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ON SUM OF SQUARES DECOMPOSITION
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and to Professor Péter Simon on his 60th birthday

Abstract. We investigate a nonnegative biquadratic form generated

by some structured matrices and prove that it is a sum of squares of

polynomials (SOS). On the other hand, if the underlying matrices have

additional nonzero entries, the form at issue is - although still nonnegative

- no more SOS.

1. Introduction

The Böttcher-Wenzel inequality (see [2], [5], [9])

||XY − Y X||2 ≤ 2 ||X||2||Y ||2

gives in its original form an upper bound for the commutator of two real square
matrices X,Y of the same size in the Frobenius norm. This raises the question:
is the difference 2||X||2||Y ||2 −||XY −Y X||2 - as a quartic polynomial - a sum
of squares of some quadratics?

We will be concerned, however, with the nonnegativeness of

(1) 2 ||X||2||Y ||2 − 2 trace2(XT Y ) − ||XY − Y X||2,

a strengthened version of the above theorem (see [2], Theorem 3.1). The reason
is that subtracting the trace-term guarantees that (1) only depends on the
differences xi,j yk,l − yi,j xk,l – a useful property. It turns out that the answer
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for the question is ’yes’ for some matrices of simple structure, and ’no’ for
matrices with a little more difficult structure.

Introduce now the relevant matrix classes. A real square matrix of order n
will be called RC, if nonzero elements occur only in row 1 and column n, while
it is called RCD, if nonzero elements occur in row 1, column n, and the main
diagonal.

For instance, these patterns are in case of fourth order matrices:

RC :

⎛⎜⎝
∗ ∗ ∗ ∗
0 0 0 ∗
0 0 0 ∗
0 0 0 ∗

⎞⎟⎠ RCD :

⎛⎜⎝
∗ ∗ ∗ ∗
0 ∗ 0 ∗
0 0 ∗ ∗
0 0 0 ∗

⎞⎟⎠ ,

where ∗ stands for an arbitrary (real) number.
Our main result is that the nonnegative form (1) is a sum of squares

of polynomials (in short: SOS) for RC matrices X,Y, whereas it is not SOS
for general RCD matrices. First, however, we illustrate these notions by the
celebrated Motzkin polynomial, see Reznick’s survey [8] for further details and
references.

Example. Denote by

M(x, y, z) = x4y2 + x2y4 + z6 − 3x2y2z2

Motzkin’s (first) polynomial. M is nonnegative for all real x, y, z by the A-G
inequality applied for {x4y2, x2y4, z6}. The most important property of this
ternary sextic is that it is not a SOS. Nevertheless, M is a sum of squares
of some rational functions, for this holds for any nonnegative polynomial by
Artin’s answer to Hilbert’s 17-th problem. Here are two known representations:

(x2 + y2)2M(x, y, z) = (x2 − y2)2z6 + x2y2(x2 + y2 + z2)(x2 + y2 − 2z2)2,

and
(x2 + y2 + z2)M(x, y, z) = (x2yz − yz3)2 + (xy2z − xz3)2+

+ (x2y2 − z4)2 +
1
4
(xy3 − x3y)2 +

3
4
(xy3 + x3y − 2z2)2.

Substitute y = 1 into Motzkin’s form to get the dehomogenized polynomial

M(x, 1, z) = x4 + x2 + z6 − 3x2z2.

Parrilo [7] computed the minimum constant c, for which M(x, 1, z) + c is SOS,
and found that

M(x, 1, z) +
729
4096

=
(

z3 − 9
8
z

)2

+
(

x2 − 3
2
z2 +

27
64

)2

+
5
32

x2
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– a strange identity, knowing that M(x, 1, z) ≥ 0 for all real x, z and
M(1, 1, 1) = 0.

As for the dehomogenization in z, M(x, y, 1) + c is not SOS for any real c
- another interesting property.

Note finally, that M is the special case for n = 3 of the more general form(
n−1∑
i=1

x2
i − nx2

n

)
n−1∏
i=1

x2
i + x2n

n ,

which is nonnegative and non-SOS, as well.

2. SOS decomposition for RC matrices

Let X,Y be real n-th order RC matrices with m = 2n−1 possible nonzero
elements:

X =

⎛⎜⎜⎝
x1 . . . xn−1 xn

0 . . . 0 xn+1

...
. . .

