
Annales Univ. Sci. Budapest., Sect. Comp. 33 (2010) 297-319

UNIFORM AND L–CONVERGENCE
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Abstract. The main aim of this paper is to investigate the convergence

and divergence properties of one- and two-dimensional Nörlund logarithmic

means of Walsh-Kaczmarz-Fourier series of functions in the uniform and in

the L Lebesgue norm. We give necessary and sufficient conditions for the

convergence regarding the modulus of continuity of the functions.

1. Introduction

The n-th Riesz’s logarithmic mean of a Fourier series is defined by

1
ln

n−1∑
k=1

Sk(f)
k

, ln :=
n−1∑
k=1

1
k

.

The Riesz’s logarithmic mean with respect to the trigonometric system was
studied by a lot of authors, e.g. Szász [20] and Yabuta [21], with respect to
Walsh, Vilenkin system by Simon [15] and Gát [4].
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Let {qk : k ≥ 0} be a sequence of nonnegative numbers. The n-th Nörlund
mean of an integrable function f is defined by

1
Qn

n−1∑
k=1

qn−kSk(f),

where Qn :=
n−1∑
k=1

qk. This Nörlund mean of Walsh-Fourier series was investi-

gated by Móricz and Siddiqi [13]. The case, when qk = 1
k is excluded, since the

method of Móricz and Siddiqi does not work in this case.
If qk := 1

k , then we get the Nörlund logarithmic means

tn(f) :=
1
ln

n−1∑
k=1

Sk(f)
n − k

,

where ln :=
n−1∑
k=1

1
k . From now, we write simply logarithmic means tn(f).

Recently, Gát and Goginava [5, 7, 8] proved some convergence and divergence
properties of these logarithmic means of functions in the class of continuous
functions, and in the Lebesgue space with respect to the Walsh-Paley system.
Moreover, they proved that the maximal norm convergence function space of
these logarithmic means is L log+ L.

The main aim of this article is to investigate the convergence and di-
vergence properties of one- and two-dimensional Nörlund logarithmic means
of Walsh-Kaczmarz-Fourier series of functions in the uniform, and in the L
Lebesgue norm. We give necessary and sufficient conditions for the convergence
regarding the modulus of continuity of the functions.

The a.e. convergence of a subsequence of logarithmic means of Walsh-
Fourier series of integrable functions was discussed by Gát and Goginava [9, 6].
More results on these logarithmic means with respect to unbounded Vilenkin
system can be found in the paper [2] written by Blahota and Gát.

2. Definitions and notations

Let I := [0, 1) denote the unit interval in R. The Rademacher functions
are defined by

rn(x) := r0(2nx), n ≥ 1 and x ∈ I, where r0(x) :=

⎧⎨⎩ 1 if x ∈ [0, 1/2),

−1 if x ∈ [1/2, 1),
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and r0(x + 1) := r0(x). Each natural number n can be uniquely expressed as

n =
∞∑

i=0

ni2i, ni ∈ {0, 1} (i ∈ N), where only a finite number of ni’s are different

from zero. Let the order of n ≥ 1 be denoted by |n| := max{j ∈ N : nj �= 0}.
That is, 2|n| ≤ n < 2|n|+1.

The Walsh-Paley functions are defined by

wn(x) :=
∞∏

k=0

(rk(x))nk .

The Walsh-Kaczmarz functions are defined by κ0 := 1 and for n ≥ 1

κn(x) := r|n|(x)
|n|−1∏
k=0

(r|n|−1−k(x))nk .

Set w := (wn : n ∈ N) and κ := (κn : n ∈ N). Each x ∈ I = [0, 1) can be

expressed as x =
∞∑

j=0

xj2−j−1, where xj ∈ {0, 1} (j ∈ N). This expression is

unique if x is not a dyadic rational. In other words, if x is not of the form j/2n,
where j, n are nonnegative integers. If x is a dyadic rational, then we choose
the expansion which terminates in zeros. In this way we have the unicity of
this expression for all x.

For A ∈ N define the transformation τA : I → I by

τA(x) :=
xA−1

21
+

xA−2

22
+ . . . +

x0

2A−1
+

∞∑
j=A

xj

2j+1
.

