
it) ∈ D × T.

It can be shown that this integral is invariant with respect to the left
translation a → a0 ◦ a and under the inverse transformation a → a−1, so this
group is unimodular.

We will study the voice transform of the Blaschke group. In the construc-
tion a unitary representation of the Blaschke group on the weighted Bergman
spaces Hm(D) will be used.
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2.2. The weighted Bergman spaces Hm(D)

In this section we summarize the basic results connected to the weighted
Bergman spaces (see [3], [9]). Let us denote by A the set of functions f : D → C
which are analytic in D . Let us denote by

dAm(z) :=
m − 1

π
(1 − |z|2)m−2 dxdy, z = x + iy

the weighted area measure on D. For all m ∈ N, m ≥ 2 let us consider the
following subset of analytic functions:

(2.5) Hm(D) :=

⎧⎨⎩f ∈ A :
∫
D

|f(z)|2dAm(z) < ∞

⎫⎬⎭ .

The set Hm(D) is the weighted Bergman space. This space with the scalar
product

(2.6) 〈f, g〉m :=
∫
D

f(z)g(z)dAm(z)

is a Hilbert space. In the special case when m = 2, H2(D) is the so called
Bergman space (see [3], [5]). It can be proved that the function

(2.7) f(z) :=
∞∑

n=0

cnzn (z ∈ D)

from A belongs to the set Hm(D) if and only if the coefficients satisfy

∞∑
n=0

|cn|2λ[m]
n < ∞,

where

λ[m]
n :=

1∫
0

(1 − r2)m−2r2n+1 dr (m ≥ 2, n ∈ N).

The weighted Bergman space Hm(D) is a closed subspace of L2(D, dAm).
For each z ∈ D the point-evaluation map

τz : Hm(D) → C, τz(f) = f(z)
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is a bounded linear functional on Hm(D). Each function f ∈ Hm(D) has the
property

|f(z)| ≤ C‖f‖Hm(D) (z ∈ D).

From this inequality it follows that the norm convergence in Hm(D) implies
the locally uniform convergence on D. Therefore, by the Riesz Representation
Theorem there is a unique element in Hm(D), denoted by K(., z), such that

f(z) = τz(f) = 〈f, K(., z)〉m =
∫
D

f(ξ)K(ξ, z)dAm(ξ),

(f ∈ Hm(D), ξ = ξ1 + iξ2, z ∈ D).

The function
K : D × D → C with K(., z) ∈ H2(D)

is called the weighted Bergman kernel for D.
For any orthonormal basis {ϕn, n = 0, 1, 2, ...} in Hm(D) the kernel

function has the representation

(2.8) K(ξ, z) =
∞∑

n=1

ϕn(ξ)ϕn(z), (ξ, z) ∈ D × D,

with uniform convergence on compact subsets of D × D. The functions

ϕn(z) =

√
Γ(n + m)
n!Γ(m)

zn, (z ∈ D, n = 0, 1, 2, ...)

form an orthonormal basis in Hm(D), consequently

(2.9) K(ξ, z) =
1

(1 − zξ)m
.

The explicit formula for the kernel function shows that

f(z) =
m − 1

π

∫
D

f(ξ)
1

(1 − ξz)m
(1 − |ξ|2)m−2dξ1dξ2, (f ∈ Hm(D), z ∈ D).

Since Hm(D) is closed subspace of L2(D, dAm) there is an orthogonal
projection operator

Pm : L2(D, dAm) → Hm(D).
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Pm is a bounded Hermitian operator of the norm 1 which satisfies Pmf = f
for f ∈ Hm(D), this is the so called weighted Bergman projection. Thus the
weighted Bergman projection can be expressed by integration with respect to
the Bergman kernel in the following way:

(2.10) (Pmf)(z) = 〈f, K(., z)〉 =
m − 1

π

∫
D

f(ξ)
1

(1 − ξz)m
(1 − |ξ|2)m−2dξ1dξ2

(f ∈ L2(D, dAm), z, ξ ∈ D, ξ = ξ1 + iξ2).