...
0 . . . 0 xm

⎞⎟⎟⎠ , Y =

⎛⎜⎜⎝
y1 . . . yn−1 yn

0 . . . 0 yn+1

...
. . .

...
0 . . . 0 ym

⎞⎟⎟⎠ ,

and define an m−th order matrix Z by help of the vectors x = (xi)m
1 and

y = (yi)m
1 as

(2) Z = xyT − yxT = (zi,j)m
i,j=1, zi,j = xiyj − yixj .

Observe that using one subscript for the entries of X, Y considerably simplifies
the presentation of the following theorem.

Theorem 1.

(3)

||Z||2 −
( n∑

i=1

zi,i+n−1

)2

−
n−1∑
i=2

z2
1,i −

m−1∑
i=n+1

z2
i,m =

=
n−1∑
i=1

m∑
j=n+1

z2
i,j +

n−2∑
i=2

n−1∑
j=i+1

z2
i,j +

2n−3∑
i=n+1

2n−2∑
j=i+1

z2
i,j+

+
n−1∑
i=1

n∑
j=i+1

(
zi,j − zi+n−1,j+n−1

)2 +
n−1∑
i=1

n∑
j=i+1

(
zi,j+n−1 − zj,i+n−1

)2
.
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Proof. There are
(

m
4

)
immediately checked basic relations

(4) zi,jzk,l + zi,lzj,k − zi,kzj,l = 0, 1 ≤ i < j < k < l ≤ m.

Applying these with k = i + n − 1, l = j + n − 1 for the first subtrahend(
n∑

i=1

zi,i+n−1

)2

yields the double products involved in the last line.

It remains to prove the equality of the (pure) squares. To this, introduce
the notations

S0 =
n∑

i=1

z2
i,i+n−1, S1 =

n−1∑
i=2

z2
1,i, S2 =

m−1∑
i=n+1

z2
i,m,

S3 =
n−1∑
i=1

m∑
j=n+1

z2
i,j =

m∑
i=n+1

n−1∑
j=1

z2
i,j , S4 =

n−2∑
i=2

n−1∑
j=i+1

z2
i,j ,

S5 =
2n−3∑

i=n+1

2n−2∑
j=i+1

z2
i,j , S6 =

n−1∑
i=1

n∑
j=i+1

z2
i,j =

n∑
i=2

i−1∑
j=1

z2
i,j ,

S7 =
n−1∑
i=1

n∑
j=i+1

z2
i+n−1,j+n−1 =

m∑
i=n+1

i−1∑
j=n

z2
i,j ,

S8 =
n−1∑
i=1

n∑
j=i+1

z2
i,j+n−1 =

n−1∑
i=1

m∑
j=i+n

z2
i,j ,

S9 =
n−1∑
i=1

n∑
j=i+1

z2
j,i+n−1 =

n∑
i=2

n+i−2∑
j=n

z2
i,j .

The equivalent formulae for S3 and S6 to S9 (as consequences of the identity
z2

i,j = z2
j,i) enable us to put each term in a distinct position, illustrated e.g. for

n = 5, m = 2n − 1 = 9 by the tableau⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1 1 1 0 8 8 8 8
6 − 4 4 9 0 8 8 8
6 6 − 4 9 9 0 8 8
6 6 6 − 9 9 9 0 8
6 6 6 6 − 9 9 9 0
3 3 3 3 7 − 5 5 2
3 3 3 3 7 7 − 5 2
3 3 3 3 7 7 7 − 2
3 3 3 3 7 7 7 7 −

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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where an integer k in the position (i, j) shows that z2
i,j is contained in Sk, while

the ’−’ characters on the main diagonal stand for the zeros (due to zi,i = 0).
This auxiliary matrix helps us to see that

||Z||2 =
9∑

i=0

Si.

Since (3) is quadratic in the zi,j-s, and both the squares and the double products
of the equality coincide, the theorem is true.

Corollary. This yields the SOS representation required. Indeed, (1) and
(2) are identical. In particular,

(5) ||Z||2 = 2 ||X||2||Y ||2 − 2 trace2(XT Y ),

and (
n∑

i=1

zi,i+n−1

)2

+
n−1∑
i=2

z2
1,i +

m∑
i=n+1

z2
i,m = ||XY − Y X||2,

where the first is Lagrange’s identity, the second is straightforward.