In other words, if the coordinates of x are x0, x1, . . . , xA−1, xA, . . ., then the
coordinates of τA(x) are xA−1, xA−2, . . . , x1, x0, xA, . . .. By the definition of τA

(see [17]), we have

κn(x) = r|n|(x)wn−2|n|(τ|n|(x)) (n ∈ N, x ∈ [0, 1)).

Suppose that f is a Lebesgue integrable function on I and 1-periodic. We define
the Fourier coefficients, the partial sums of the Fourier series, the Dirichlet
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kernels, the Fejér kernels and the Nörlund logarithmic kernels by

f̂α(k) :=

1∫
0

f(t)αk(t)dt, Sα
n (f) :=

n−1∑
k=0

f̂α(k)αk,

Dα
n :=

n−1∑
k=0

αk, Kα
n :=

1
n

n∑
k=0

Dα
k ,

Fα
n :=

1
ln

n−1∑
k=1

Dα
k

n − k
,

where α = w or κ. Recall that

(1) D2n(x) := Dw
2n(x) = Dκ

2n(x) =

⎧⎨⎩ 2n if x ∈ [0, 1/2n),

0 if x ∈ [1/2n, 1).

Set K = I or I2. Denote by L(K) the set of measurable functions f
defined on K for which

‖f‖L =
∫
K

|f | < ∞

and by C(K) the space of continuous functions on K, with the supremum norm

‖f‖C = sup
x∈K

|f(x)|.

Let f ∈ C(I). The expression

ω(δ, f)C := sup
|h|≤δ

‖f(. ⊕ h) − f(.)‖C

is called the modulus of continuity of f , and for f ∈ L(I)

ω(δ, f)L := sup
|h|≤δ

‖f(. ⊕ h) − f(.)‖L

is called the integral modulus of continuity, where ⊕ denotes the dyadic addition
(see [14]).
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On the unit square I2 = [0, 1) × [0, 1) we consider the two-dimensional
systems as {αn(x) × αm(y) : n,m ∈ N}. The two-dimensional Fourier coeffi-
cients, the rectangular partial sums of Fourier series and the Dirichlet kernels
are defined by

f̂α(i, j) :=

1∫
0

1∫
0

f(t, s)αi(t)αj(s)dtds,

Sα
k,l(f) :=

k−1∑
i=0

l−1∑
j=0

f̂α(i, j)αiαj and Dα
k,l :=

k−1∑
i=0

l−1∑
j=0

αiαj = Dα,1
k Dα,2

l ,

where α = w or κ. Let X = L(I2) or C(I2). The total modulus of continuity
in case X = C(I2), and the total integrated modulus of continuity in case
X = L(I2) are defined by

ω(δ, f)X := sup{‖f(. ⊕ u, . ⊕ v) − f(., .)‖X : u2 + v2 ≤ δ2}.

The partial modulus of continuity in case X = C(I2), and the partial integrated
modulus of continuity in case X = L(I2) are defined by

ω1(δ, f)X := sup{‖f(. ⊕ u, .) − f(., .)‖X : |u| ≤ δ},

ω2(δ, f)X := sup{‖f(., . ⊕ v) − f(., .)‖X : |v| ≤ δ}.

The mixed modulus of continuity in case X = C(I), and the mixed integrated
modulus of continuity in case X = L(I) are given by

ω1,2(δ1, δ2, f)X :=

:= sup{‖f(. ⊕ u, . ⊕ v) − f(. ⊕ u, .) − f(., . ⊕ v) + f(., .)‖X : |u| ≤ δ1, |v| ≤ δ2}.

3. On the one-dimensional Nörlund logarithmic means

During the proofs of Theorems and Lemmas c, C will denote constants
which may vary at different occurrences. In order to prove our main theorems
we need the following lemma of Gát and Goginava in the paper [5]:

Lemma 1. Let pA := 22A + · · · + 22 + 20, then ‖Fw
pA

‖L ≥ c log pA.

By the help of this lemma we prove the following
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Lemma 2. Let pA := 22A + · · ·+22 +20, then there exists an n0 ∈ N such
that

‖Fκ
pA

‖L ≥ c log pA

for A > n0.

Proof. During the proof of Lemma 2 we will use the following equation:

(2) Dκ
2A+j(x) = D2A(x) + rA(x)Dw

j (τA(x)), j = 0, 1, ..., 2A − 1.