The projection operator can be extended on L1(D, dAm) mapping each f ∈
∈ L1(D, dAm) to a function analytic in D. Since (2.10) is a pointwise formula
and Hm(D) is dense in H1(D) = {f : D → C, f ∈ A(D)

∫
D

|f(z)|dAm(z) < ∞}

it follows that

(2.11) f(z) =
m − 1

π

∫
D

f(ξ)
1

(1 − ξz)m
(1 − |ξ|2)m−2dξ1dξ2

(f ∈ H1(D), z, ξ ∈ D, ξ = ξ1 + iξ2),

and the integral converges uniformly in z in every compact subset of D (see [5],
p. 6).

3. New results

3.1. The representation of Blaschke group on the Hilbert space
Hm(D)

In this section we will extend the results obtained in [15] to the case when
the representation of the Blaschke group is on the weighted Bergman spaces.
Let us consider the following set of functions

(3.1) Fa(z) :=

√
ε(1 − |b|2)
1 − b̄z

(a = (b, ε) ∈ B, z ∈ D).

For every power m (m ≥ 2, m ∈ N) Fa induce a unitary representation of
Blaschke group on the space Hm(D). Namely, let us define

(3.2) Um
a f := [Fa−1 ]mf ◦ B−1

a (a ∈ B, m ∈ N, m ≥ 2, f ∈ Hm(D)).
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It can be proved the following

Theorem 3. For all m ∈ N, m ≥ 2 Um
a (a ∈ B) is a unitary representation

of the group B on the Hilbert space Hm(D).

3.2. The properties of the voice transform induced by representation
Um

a

In what follows we will compute the matrix elements of the representation
(3.2). We will prove that the representation Ua := Um

a is irreducible, using this
we prove the analogue of the Placherel formula. Using the properties of this
matrix elements we will give an addition formula and we will give classes of
admissible elements for the representation Ua.

The representation has the following form

(3.3) (Um
a−1f)(z) := ei mψ

2
(1 − |b|2)m

2

(1 − bz)m
f

(
eiψ z − b

1 − bz

)
(a = (b, eiψ) ∈ B)

and is unitary with respect to the scalar product

(3.4) 〈f, g〉 = 〈f, g〉m :=
∫
D

f(z)g(z) dAm(z).

The voice transform induced by representation Ua by definition is

(3.5) (Vρf)(a−1) := 〈f, Ua−1ρ〉m (a = (b, eiψ) ∈ B, f, ρ ∈ Hm(D)).

The matrix elements of the representation in the base hn(z) := zn (n ∈ N, z ∈
∈ D) are defined by the following formulae

(3.6) vkn(a−1) := 〈hk, Um
a−1hn〉m =

= e−i(n+ m
2 )ψ(1 − |b|2)m

2
m − 1

π

∫
D

( (z − b)n

(1 − bz)n+m

)
zk(1 − |z|2)m−2 dxdy.

Theorem 4. The matrix elements of the representation (3.3) have the
following form

(3.8) vkn(a−1) = (1 − r2)
m
2 e−i(n+ m

2 )ψe−i(n−k)ϕαkn(r) (k, n ∈ N),
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where αkn(r) can be expressed using the Jacobi polynomials in the following
way:

(3.9) αkn(r) := C(k, m, n)rn−k
[
(1 − u)nuk+m−1

](n+m−1)

u=r2 ,

and

C(k, m, n) =
2m−1(m − 1)!

(n + m − 1)!(2k + 2)(2k + 4)...(2k + 2m − 2)
.

The radial part αkn(r) satisfies the following relations

(3.10) αkn(r) = (−1)n−kαnk(r).

It is known that the matrix elements of the representations in general
satisfy the following so called addition formula (see [18]):

vkn(a1 ◦ a2) =
∑

�

vk�(a1)v�n(a2).

