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DISTRIBUTIONS OF ARITHMETICAL FUNCTIONS.
SOME RESULTS AND PROBLEMS

I. Kátai (Budapest, Hungary)

Dedicated to my friends, Professors Ferenc Schipp and Péter Simon

1. Introduction

1.1. Notations

N = set of positive integers; N0 = N ∪ {0}; Q, R, C the sets of rational,
real, complex numbers, respectively. P = set of primes; ω(n) = number of
distinct prime factors of n; Pk = {n | ω(n) = k}; Ω(n) = number of prime
power divisors of n; Nk := {n | Ω(n) = k}.

Let πk(x) = #{n ≤ x | ω(n) = k}, Nk(x) = #{n ≤ x | Ω(n) =
= k}, π(x) = π1(x).

1.2. Definitions

Let q ≥ 2 be an integer, Aq = {0, 1, . . . , q − 1} (= set of q − ary digits),
and let εj(n) be the digits in the q − ary expansion of n:

(1.1) n =
∞∑

j=0

εj(n)qj , εj(n) ∈ Aq (j = 0, 1, 2, . . .).

It is clear that the right hand side of (1.1) is a finite sum.
Aq = set of q-additive functions. We say, that f : N0 → R belongs to Aq,

if f(0) = 0, and

f(n) =
∞∑

j=0

f(εj(n)qj)

holds for every n ∈ N.
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Special q−additive functions: α(n) =
∞∑

j=0

εj(n); βl(n) := #{j | εj(n) =

= l} defined for l = 1, . . . , q − 1; f(n) = cn.

This notion was introduced by A.O. Gelfond [24].
Mq = set of q-multiplicative functions. We say, that g : N0 → C belongs to

Mq, if g(0) = 1, and g(n) =
∞∏

j=0

g(εj(n)qj) (n ∈ N). Furthermore let Mq =

= {g ∈ Mq, |g(n)| = 1 (n ∈ N)}. One can see easily, that g(n) = zf(n) ∈
∈ Mq, if f ∈ Aq, z ∈ C.

A = set of additive arithmetical functions.

f : N → R belongs to A, if f(1) = 0 and

(1.2) f(mn) = f(m) + f(n)

holds for every coprime pairs of integers m,n.
A∗ = set of completely additive arithmetical functions.

We say that f ∈ A∗, if f ∈ A, and (1.2) holds for every m,n ∈ N.
We say that f is strongly additive if f ∈ A and f(pk) = f(p) for k ∈

∈ N, p ∈ P.
M = set of multiplicative arithmetical functions. g : N → C belongs to M

if g(1) = 1 and

(1.3) g(mn) = g(m) · g(n) for every coprime pairs of m and n.

M∗ = set of completely multiplicative arithmetical functions. g ∈ M∗, if
g ∈ M and (1.3) holds for every m,n ∈ N.

Furthermore, let M = {g | g ∈ M, |g(n)| = 1 (n ∈ N)}.
Let {en}∞n=1 be a sequence of real numbers. We say that it has a limit

distribution, if

(1.4) lim
x→∞

1
x

#{n ≤ x | en < y} = F (y)

exists for almost all y, and F is a distribution function.

1.3. Classical theorems in probabilistic number theory

(E-W): Erdős-Wintner theorem [1]: If f ∈ A, then it has a limit
distribution, i.e.

limx−1#{n ≤ x | f(n) < y} = F (y)
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exists for almost all y, where F is a distribution function, if and only if the
following three series

(1.5)
∑

|f(p)|<1

f(p)
p

,
∑

|f(p)|<1

f2(p)
p

,
∑

|f(p)|≥1

1
p

converge. If this condition is satisfied, then ϕ(τ), the characteristic function of
F can be written as

(1.6) ϕ(τ) =
∏
p

(
1 − 1

p

)(
1 +

∞∑
m=1

1
pm

exp(iτf(pm))

)
.

In (1.5), (1.6) p run over P.

(E-K): Erdős-Kac theorem [2]: Let f(n) be a strongly additive func-
tion, such that |f(p)| ≤ 1 (p ∈ P). Let

A(x) =
∑
p≤x

f(p) ·p−1, B2(x) =
∑
p≤x

f2(p) ·p−1, (0 ≤)B(x) → ∞ (x → ∞).

Then

(1.7) lim
x→∞

1
x

#
{

n ≤ x
∣∣∣ f(n) − A(x)

B(x)
< y

}
= Φ(y),

Φ = standard normal law.