Let |m| = A, then

lmFκ
m(x) =

2A∑
j=1

Dκ
j (x)

m − j
+

m−1∑
j=2A+1

Dκ
j (x)

m − j
=: I + II.

First, we discuss II by the help of the equation (2).

II =
m−2A−1∑

j=1

Dκ
2A+j(x)

m − 2A − j
= lm−2AD2A(x) + rA(x)

m−2A−1∑
j=1

Dw
j (τA(x))

m − 2A − j
=

= lm−2AD2A(x) + rA(x)lm−2AFw
m−2A(τA(x)).

Now, we investigate I. By the help of Abel’s transformation we could write

I =
2A∑
j=0

Dκ
j (x)

m − j
=

=
2A−1∑
j=0

(
1

m − j
− 1

m − j − 1

)
jKκ

j (x) +
2A

m − 2A
Kκ

2A(x).

Now, we choose m = pA (we note that |m| = 2A) and we write

‖Fκ
pA

‖L ≥
∥∥∥∥ lpA−1

lpA

r2AFw
pA−1

◦ τ2A

∥∥∥∥
L

−
∥∥∥∥ lpA−1

lpA

D22A

∥∥∥∥
L

−

−

∥∥∥∥∥∥ 1
lpA

22A−1∑
j=0

(
1

pA − j
− 1

pA − j − 1

)
jKκ

j

∥∥∥∥∥∥
L

−

−
∥∥∥∥ 1

lpA

22A

pA−1
Kκ

22A

∥∥∥∥
L

.
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By Lemma 1 we have∥∥∥∥ lpA−1

lpA

r2AFw
pA−1

◦ τ2A

∥∥∥∥
L

≥ c‖Fw
pA−1

‖L ≥ c log pA−1.

It is evident that ∥∥∥∥ lpA−1

lpA

D22A

∥∥∥∥
L

≤ c.

For the Walsh-Kaczmarz system it was proved [16] that

sup
n

‖Kκ
n‖1 < ∞.

This immediately gives that∥∥∥∥∥∥ 1
lpA

22A−1∑
j=0

(
1

pA − j
− 1

pA − j − 1

)
jKκ

j

∥∥∥∥∥∥
L

≤ c
1

lpA

22A−1∑
j=0

1
(pA − j)

≤ c

and ∥∥∥∥ 1
lpA

22A

pA−1
Kκ

22A

∥∥∥∥
L

≤ c.

Summarizing our results, we get

‖Fκ
pA

‖L ≥ c log pA−1 − c ≥ C log pA

for A big enough.
This completes the proof of this lemma.

It is well known that the following are true [17, 18]:

Theorem A. Let either X = C(I) or X = L(I). Let f ∈ X and

ω(δ, f)X = o

(
1

log(1/δ)

)
,

then ‖Sκ
n(f) − f‖X → 0 as n → ∞.

Since,

‖tκn(f) − f‖X ≤ 1
ln

n−1∑
k=1

‖Sκ
k (f) − f‖X

n − k

and the fact that the logarithmic summability method is regular from Theorem
A we conclude that the followings are true.
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Theorem 1. Let f ∈ C(I) and

ω(δ, f)C = o

(
1

log(1/δ)

)
,

then ‖tκn(f) − f‖C → 0 as n → ∞.

Theorem 2. Let f ∈ L(I) and

ω(δ, f)L = o

(
1

log(1/δ)

)
,

then ‖tκn(f) − f‖L → 0 as n → ∞.

In this paper we prove the sharpness of these results. Namely, we prove
the following theorems:

Theorem 3. There exists a function f ∈ C(I) such that

ω(δ, f)C = O

(
1

log(1/δ)

)
and tκn(f, 0) diverges.

Theorem 4. There exists a function g ∈ L(I) such that

ω(δ, g)L = O

(
1

log(1/δ)

)
and tκn(g) does not converge to g in L-norm.

To prove Theorem 3 we modify the counterexample function of Gát
and Goginava defined in [5] and show that this modified function is really
a counterexample function for the Walsh-Kaczmarz logarithmic means.

The construction: Choose a monotonically increasing sequence of positive
integers {nk : k ≥ 1} such that

(3) n2
k ≤ nk+1,

(4)
k−1∑
l=1

22nl

nl
<

22nk

nk
.
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Set

ψnk
(x) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
22nk+2x if 0 ≤ x < 2−2nk−2,

−22nk+2(x − 2−2nk−1) if 2−2nk−2 ≤ x < 2−2nk−1,

0 otherwise.