From this relation we obtain the following addition formula:

(3.11) (1 − r2)
m
2 e−i(n+ m

2 )ψe−i(n−k)ϕαkn(r) =∑
�

(1−r2
1)

m
2 e−i(�+ m

2 )ψ1e−i(�−k)ϕ1αk�(r1)(1−r2
2)

m
2 e−i(n+ m

2 )ψ2e−i(n−�)ϕ2α�n(r2),

where aj := (rje
iϕj , eiψj ), j ∈ {1, 2} and a := (reiϕ, eiψ) = a1 ◦ a2.

Theorem 5. The representation Ua (a ∈ B) is irreducible on the space
Hm(D).

From Theorem 1, Theorem 2 (see [10], [16]), Theorem 3 and Theorem 5 it
follows

Consequence 1. The voice transform generated by representation Ua,
a ∈ B is one to one.

Consequence 2. If Hm(D)∗ denotes the set of admissible elements from
Hm(D), then there is a symmetric positive bilinear map

B : Hm(D)∗ ×Hm(D)∗ → R

such that
(3.12)|

[Vρ1f1, Vρ2f2] = B(ρ1, ρ2)〈f1, f2〉m (f1, f2 ∈ Hm(D), ρ1, ρ2 ∈ H2(D)∗),
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where

[F, G] :=
∫
B

F (a)G(a) dm(a)

and dm(a) is the Haar measure of the group B.

For the special case m = 2 in paper [15] we gave a direct proof of this
result, from which it turns out that every ρ ∈ H2(D) is admissible and the
voice transform induced by Ua = U2

a satisfies

(3.13) [Vρ1f, Vρ2g] = 4π〈ρ1, ρ2〉 〈f, g〉 (f, g, ρ1, ρ2 ∈ H2(D)).

Theorem 6. Every ρn = zn (n ∈ N) is admissible, namely∫
B

|Vρn
ρn(a)|2dm(a) < ∞.

Theorem 7. Every element ρ ∈ H∞(D) is admissible, namely∫
B

|Vρρ(a)|2dm(a) < ∞.

3.3. Construction of orthogonal rational wavelets in the weighted
Bergman spaces

In this section we give an orthogonal rational wavelet system, and we show
that the Bergman projection operator can be expressed with this system and
the voice transforms with the parameters of the functions of the system. Let
us consider the shift operator

(3.13) (Sϕ)(z) = zϕ(z) (ϕ ∈ Hm(D)).

Denote by

(3.14) ϕa,n(z) :=

√
Γ(n + m)
n!Γ(m)

(Ua−1Snϕ)(z)

(a = (b, ε) ∈ B, m ∈ N, m ≥ 2, ϕ ∈ Hm(D), n ∈ N) .
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If we consider as mother wavelet ϕ = 1 ∈ Hm(D), then the corresponding
rational wavelets are

(3.15) ϕa,n(z) =

√
Γ(n + m)
n!Γ(m)

[ε(1 − |b|2)]m
2

(1 − bz)m

(
ε(z − b)
1 − bz

)n

, n ∈ N.

Taking into account the unitarity of the representation Ua it follows that they
form an orthonormal system in Hm(D), for every a ∈ B.

We observe that if we consider the neutral element of the group a = e =
= (0, 1) ∈ B then we reobtain the classical orthonormal basis in Hm(D)

ϕn(z) = ϕe,n(z) =

√
Γ(n + m)
n!Γ(m)

zn, n ∈ N.

Theorem 8. For all z ∈ D and a ∈ B the weighted Bergman projection
operator Pm : L2(D, dAm) → Hm(D) can be written in the following way

(3.16) Pmf(z) =
∞∑

n=0

Vϕnf(a−1)ϕa,n(z) (a ∈ B).

Consequence 3. Every f from Hm(D) can be represented as

f(z) =
∞∑

n=0

Vϕn
f(a−1)ϕa,n(z) (a ∈ B, z ∈ D).

Consequence 4. For every a ∈ B the functions

(3.17) ϕa,n(z) =

√
Γ(n + m)
n!Γ(m)

[ε(1 − |b|2)]m
2

(1 − bz)m

(
ε(z − b)
1 − bz

)n

(z ∈ D, n ∈ N)

form an orthonormal basis in Hm(D).