(T-K): Turn-Kubilius inequality: Let f ∈ A,

E(x) =
∑

pk≤x

f(pk)
pk

(
1 − 1

p

)
, D2(x) =

∑
pk≤x

f2(pk)
pk

.

Then ∑
n≤x

|f(n) − E(x)|2 ≤ cxD2(x).

Here c is an absolute constant, c = 32 is appropriate (see [4], Ch. IV, p. 147).

(D): Delanges’s theorem [3]:

1. Let g ∈ Mq, mj = 1
q

∑
b∈Aq

g(cqj). Then

lim
x→∞x−1

∣∣∣∣∣∣
∑
n≤x

g(n)

∣∣∣∣∣∣ = a



242 I. Kátai

always exists, it is nonzero, if and only if mj �= 0 (j = 0, 1, 2, . . .) and
(0 ≤)

∑
Re(1 − mj) < ∞. Furthermore,

(1.8) lim
x→∞x−1

∑
n≤x

g(n) = M(g)

exists, and M(g) �= 0, if mj �= 0 (j = 0, 1, 2, . . .), and
∑

(1 − mj) is
convergent. If these conditions hold, then

(1.9) M(g) =
∞∏

j=0

mj .

2. Let f ∈ Aq. f has a limit distribution, i.e.

lim
x→∞x−1#{n ≤ x | f(n) < y} = F (y) a.a.

if and only if both of the series

(1.10)
∞∑

j=0

∑
b∈Aq

f(bqj),
∞∑

j=0

∑
b∈Aq

f2(bqj)

are convergent. If Xj are independent random variables,

(1.11) P (Xj = f(bqj)) = 1/q if b ∈ Aq,

then

F (y) = P

⎛⎝ ∞∑
j=0

Xj < y

⎞⎠ .

The following assertion is an almost immediate consequence of known
theorem for the sum of independent random variables:

Theorem 1. Let |f(bqj)| ≤ 1 (b ∈ Aq, j ∈ N0), μj = 1
q

∑
b∈Aq

f(bqj),

(1.12) σ2
j =

1
q

∑
b∈Aq

(f(bqj) − μj)2, N = N(x) =
[
log x

log q

]
,

(1.13) E(x) :=
N∑

j=0

μj ; D2(x) =
N∑

j=0

σ2
j .
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Assume that D(x) → ∞ (x → ∞). Then

lim x−1#
{

n ≤ x | f(n) − E(x)
D(x)

< y

}
= Φ(y).

2. Distribution of q-additive functions on some subsets of integers

The analogous of Theorem D and 1 are considered for the following subsets:
1. the set P,
2. the set P (N), where P is a polynomial over Z,
3. the set P (P),
4. on the sets Pk, Nk.

Let B be an infinite sequence of non-negative integers, AB(x) := #{n <
< x | n ∈ B}. For some collection of (0 ≤)l1 < . . . < lr(≤ N), N = N(x) =

=
[

log x
log q

]
, b1, . . . , br ∈ Aq, let

AB
(
x
∣∣ l

b

)
= #{n < x | n ∈ B, εlj (n) = bj , j = 1, . . . , r}.

It is clear that ∑
b

AN0

(
qN

∣∣ l
b

)
= AN0(q

N ),

and a similar relation with some error holds by x instead of qN , uniformly in

l, b. One can hope that such kind of relation holds for AB
(
x| l

b

)
for a large

class of sequences B.

2.1. Distribution of f ∈ Aq on the set P (N) and on P (P)

In a joint paper of N.L. Bassily and myself [5] the following assertion has
been proved.

Theorem 2. Let P (x) ∈ Z[x], with positive leading term, r = deg P .
Let f ∈ Aq, such that sup

j∈N0

max
b∈Aq

|f(bqj)| is finite. Assume furthermore, that

D(x) · (log x)−1/3 → ∞ (x → ∞). Then

(2.1) lim
x→∞

1
x

#
{

n < x
∣∣∣ f(P (n)) − E(xr)

D(xr)
< y

}
= Φ(y),
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(2.2) lim
x→∞

1
π(x)

#
{

p < x
∣∣∣ f(P (n)) − E(xr)

D(xr)
< y

}
= Φ(y).

Here E(x) and D(x) is defined in (1.12), (1.13).