Define the functions ϕnk
periodically by

ϕnk
(x) :=

22nk+1−1∑
j=0

ψnk

(
x − j

22nk+1

)
, ϕnk

(x + 1) := ϕnk
(x).

The counterexample function f is defined by

f(x) :=
∞∑

k=1

fnk
(x)

nk
,

where fnk
(x) := ϕnk

(x) sgnFκ
pnk

(x) and pnk
is defined in Lemma 2. The

method of the article [5] immediately gives that

(5) ω(1/22nk , fni
)C = O

(
22ni

22nk

)
(i = 1, 2, ..., k − 1)

and

ω(δ, f)C = O

(
1

log(1/δ)

)
.

Proof of Theorem 3. The only fact we have to prove is that tκpnk
(f, 0)

diverges. To do this we follow the method of Gát and Goginava [5] and write
(6)

|tκpnk
(f, 0) − f(0)| = |tκpnk

(f, 0)| =

∣∣∣∣∣∣
1∫

0

f(t)Fκ
pnk

(t)dt

∣∣∣∣∣∣ ≥
≥ c

nk

∣∣∣∣∣∣
1∫

0

fnk
(t)Fκ

pnk
(t)dt

∣∣∣∣∣∣−
k−1∑
i=0

c

ni

∣∣∣∣∣∣
1∫

0

fni
(t)Fκ

pnk
(t)dt

∣∣∣∣∣∣−
−

∞∑
i=k+1

c

ni

∣∣∣∣∣∣
1∫

0

fni
(t)Fκ

pnk
(t)dt

∣∣∣∣∣∣ =: I − II − III.
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By Lemma 2 we write
(7)

I =
1
nk

1∫
0

ϕnk
(t)|Fκ

pnk
(t)|dt =

1
nk

22nk+1−1∑
j=0

(j+1)2−2nk−1∫
j2−2nk−1

ϕnk
(t)|Fκ

pnk
(t)|dt =

=
1
nk

22nk+1−1∑
j=0

∣∣∣Fκ
pnk

(
j2−2nk−1

)∣∣∣ (j+1)2−2nk−1∫
j2−2nk−1

ϕnk
(t)dt =

=
c

nk

22nk+1−1∑
j=0

∣∣∣Fκ
pnk

(
j2−2nk−1

)∣∣∣ (j+1)2−2nk−1∫
j2−2nk−1

1dt ≥

≥ c

nk
‖Fκ

pnk
‖L ≥ c > 0

for k big enough.
It is known that

‖Sκ
n(f) − f‖C ≤ cω

(
1
n

, f

)
C

log(n + 1)

and
ω(δ, f)C

δ
≤ 2

ω(δ′, f)C

δ′
for 0 < δ′ < δ.

Therefore, we have

‖tκn(f) − f‖C ≤ cω

(
1
n

, f

)
C

log(n + 1)

(for more details see [5]). This and (3), (4), (5) imply that

II ≤ c
k−1∑
i=0

1
ni

ω

(
1

22nk
, fni

)
C

log(pnk
+ 1) = O

(
nk

22nk

k−1∑
i=0

22ni

ni

)
=

= O

(
nk

22nk

22nk−1

nk−1

)
= o(1)

as k → ∞.
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Since, ‖Dκ
n‖L ≤ c log n, we immediately get that ‖Fκ

n ‖L = O(log n). This
and (3) yield

III = O

( ∞∑
i=k+1

‖Fκ
pnk

‖L

ni

)
= O

(
nk

nk+1

)
= o(1) as k → ∞.

Summarizing our results, we conclude that

lim
k→∞

|tκpnk
(f, 0) − f(0)| > 0.

That is, the proof is complete.

Now, we prove Theorem 4 and show that the counterexample function g
given in the article [5] is really a counterexample function for the logarithmic
means of Walsh-Kaczmarz-Fourier series, too.

First, we give the construction. Choose a monotonically increasing se-
quence of positive integers {mk : k ≥ 1} such that

(8) 2mk−1 ≤ mk,

(9)
k−1∑
l=1

22ml

ml
<

22mk

mk
.

Set

g(x) :=
∞∑

j=1

gj(x), where gj(x) :=
D22mj+1(x)

mj
.