From Consequence 3 we can deduce the following characterization of the
poles.

Consequence 5. Let F analytic continuation of the function f ∈ Hm(D).
Then F has n-tuple pole at 1

b
outside of the unit disc if and only if for a =

= (b, ε) ∈ B

Vϕn
f(a−1) �= 0, and for all k, k > n, Vϕk

f(a−1) = 0.



The voice transform generated by a representation 333

4. Proofs

Proof of Theorem 3. The set of functions (Fa, a ∈ B) defined by (3.1)
satisfies the following relation

(4.1) Fa1 ◦ Ba2 · Fa2 = Fa1◦a2 (a1, a2 ∈ B).

To prove this we will use the identity

|1 + b1b2ε2|
√

1 − |b|2 =
√
|1 + b1b2ε2|2 − |b1ε2 + b2|2 =

√
(1 − |b1|2)(1 − |b2|2).

Using this we obtain that

Fa1(Ba2(z)) · Fa2(z) =
√

ε1ε2(1 − |b1|2)(1 − |b2|2)
1

1 − b1ε2
z−b2
1−b2z

1
1 − b2z

=

=

√
ε1ε2(1 − |b|2)|1 + b1b2ε2|

1 + b1b2ε2

1
1 − bz

=

=
√

ε(1 − |b|2) 1
1 − bz

= Fa1◦a2(z).

From this it follows that

Um
a1

(Um
a2

f) = Um
a1

([Fa−1
2

]m ·f ◦B−1
a2

) = [Fa−1
1

]m · [Fa−1
2

◦Ba−1
1

]m ·f ◦B−1
a2

◦B−1
a1

=

= [F(a1◦a2)−1 ]m · (f ◦ B−1
a1◦a2

) = Um
a1◦a2

f.

In what follows we will show that the restriction of linear application Um
a on

the Hilbert space Hm(D) is unitary with respect to the inner product defined
by (2.6) which implies that if f ∈ Hm then Um

a f ∈ Hm. To prove this we
will use the following result: if ϕ : D → D is an analytic bijection, then the
determinant of the corresponding Jacobi matrix is equal to |ϕ′(z)|2 and making
the change of variables w = ϕ(z) we get the following integral transformation
formula∫

D

F (w) dudv =
∫
D

F (ϕ(z))|ϕ′(z)|2 dxdy (w = u + iv, z = x + iy ∈ D).
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In the special case when ϕ = Ba, then

B′
a(z) = ε

1 − |b|2

(1 − bz)2
= [Fa(z)]2 (a = (b, ε) ∈ B).

We want to show that Um
a is unitary, namely

〈Um
a f, Um

a g〉m = 〈f, g〉m (f, g ∈ Hm(D)).

Indeed, making the change of variable w = Ba(z) in the integral on the left
hand side we obtain that

〈Um
a f, Um

a g〉m =

=
m − 1

π

∫
D

|Fa−1(w)|2mf(B−1
a (w))g(B−1

a (w))|1 − |w|2|m−2 dudv =

=
m − 1

π

∫
D

|Fa(z)|4|Fa−1(Ba(z))|2mf(z)g(z)|1 − |Ba(z)|2|m−2 dxdy.

From (2.1) it follows that

|1 − |Ba(z)|2| =
|1 − bz|2 − |z − b|2

|1 − bz|2
=

(1 − |b|2)(1 − |z|2)
|1 − bz|2

=

= |Fa(z)|2(1 − |z|2),

and using (4.1) we obtain that

〈Um
a f, Um

a g〉m =

=
m − 1

π

∫
D

|Fa(z)|2m|Fa−1(Ba(z))|2mf(z)g(z)(1 − |z|2)m−2 dxdy = 〈f, g〉m.

Proof of Theorem 4. The matrix elements by definition are equal by

vkn(a−1) := 〈hk, Um
a−1hn〉m =

= e−i(n+ m
2 )ψ(1 − |b|2)m

2
m − 1

π

∫
D

( (z − b)n

(1 − bz)n+m

)
zk(1 − |z|2)m−2 dxdy.