3. SOS decomposition impossible for RCD matrices

It suffices to prove this for third order matrices. (For matrices of order
n > 3 choose an index i, 1 < i < n, and annihilate the rows and columns with
indices, different from {1, i, n}.) To be compatible with our former notation,
we write

X =

⎛⎝x1 x2 x3

0 x6 x4

0 0 x5

⎞⎠ , Y =

⎛⎝ y1 y2 y3

0 y6 y4

0 0 y5

⎞⎠ .

It turns out that the presence of x6 and y6 causes the impossibility of an SOS
representation for (1). Since

XY − Y X =

⎛⎝ 0 z1,2 + z2,6 z1,3 + z2,4 + z3,5

0 0 z4,5 − z4,6

0 0 0

⎞⎠ ,
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the nonnegative form (1) to be discussed assumes

(6) 2
∑

1≤i<j≤6

z2
i,j − (z1,2 + z2,6)2 − (z4,5 − z4,6)2 − (z1,3 + z2,4 + z3,5)2.

First we briefly recall the Gram matrix method [4] widely used in the
literature. Let g ∈ R[u1, . . . uk] be a nonnegative form (form stands for
homogeneous polynomial) of degree 2d, and let z = (zi)K

1 be the appropriately
ordered vector of all monomials of the half degree d. If there exists a positive
semidefinite matrix G0 of order K such that g = zT G0z, then g is SOS.

However, to get a condition, not only sufficient but also necessary for g
to be SOS, in case of d > 1 we have to collect all possible quadratic relations
holding for the zi-s (like e.g. z1z2 − z2

3 = 0 for z1 = u2
1, z2 = u2

2, z3 = u1u2, d =
= 2). These relations can be written as zT Giz = 0 (i = 1, . . . , L), where Gi

are symmetric matrices of the same size K. Then, g is SOS if and only if there

exist real numbers (αi)L
1 such that G0 +

L∑
i=1

αiGi is positive semidefinite.

For further reading see the Lecture Notes by Parrilo [6].
We make use of this method via formulating the following condition,

sufficient for not being SOS. The above notations will be used.

Lemma 1. Let g = zT G0z be a real nonnegative form with spectral
decomposition G0 = V ΛV T , V orthogonal, Λ diagonal. Assume that r > 0
eigenvalues of G0 (the first r diagonal entries of Λ) are negative and denote by
W the K × r matrix of the associated eigenvectors (the first r columns of V ).
Let (Gi)L

1 be a full set of the matrices of quadratic relations.
If there exists a diagonal positive definite matrix D = D2

0 of order r such
that for the reduced matrices Ri = WT GiW it holds that

trace(RiD) = 0, 1 ≤ i ≤ L,

then g is not SOS.

Proof. Since g = zT G0z, and zT Giz = 0, 1 ≤ i ≤ L, all possible
representations for g are given by g = zT Gz, where

G = G0 +
L∑

i=1

αiGi.

Pre-multiplying with WT and post-multiplying with W gives an equation for
the reduced matrices:

R = R0 +
L∑

i=1

αiRi.
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Here R0 is an r-th order diagonal matrix with negative eigenvalues. Assume
by contradiction that, there exists a sequence of αi’s such that G is positive
semidefinite. Then, for these weights, the reduced matrix R = WT GW is

positive semidefinite, and the matrix
L∑

i=1

αiRi = R + (−R0) – as the sum of a

positive semidefinite and a positive definite matrix – is positive definite as well,
and so is the matrix

DT
0

(
L∑

i=1

αiRi

)
D0 =

L∑
i=1

αiD
T
0 RiD0.

On the other hand, its trace equals to

L∑
i=1

αi trace(DT
0 RiD0) =

L∑
i=1

αi trace(RiD) = 0,

which contradicts the positive definiteness.

Remark 1. A quite similar sufficient condition for not being SOS is
described in [7], however with the dual problem involved.

The idea of Lemma 1 is closely related to that of [3], however, we need here
only a suitable sufficient condition for a nonnegative form to be not a SOS,
while G. Chesi sets a full characterization of the problem. Further he writes:
”The results proposed in this paper represent a first step in the characterization
of the existing gap between positive polynomials and SOS of polynomials, about
which only few isolated examples were known until now.”