In the article [5] it is proved that

(10) ω(δ, g)L = O

(
1

log(1/δ)

)
and

(11) ω(δ, gl)L = O(22mlδ/ml) for l = 1, 2, ..., k − 1, δ > 0.

Proof of Theorem 4. During the proof of this theorem we will follow
the method of Gát and Goginava in the article [5]. Simple calculation gives

‖tκpmk
(g) − g‖L ≥
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(12)
≥
∥∥∥∥∥tκpmk

( ∞∑
i=k

gi

)∥∥∥∥∥
L

−
∞∑

i=k

‖gi‖L −
∥∥∥∥∥tκpmk

(
k−1∑
i=1

gi

)
−

k−1∑
i=1

gi

∥∥∥∥∥
L

=:

=: I − II − III.

We have the following

tκpmk
(gi) =

1
mi

S22mi+1(Fκ
pmk

) =
Fκ

pmk

mi
(i = k, k + 1, . . .).

By (8) and Lemma 2 we get

I =

∥∥∥∥∥
∞∑

i=k

1
mi

S2mi+1(Fκ
pmk

)

∥∥∥∥∥
L

=
∞∑

i=k

‖Fκ
pmk

‖L

mi
≥ c

‖Fκ
pmk

‖L

mk
≥ c > 0

for k big enough and

II ≤
∞∑

i=k

1
mi

≤ c

mk
= o(1) as k → ∞.

The estimation

‖tκn(g) − g‖L ≤ cω

(
1
n

, g

)
L

log(n + 1)

goes analogously to the estimation ‖tκn(g)−g‖C (for more details see [5]). This,
(8), (9) and (11) yield

III ≤
k−1∑
i=1

‖tκpmk
(gi) − gi‖L = O

(
k−1∑
i=1

ω

(
1

22mk
, gi

)
L

mk

)
=

= O

(
mk

22mk

k−1∑
i=1

22mi

mi

)
= O

(
mk

22mk

22mk−1

mk−1

)
= o(1) as k → ∞.

Summarizing our results, we conclude that

lim
k→∞

‖tκpmk
(g) − g‖L > 0.

This completes the proof of this theorem.
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4. On the logarithmic means of cubical partial sums

We define the logarithmic means and kernels (of Marcinkiewicz type) of
cubical partial sums by

Tα
n (f) :=

1
ln

n−1∑
k=1

Sα
k,k(f)
n − k

, Fα
n :=

1
ln

n−1∑
k=1

Dα
k,k

n − k
.

We define the Marcinkiewicz kernels Kn by

Kn :=
1
n

n∑
k=0

Dα
k,k,

where α = w or κ. For the Walsh system this logarithmic mean was investigated
by Gát and Goginava in the article [8]. Now, we would like to discuss the
behavior of this logarithmic mean of quadratical partial sums with respect to
the double Walsh-Kaczmarz system. We show that the behavior of Tκ

n is very
close to the behavior of Tw

n in our special sense.
The following Lemma proved by Goginava [10] will play an important role

in the proof of our main theorems.

Lemma 3. If f ∈ X, then

‖Sκ
m,n(f) − f‖X ≤

≤ c

{
ω1

(
1
m

, f

)
X

log m + ω2

(
1
n

, f

)
X

log n + ω1,2

(
1
m

,
1
n

, f

)
X

log m log n

}
,

where X = C(I2) or L(I2).

It is evident that the condition

ω(δ, f)X ≤ o

((
1

log(1/δ)

)2
)

provides the convergence of ‖Sκ
n,n(f)−f‖X → 0 (as n → ∞) for f ∈ X := C(I2)

or L(I2).

‖Tκ
n (f) − f‖X ≤ 1

ln

n−1∑
k=1

‖Sκ
k,k(f) − f‖X

n − k
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and the fact that the logarithmic summability method is regular, then by
Lemma 3 we conclude that the following is true.

Theorem 5. Let either X := C(I2) or X := L(I2). Let f ∈ X and

ω(δ, f)X = o

((
1

log(1/δ)

)2
)

.

Then ‖Tκ
n (f) − f‖X → 0 as n → ∞.

In this section we investigate the sharpness of this result. Namely, we
prove the following theorems:

Theorem 6. There exists a function f ∈ C(I2) such that

ω(δ, f)C = O

((
1

log(1/δ)

)2
)

and Tκ
n (f, 0, 0) diverges.