Let us denote by z = ρeit, b = reiϕ (t, ϕ ∈ I) and in the last integral replacing
t by t + ϕ we obtain that
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m − 1
π

∫
D

(
(z − b)n

(1 − bz)n+m

)
zk(1 − |z|2)m−2 dxdy =

=
m − 1

π

1∫
0

π∫
−π

(ρe−it − re−iϕ)n

(1 − rρe−i(t−ϕ))n+m
ρk+1eikt(1 − ρ2)m−2 dρdt =

= e−inϕ m − 1
π

1∫
0

π∫
−π

(ρe−i(t−ϕ) − r)n

(1 − rρe−i(t−ϕ))n+m
ρk+1eikt(1 − ρ2)m−2 dρdt =

= e−i(n−k)ϕ m − 1
π

1∫
0

π∫
−π

(ρe−it − r)n

(1 − ρre−it)n+m
ρk+1eikt(1 − ρ2)m−2 dρdt =

= e−i(n−k)ϕ m − 1
π

1∫
0

π∫
−π

(ρeit − r)n

(1 − ρreit)n+m
ρk+1e−ikt(1 − ρ2)m−2 dρ.

Let us denote by

αkn(r) :=
m − 1

π

1∫
0

π∫
−π

(ρeit − r)n

(1 − rρeit)n+m
ρk+1e−ikt(1 − ρ2)m−2 dρdt.

We will show that αkn(r) can be expressed using the Jacobi polynomials
in the following way:

αkn(r) := C(k, m, n)rn−k
[
(1 − u)nuk+m−1

](n+m−1)

u=r2 ,

where

C(k, m, n) =
2m−1(m − 1)!

(n + m − 1)!(2k + 2)(2k + 4)...(2k + 2m − 2)
.

Indeed, if we substitute e−it by ζ, on the base of Cauchy integral formula we
obtain that

αkn(r) :=

1∫
0

2ρk+1(1 − ρ2)m−2 m − 1
2πi

∫
T

(ρ − rζ)n

(ζ − rρ)n+m
ζm+k−1 dζdρ =
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=

1∫
0

2(m − 1)
(n + m − 1)!

ρ2k+n+m(1 − ρ2)m−2r−k−m+1×

×
[(

1 − r

ρ
z

)n (
r

ρ
z

)k+m−1
](n+m−1)

z=rρ

dρ.

Denoting by u = rz
ρ , from this it follows that

αkn(r) =
[
(1 − u)nuk+m−1

](n+m−1)

u=r2

(m − 1)rn−k

(n + m − 1)!

1∫
0

2ρ2k+1(1 − ρ2)m−2dρ.

Let us denote by

C(k, m, n) :=
2(m − 1)

(n + m − 1)!

1∫
0

ρ2k+1(1 − ρ2)m−2dρ.

Using partial integration m − 2 times we obtain that

C(k, m, n) =
2m−1(m − 1)!

(n + m − 1)!(2k + 2)(2k + 4)...(2k + 2m − 2)
.

To show i) let us use the following relation

vkn(a−1) = 〈hk, Ua−1hn〉 = 〈Ua−1hn, hk〉 = 〈hn, Uahk〉 = vnk(a) (m,n ∈ N).

Taking into account that a−1 = (bei(ϕ+π), e−iψ), then for a = (r, 1), namely
when ϕ = ψ = 0 we obtain that

(1 − r2)αkn(r) = vkn(a) = vnk(a−1) = (−1)k+n(1 − r2)αnk(r)

which implies that i) is true.