Our second theorem gives another example: the RCD matrices.

Theorem 2. The biquadratic form (6), although nonnegative for any real
(xi)61, (yi)61, is not a sum of squares of any quadratics!

Proof. It can easily be shown that if (6) is SOS, then it is a sum of
squares depending only on the zi,j-s. The number of the zi,j-s with i < j is
now

(
6
2

)
= 15. The vector

z = [z1,2, z2,3, z3,4, z4,5, z5,6, z1,3, z2,4, z3,5, z4,6, z1,4, z2,5, z3,6, z1,5, z2,6, z1,6]T

of these differences uniquely determines the initial matrix Gin by the equality
zT Ginz = f(x, y). (For the matrix Gin see Remark 2.)

In view of
(

6
2

)
=
(

6
4

)
, the size K of the matrices coincides with the number

L of the basic relations zT Giz = 0. (There are no more relations for the zi,j ’s
than (4), as can easily be shown.) These matrices have 6 nonzero elements.
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We display the following important ones by giving only their nonzero upper
diagonal elements:

G1234(1, 3) = 1, G1234(2, 10) = 1, G1234(6, 7) = −1,

G2345(2, 4) = 1, G2345(3, 11) = 1, G2345(7, 8) = −1,

G2346(2, 9) = 1, G2346(3, 14) = 1, G2346(7, 12) = −1.

Here Gijkl stands for the 15-th order symmetric matrix, for which

zT Gijkl z = zi,jzk,l + zi,lzj,k − zi,kzj,l (1 ≤ i < j < k < l ≤ 6).

Note that the matrix Gin cannot play the role of the basic matrix G0 in
Lemma 1 (see also Remark 2 below), hence we try choosing

G0 = Gin + p(G1234 + G2345),

where p �= 0 is a real parameter to be determined later. With q = p − 1 the
matrix Gin has the form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 −p 0 0 0 0 0 0 0 0 0 0 −1 0
0 2 0 −p 0 0 0 0 0 −p 0 0 0 0 0
−p 0 2 0 0 0 0 0 0 0 −p 0 0 0 0
0 −p 0 1 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 q −1 0 0 0 0 0 0 0
0 0 0 0 0 q 1 q 0 0 0 0 0 0 0
0 0 0 0 0 −1 q 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
0 −p 0 0 0 0 0 0 0 2 0 0 0 0 0
0 0 −p 0 0 0 0 0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 0 0
−1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
while its characteristic polynomial in the variable x equals

(x − 2)7
(
x2 − x − 2(p − 1)2

)(
x(x − 2)2 − p2(2x − 1)

)2

.

First we solve the quadratics ϕ2(x) = x2 − x − 2(p − 1)2 = 0 for the root

λ = λ(p) =
1 −

√
1 + 8(p − 1)2

2
=

− 4(p − 1)2

1 +
√

1 + 8(p − 1)2
,
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negative for p �= 1.

As for the roots of the cubic ϕ3(x) = x(x − 2)2 − p2(2x − 1), the equality

x(x − 2)2 = p2(2x − 1)

implies that sign(x) = sign(2x − 1), i.e. x /∈ (0, 1/2). On the other hand,
from the values ϕ3(0) = p2 > 0, ϕ3(2) = −3p2 < 0, and the fact that the
main coefficient is positive we conclude that ϕ3 has exactly one negative root
μ = μ(p) for all p �= 0. To sum up, the negative eigenvalues of G0 = G0(p) are
λ and the double eigenvalue μ.

Now we come to the discussion of the eigenvectors. The following matrix
W contains as columns the eigenvectors associated with these eigenvalues. (The
first column corresponds to λ, while the second and third vectors constitute a
basis for the 2-dimensional subspace associated with μ) :

W =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 p (1 − μ)
0 μ (2 − μ) 0
0 0 μ (μ − 2)
0 p (μ − 1) 0
0 0 0

p − 1 0 0
λ 0 0

p − 1 0 0
0 p 0
0 pμ 0
0 0 −pμ
0 0 0
0 0 0
0 0 p
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
To check the first eigenvector, it suffices to calculate⎛⎝ 1 p − 1 −1

p − 1 1 p − 1
−1 p − 1 1

⎞⎠⎛⎝ p − 1
λ

p − 1

⎞⎠ =

⎛⎝ λ(p − 1)
λ + 2(p − 1)2

λ(p − 1)