Theorem 7. There exists a function g ∈ L(I2) such that

ω(δ, g)L = O

((
1

log(1/δ)

)2
)

and Tκ
n (g) does not converge to g in L-norm.

To prove our theorems we need the following lemma [8]:

Lemma 4. Let pA := 22A + · · · + 22 + 20, then

‖Fw
pA

‖L ≥ c log2 pA

for every positive integer A.

By the help of this lemma we prove the following lemma for Walsh-
Kaczmarz system.

Lemma 5. Let pA := 22A + · · ·+22 +20, then there exists an n0 ∈ N such
that

‖Fκ
pA

‖L ≥ c log2 pA

for A > n0.

Proof. Let m = pA.

lmFκ
m(x1, x2) =

22A∑
j=1

Dκ
j (x1)Dκ

j (x2)
m − j

+
m−1∑

j=22A+1

Dκ
j (x1)Dκ

j (x2)
m − j

=: I + II.
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We will use the notation Dκ,i
j (x1, x2) := Dκ

j (xi), ri
A(x1, x2) := rA(xi) and

Fκ,i
n (x1, x2) := Fκ

n (xi) for i = 1, 2.
To discuss II, we use the equation (2), which immediately yields

II =
m−22A−1∑

j=1

Dκ,1
22A+j

Dκ,2
22A+j

m − 22A − j
=

=
pA−1−1∑

j=1

D1
22AD2

22A

pA−1 − j
+ r2

2AD1
22A

pA−1−1∑
j=1

Dw,2
j ◦ τ2A

pA−1 − j
+

+ r1
2AD2

22A

pA−1−1∑
j=1

Dw,1
j ◦ τ2A

pA−1 − j
+ r1

2Ar2
2A

pA−1−1∑
j=1

Dw
j,j ◦ (τ2A × τ2A)

pA−1 − j
=

= lpA−1D
1
22AD2

22A + r2
2AD1

22A lpA−1F
w,2
pA−1

◦ τ2A + r1
2AD2

22A lpA−1F
w,1
pA−1

◦ τ2A+

+ r1
2Ar2

2AlpA−1Fw
pA−1

◦ (τ2A × τ2A) =: II1 + II2 + II3 + II4.

By the equation

‖Fw,1
pA−1

◦ τ2A‖L = ‖Fw,1
pA−1

‖L ≤ 1
lpA−1

pA−1−1∑
j=1

‖Dw
j ‖L

pA−1 − j
≤ c log pA−1,

we have that∥∥∥∥ 1
lpA

II2

∥∥∥∥
L

≤ c log pA−1 and
∥∥∥∥ 1

lpA

II3

∥∥∥∥
L

≤ c log pA−1.

The equation (1) implies that ∥∥∥∥ 1
lpA

II1

∥∥∥∥
L

≤ c.

Now, we discuss I. Abel’s transformation gives that

I =
22A−1∑

j=1

(
1

pA − j
− 1

pA − j − 1

)
jKκ

j +
22A

pA−1
Kκ

22A =: I1 + I2.

For the Walsh-Kaczmarz-Marcinkiewicz kernels [11] holds that

sup
n

‖Kκ
n‖L < ∞.
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This implies that

∥∥∥∥ 1
lpA

I1

∥∥∥∥
L

≤ 1
lpA

22A−1∑
j=1

j‖Kκ
j ‖L

(pA − j)(pA − j − 1)
≤ c

lpA

22A−1∑
j=1

1
pA − j

≤ c,

∥∥∥∥ 1
lpA

I2

∥∥∥∥
L

=
1

lpA

22A

pA−1
‖Kκ

22A‖L ≤ c.

By Lemma 4 we get that∥∥∥∥ 1
lpA

II4

∥∥∥∥
L

≥ c‖Fw
pA−22A ◦ (τ2A × τ2A)‖L ≥ c‖Fw

pA−1
‖L ≥ c log2 pA−1.