Proof of Theorem 5. It can be proved that this representation is
irreducible on the Hilbert space Hm(D). Let us consider the power functions
hn(z) := zn (z ∈ C, n ∈ N). First we take the images of these functions under
the representation

b → (Uahn)(z) := ε(n+ m
2 )ψ(1 − |b|2)m

2
(z − b)n

(1 − bz)n+m
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(a = (b, eiψ) ∈ B, b = b1 + ib2 ∈ D),

and we compute the partial derivatives with respect to the variables b1 and b2,
and we take the values of these partial derivatives in e = (0, 1) ∈ B. An easy
computation gives that

∂

∂b1
Uehn = −nhn−1 + (n + m)hn+1,

∂

∂b2
Uehn = −inhn−1 − i(n + m)hn+1.

From this we obtain that(
∂

∂b1
+ i

∂

∂b2

)
Uehn = 2(n + m)hn+1,

(
∂

∂b1
− i

∂

∂b2

)
Uehn = 2nhn−1.

From the definition of Ua follows that for the one parameter subgroup α(t) =
= (0, eit) (t ∈ R) of B

Uα(t)hn = ei(n+ m
2 )thn (n ∈ N, t ∈ R),

which means that the subspace wrapped by the function hn is an invariant
one dimensional subspace of the representation. It is known that any invariant
subspace of the representation can be written as the direct sum of this kind
of subspaces. From these it follows that the representation Ua (a ∈ B) is
irreducible. Indeed let H be at least one dimensional closed invariant subspace
of the representation. This is also invariant subspace of the representation Ua,
for a = (0, eit) (t ∈ R), consequently it contains one of the power functions hn.
On the base of the definition of invariant subspaces it is evident that

1
b1

(U(b1,1)hn − U(0,1)hn) ∈ H,
1
b2

(U(ib2,1)hn − U(0,1)hn) ∈ H (b1, b2 ∈ R).

From the closeness of the subspace it follows that the limit of this expression
when b1 → 0, b2 → 0 is also in H, namely(

∂

∂b1
+ i

∂

∂b2

)
Uehn = 2(n + m)hn+1 ∈ H,(

∂

∂b1
− i

∂

∂b2

)
Uehn = 2nhn−1 ∈ H.

From this evidently follows that hk ∈ H, if k ≥ n, and hk ∈ H, if k < n
and k ≥ 0. This implies that H = Hm(D), and the irreducibility of the
representation Ua (a ∈ B) is proved.
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Proof of Theorem 6. To prove the admissibility of ρn = zn we have to
show that ∫

B

|Vρn
ρn(a)|2dm(a) < ∞.

Using (3.8) we obtain that ∫
B

|Vρn
ρn(a)|2dm(a) =

=
1
2π

∫
I

∫
I

1∫
0

|(1 − r2)
m
2 e−i(n+ m

2 )ψe−i(n−n)ϕαnn(r)|2 r

(1 − r2)2
dψdϕdr =

= 2π

1∫
0

(1 − r2)m−2r|αnn(r)|2dr < ∞ for m ≥ 2.

Proof of Theorem 7. Using the definition of the voice transform and
the unitarity of the representation U we obtain the following estimation for the
absolute value of the voice transform

|(Vρρ)(a)| = |〈Ua−1ρ, ρ〉| ≤ (1 − |b|2)m
2 ‖ρ‖2

H∞(D)

m − 1
π

∫
D

(1 − |z|2)m−2dxdy

|1 − bz|m
.

The integral which appears in this estimation is a special case of the integral
operators which involve the power of the Bergman kernel, see [9] p. 7, where
it is showed that

Im−2,0(|b|) =
1
π

∫
D

(1 − |z|2)m−2dxdy

|1 − bz|m
∼ log

1
1 − |b|2 as |b| → 1−.