⎞⎠
and observe that λ + 2(p − 1)2 = λ2 by the simple fact that ϕ2(λ) = 0. The
case of the double eigenvalue μ is analogous, but then the equality ϕ3(μ) = 0
is used two times.
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We are now ready to determine the reduced Gramians. There are three of
them with nonzero diagonals, namely those corresponding to the above defined
G1234, G2345, G2346. We display only their diagonals:

diag(R1234) = 2
(
λ(1 − p), p μ2(2 − μ), p μ(μ − 1)(2 − μ)

)
,

diag(R2345) = 2
(
λ(1 − p), p μ(μ − 1)(2 − μ), p μ2(2 − μ)

)
,

diag(R2346) = 2
(
0, p μ(2 − μ), −p μ(2 − μ)

)
.

Now we need a positive vector, which is orthogonal to all these diagonals
as vectors. The form of the second and third coordinates suggests to choose
(δ, 1, 1). Then for the corresponding diagonal matrix

D =

⎛⎝ δ 0 0
0 1 0
0 0 1

⎞⎠
it holds that trace(R2346D) = 0, and trace(R1234D) = trace(R2345D) with the
common value

tλ(1 − p) − pμ(2 − μ)(2μ − 1).

This value equals zero, if and only if

t =
p μ(μ − 2)(2μ − 1)

λ(1 − p)
.

Since both λ and μ are negative, the requirement t > 0 is equivalent to p(1 −
−p)(μ − 2)(2μ − 1) > 0. However, μ < 0 involves (μ − 2)(2μ − 1) > 0, giving
p(1− p) > 0, i.e. p ∈ (0, 1). Choosing p from this interval, t will be positive, D
positive definite, and

trace(RijklD) = 0, 1 ≤ i < j < k < l ≤ 6.

This in connection with Lemma 1 proves the Theorem.

Remark 2. The matrix Gin can be obtained from G0 = G0(p) by
substituting p = 0. It has only one negative eigenvalue, λ = −1. However,
the associated eigenvector (say, v) is not enough to satisfy the requirements of
Lemma 1, since then all the reduced matrices – now scalars! – should vanish,
while R1234 = vT G1234v (and also R2345 = vT G2345v) are nonzero. This is why
we had to search for another matrix.
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4. Generalization, problem setting

Denote by Bm,n the set of nonnegative biquadratic forms, i.e. nonnegative
homogeneous polynomials f ∈ R[x1, . . . xm, y1, . . . yn] with the property that
f(x, y) is a quadratic form in y = (yi)n

1 for fixed x = (xi)m
1 and vice versa. The

polynomials, discussed in this article, obviously belong to Bm,m, in fact, to the
smaller set

Zm = {f ∈ Bm,m : f is a quadratic form of the z′i,js}.

Alternatively, if f ∈ Bm,m, then f(x, y) = zT Gz for a symmetric G. To be
precise, we define the order of coordinates of the vector z as

z =
(
(zi,i+k)m−k

i=1

)m−1

i=1
.

Notice that the above ”inner” and the following ”outer” definition of Zm are
equivalent:

Z∗
m = {f ∈ Bm,m : f(x, y) = f(y, x), f(x, x) = 0, x, y ∈ Rm}.

(Zm ⊂ Z∗
m is trivial, Z∗

m ⊂ Zm follows by elementary considerations.)

The polynomial (6) for instance, which occurs in Theorem 2, belongs to
Z6. Looking at the quite long proof of that theorem, raises the issue: is not
there a shorter way of proving? As an analogue, consider Calderon’s result [1]:
If f ∈ Bm,n, and m = 2 or n = 2, then f is SOS.

We guess that the more special case Zm also is manageable.

Problem. Characterize the SOS polynomials f ∈ Zm !

Remark 3. If m = 3, there are no basic relations like (4), hence
nonnegativity coincides with SOS property. Therefore the smallest nontrivial
problem is provided by the case m = 4. Then there is exactly one basic relation,
namely z1,2z3,4 + z1,4z2,3 = z1,3z2,4, Hence not all vectors z ∈ R6 can be
represented as z = (z1,2, z2,3, z3,4, z1,3, z2,4, z1,4)T with zi,j = xiyj−yixj , giving
the probable reason for the difficulties.
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