That is,

‖Fκ
pA

‖L ≥
∥∥∥∥ 1

lpA

II4

∥∥∥∥
L

− c log pA−1 − c ≥ C log2 pA.

for A large enough.
To prove Theorem 6, we modify the function of Gát and Goginava given

in the paper [8].
First, we construct the modified function f ∈ C(I2). We choose a

monotonically increasing sequence of positive integers {nk : k ≥ 1} such that
the conditions (3) (that is, n2

k ≤ nk+1) and

(13)
k−1∑
l=1

22nl

n2
l

≤ 22nk

n2
k

are satisfied.
Set

fnk
(x, y) := ϕnk

(x)ϕnk
(y)sgnFκ

pnk
(x, y),

where pnk
is defined in Lemma 5 and ϕnk

is defined in the proof of Theorem
4. Set

f(x, y) :=
∞∑

k=1

fnk
(x, y)
n2

k

.

By the method of article [8] it is easy to see that

ω(δ, f)C ≤ O

((
1

log(1/δ)

)2
)
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and

(14) ω1

(
1

22nk
, fni

)
C

= ω2

(
1

22nk
, fni

)
C

= O

(
22ni

22nk

)
, i = 1, 2, ..., k − 1.

Proof of Theorem 6. The only fact we have to prove is that this function
f is a counterexample function for Walsh-Kaczmarz system. To do this we show
that Tκ

pnk
(f, 0, 0) diverges. Now, we write the expression |Tκ

pnk
(f, 0, 0)−f(0, 0)|

into the analogous form of the inequality (6).
By Lemma 5 we get

I =
c

n2
k

1∫
0

1∫
0

ϕnk
(t)ϕnk

(s)|Fκ
pnk

(t, s)|dtds ≥ c

n2
k

‖Fκ
pnk

‖L ≥ c > 0

for k big enough (for more details see the one-dimensional case, the inequality
(7)).

By Lemma 3 of Goginava and the method of the paper [8] we have that

‖Tκ
n (f) − f‖C ≤

≤ c log2 n

{
ω1

(
1
n

, f

)
C

+ ω2

(
1
n

, f

)
C

+

√
ω1

(
1
n

, f

)
C

ω2

(
1
n

, f

)
C

}
.

This and (14) give that

|Tκ
pnk

(fni
, 0, 0)| ≤ ‖Tκ

pnk
(fni

) − fni
‖C ≤ c

n2
k22ni

22nk
i = 1, 2, ..., k − 1.

This implies that

II = O

(
n2

k

22nk

k−1∑
i=1

22ni

n2
i

)
= O

(
n2

k

22nk

22nk−1

n2
k−1

)
= o(1) as k → ∞.

Since

‖Fκ
n‖L = O

(
1
ln

n−1∑
l=1

‖Dκ
l ‖2

L

n − l

)
= O(log2 n)

and (3) hold, we write

III = O

( ∞∑
i=k+1

‖Fκ
pnk

‖L

n2
i

)
= O

(
n2

k

n2
k+1

)
= o(1) as k → ∞.
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This completes the proof of this theorem.

Now, we use the function g ∈ L(I2) constructed by Gát and Goginava [8].
We choose a monotonically increasing sequence of positive integers {mk :

k ≥ 1} such that the condition (8) (that is, 2mk−1 ≤ mk) and

(15)
k−1∑
l=1

22ml

m2
l

<
22mk

m2
k

are satisfied. Set

g(x, y) :=
∞∑

j=1

gj(x, y), where gj(x, y) :=
D22mj+1(x)D22mj+1(y)

m2
j

.

In the article [8] it is proved that

ω(δ, g)L = O

((
1

log(1/δ)

)2
)

.

Thus, the only thing we have to prove is that the function g is really a
counterexample function for the Walsh-Kaczmarz system, too.

Proof of Theorem 7. To prove this theorem we use the analogue of the
inequality (12). First, we investigate I. We have that

Tκ
pmk

(gj) =
1

m2
j

S22mj+1,22mj+1(Fκ
pmk

) =
Fκ

pmk

m2
j

for j ≥ k.

Lemma 5 and condition (8) yield

I =

∥∥∥∥∥∥
∞∑

j=k

1
m2

j

S22mj+1,22mj+1(Fκ
pmk

)

∥∥∥∥∥∥
L

=
∞∑

j=k

‖Fκ
pmk

‖L

m2
j

≥ c

m2
k

‖Fκ
pmk

‖L ≥ c > 0

for k big enough.
Second, we discuss II. Using (8) we write

II ≤
∞∑

j=k

1
m2

j

= O

(
1

m2
k

)
= o(1) as k → ∞.
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At last, we discuss III. From (11) it is easy to get that

ω1(δ, gl)L = ω2(δ, gl)L = O(22mlδ/m2
l ) for l = 1, 2, ..., k − 1, δ > 0.