Using this we obtain that ∫
B

|(Vρρ)(a)|2dm(a) ≤

≤ (m − 1)2
1
2π

∫
I

∫
D

(1 − |b|2)m‖ρ‖4
H∞(D)|Im−2,0(|b|)|2

1
(1 − |b|2)2 db1db2dψ ≤



The voice transform generated by a representation 339

≤(m − 1)2‖ρ‖4
H∞(D)

∫
D

(1 − |b|2)m−2|Im−2,0(|b|)|2db1db2 =

=(m − 1)2‖ρ‖4
H∞(D)

∫
U(0,1−ε)

(1 − |b|2)m−2|Im−2,0(|b|)|2db1db2+

+ (m − 1)2‖ρ‖4
H∞(D)

∫
U(0,1−ε,1)

(1 − |b|2)m−2|Im−2,0(|b|)|2db1db2 ≤

≤(m − 1)2‖ρ‖4
H∞(D)

∫
U(0,1−ε)

(1 − |b|2)m−2|Im−2,0(|b|)|2db1db2+

+ C(m − 1)2‖ρ‖4
H∞(D)

∫
D

(1 − |b|2)m−2| log
1

1 − |b|2 |
2db1db2.

Let us denote by

J1 = (m − 1)2‖ρ‖4
H∞(D)

∫
U(0,1−ε)

(1 − |b|2)m−2|Im−2,0(|b|)|2db1db2,

and

J2 = C(m − 1)2‖ρ‖4
H∞(D)

∫
D

(1 − |b|2)m−2| log
1

1 − |b|2 |
2db1db2.

Using the inequality

1
|1 − bz|

≤ 2
1 − |b|2 (b, z ∈ D)

we obtain that J1 is finite. To prove that J2 is finite first we use twice the
partial integration, then the L’Hospital rule and we obtain that

∫
D

(1 − |b|2)m−2| log
1

1 − |b|2 |
2db1db2 = 2π

1∫
0

(1 − r2)m−2 log2(1 − r2)rdr =

= π

1∫
0

(1 − x)m−2 log2(1 − x)dx =
2

(m − 1)3
< ∞.
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Consequently ∫
B

|(Vρρ)(a)|2dm(a) ≤ J1 + J2 ≤ ∞,

which means that every element from H∞(D) is admissible.

Proof of Theorem 8. Let consider the following infinite series

∞∑
n=0

Γ(n + m)
n!Γ(m)

ϕa,n(y)ϕa,m(z).

Since

|ϕa,n(y)ϕa,n(z)| ≤ (1 − r2)m

(1 − r1r)m(1 − r2r)m

(
r + r1

1 + r1r

r + r2

1 + r2r

)n

(z = r1e
it, y = r2e

it ∈ D, a = (reiϕ, eiψ) ∈ B),

and
∣∣∣ r+r1
1+r1r

∣∣∣ < 1,
∣∣∣ r+r2
1+r2r

∣∣∣ < 1 we obtain that for a fixed z ∈ D and for a fixed

a = (reiϕ, eiψ) ∈ B the series converges absolutely and uniformly in y ∈ D.
This permits the interchange of summation and integration in the following
expression

∞∑
n=0

(Vϕn
f)(a−1)ϕa,n(z) =

=
∞∑

n=0

< f,Ua−1ϕn > ϕa,n(z) =

=
∫
D

f(y)
∞∑

n=0

Γ(n + m)
n!Γ(m)

ϕa,n(y)ϕa,m(z)dAm(y).

Using that
∞∑

n=0

Γ(n + m)
n!Γ(m)

ynzn =
1

(1 − yz)m
(z, y ∈ D),

we obtain that ∞∑
n=0

Γ(n + m)
n!Γ(m)

ϕa,n(y)ϕa,m(z) =

=
(1 − |b|2)m

(1 − by)m(1 − bz)m

∞∑
n=0

Γ(n + m)
n!Γ(m)

(
ε(y − b)
1 − by

)n (
ε(z − b)
1 − bz

)n

=
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=
(1 − |b|2)m

(1 − by)m(1 − bz)m

1(
1 −

(
y−b

1−by

)
z−b

1−bz

)m =

=
1

(1 − yz)m
= K(y, z).

Consequently

∞∑
n=0

(Vϕn
f)(a−1)ϕa,n(z) =

∫
D

f(y)
2

(1 − yz)m
dAm(y) = (Pmf)(z).

Theorem 3, Theorem 5 and Theorem 7 are valid also when we suppose
just that m ≥ 2.
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