By Lemma 3 and

ω1,2

(
1
i
,
1
i
, gl

)
L

≤ 2ω1

(
1
i
, gl

)
L

we write that

‖Sκ
i,i(gl) − gl‖L ≤ O

(
22ml log2 i

im2
l

)
and

‖Tpmk
(gl) − gl‖L ≤ c

mk

pmk
−1∑

i=1

‖Sκ
i,i(gl) − gl‖L

pmk
− i

=

= O

⎛⎝22ml log2 pmk

mkm2
l

pmk
−1∑

i=1

1
i(pmk

− i)

⎞⎠ =

= O

(
22ml log2 pmk

22mkm2
l

)
.

This and (15) immediately give that

III ≤
k−1∑
l=1

‖Tκ
pmk

(gl) − gl‖L = O

(
log2 pmk

22mk

k−1∑
l=1

22ml

m2
l

)
=

= O

(
m2

k

22mk

22mk−1

m2
k−1

)
= o(1) as k → ∞.

Summarizing our results on I, II, III we conclude that

lim
k→∞

‖Tκ
pmk

(g) − g‖L > 0.

This completes the proof of this theorem.



316 K. Nagy

5. On the two-dimensoional Nörlund logarithmic means

We define the two-dimensional logarithmic means and kernels of rectan-
gular partial sums by

tα
n,m(f) :=

1
lnlm

n−1∑
k=1

m−1∑
l=1

Sα
k,l(f)

(n − k)(n − l)
,

Fα
n,m :=

1
lnlm

n−1∑
k=1

m−1∑
l=1

Dα
k,l

(n − k)(n − l)
= Fα,1

n Fα,2
m

(α = w or κ). For the Walsh system this mean was discussed by Gát and
Goginava in the article [7]. Now, we investigate the behavior of two-dimensional
logarithmic means of rectangular partial sums with respect to the double
Walsh-Kaczmarz system.

The two-dimensional logarithmic method can be given by the help of
a positive rectangular matrix which satisfies regularity conditions (for more
details see [7]).

Moreover,

‖tκ
n,m(f) − f‖X ≤ 1

lnlm

n−1∑
k=1

m−1∑
l=1

‖Sκ
k,l(f) − f‖X

(n − k)(n − l)
,

where X = C(I2) or L(I2). These and Lemma 3 immediately give the following

Theorem 8. Let either X := C(I2) or X := L(I2). Let f ∈ X and

ω(δ, f)X = o

((
1

log(1/δ)

)2
)

,

then ‖tκ
n,m(f) − f‖X → 0 as n, m → ∞.

In this section we investigate the sharpness of this result. Namely, we state
the following theorems:

Theorem 9. There exists a function f ∈ C(I2) such that

ω(δ, f)C = O

((
1

log(1/δ)

)2
)
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and tκ
n,n(f, 0, 0) diverges.

To prove Theorem 9 we use Lemma 2 and modify the counterexample
function given in the article [7]. This is a mixed function of the functions in
the previous sections.

We choose a monotonically increasing sequence of positive integers {nk :
k ≥ 1} such that the conditions (3) and (13) are satisfied. Set

f(x, y) :=
∞∑

k=1

fnk
(x)fnk

(y)
n2

k

,

where fnk
is defined in Theorem 3.

This function satisfies the conditions of our theorem. The proof of that
fact, that f is a counterexample function for Walsh-Kaczmarz system, goes
analogously to the proofs of Theorems 3 and 6 (for more details see [7]).
Therefore, it is left to the reader.

Theorem 10. There exists a function g ∈ L(I2) such that

ω(δ, g)L = O

((
1

log(1/δ)

)2
)

and tκ
n,n(g) does not converge to g in L-norm.

The function g constructed in the proof of Theorem 7 with a monotonically
increasing sequence of positive integers {mk : k ≥ 1} which satisfies the
conditions (8) and (15) will be good. The proof goes analogously to the proofs
of Theorems 4 and 7 (for more details see the article [7]). Therefore, it is left to
the reader. At last, we note that the proof of this theorem is based on Lemma
2.
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