Remark. The proof is based upon theorems of I.M. Vinogradov and L.
K. Hua for exponential sums. By using appropriate estimates we deduced that
for every fixed h,

(2.3) AP (N)

(
x | l1,...,lh

b1,...,bh

)
=

x

qh
+ O(x · (log x)−λ)

and

(2.4) AP (P)

(
x | l1,...,lh

b1,...,bh

)
=

π(x)
qh

+ O(x · (log x)−λ)

whenever N =
[

log x
log q

]
,

(2.5) N1/3 ≤ l1 < l2 < . . . < lh ≤ rN − N1/3

and b1, . . . , bh ∈ Aq. Here λ is an arbitrary constant. By using these estimates
one can deduce that the moments ak(x), bk(x) are close to ck(x), where

ak(x) = x−1
∑
n≤x

(
f(P (n)) − E(xr)

D(xr)

)k

;

bk(x) =
1

π(x)

∑
p≤x

(
f(P (p)) − E(xr)

D(xr)

)k

;

ck(x) :=
1
xr

∑
n≤xr

(
f(n) − E(xr)

D(xr)

)k

.

Since lim
x→∞ ck(x) = lim

x→∞ ak(x) = lim
x→∞ bk(x), and lim ck(x) = μk, μk = k-th

moment of Φ, by using the Frechet-Shohat theorem the proof will be finished.

Theorem 3. Let f ∈ Aq, assume that both series in (1.10) are convergent.
Let P ∈ Z[x], with positive leading term. Then the sequences f(P (n)) (n ∈ N),
f(P (p)) (p ∈ P) have limit distribution.
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Remarks. In [6] it is proved that for f ∈ Aq

(2.6)
1
x

∑
n≤x

(f(P (n)) − E(qkN+d))2 ≤ c1D
2(qkN+d)

and

(2.7)
1

π(x)

∑
p≤x

(f(P (p)) − E(qkN+d)) ≤ c2D
2(qkN+d)

hold, if x ≥ x0. Here c1, c2 are absolute constants, N =
[

log x
log q

]
, d ≥ 0 is a

constant defined so that max
y≤x

P (y) ≤ qkN+d, if x ≥ x0.

Furthermore, the quantity of integers n < qN for which P (n) ≡ a
(mod qM ), and similarly, the number of primes p < qN for which P (p) ≡ a
(mod qM ) can be estimated quite well if M = [log N ], say. Using this, and the
inequalities (2.6), (2.7), Theorem 3 can be deduced easily.

In [7] we proved that the convergence of the series in (1.10) are necessary
for the existence of the limit distribution in the case f(p).

The necessity of the convergence of the series’ in (1.10) is not known in
general for P (n), P (p) if deg P ≥ 2.

2.2. Distribution of f ∈ Aq on the set of primes

As we mentioned in § 2.1, the convergence of the series (1.10) are necessary
for the existence of the limit distribution of f(p) (p ∈ P). We proved in [8]

Theorem 4. Let f ∈ Aq. Assume that
∞∑

j=0

∑
b∈Aq

f2(bqj) < ∞. Let

EN :=
1
q

N∑
j=0

∑
b∈Aq

f(bqj).

Then
lim

x→∞
1

π(x)
#{p < x | f(p) − EN(x) < y} = F (y)

exists for a.a. y, F is a distribution function. Here N(x) =
[

log x
log q

]
.

Other hand, assume that there exists a function a(x) for which

lim
x→∞

1
π(x)

#{p < x | f(p) − a(x) < y} = G(y)
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exists for a.a y, where G is a distribution function, then
∑
j

∑
b∈Aq

f2(bqj) < ∞,

furthermore a(x) − EN(x) → c (x → ∞).

2.3. Distribution of q-additive functions on the set of integers having
k prime factors

In our paper [9] with L. Germán we proved the following theorems.

Theorem 5. Let f ∈ Aq, sup
j∈N0,b∈Aq

|f(bqj)| ≤ 1. Assume that

D(x)(log x)−1/3 → ∞. Let 1 ≤ B ≤ x1/3, (B, q) = 1. Then

sup
B<x1/3
(B,q)=1

sup
y∈(−∞,∞)

∣∣∣∣∣ 1
π
(

x
B

)#
{

p <
x

B

∣∣∣ f(Bp) − E(x)
D(x)

< y

}
− Φ(y)

∣∣∣∣∣ ≤ τ(x),

where τ(x) → 0 as x → ∞.

Theorem 6. Let f ∈ Aq and that both series in (1.10) are convergent.
Let ξ0, ξ1, . . . be independent random variables, P (ξj = f(bqj)) = 1/q if j ≥
≥ 1, b ∈ Aq, and P (ξ0 = f(b)) = 1

ϕ(q) if (b, q) = 1, and 0 if (b, q) > 1.

Let θ =
∞∑

l=0

ξl. (The right hand side is clearly convergent according to the

3 series theorem of Kolmogorov.)
Let F (y) := P (θ < y). Let B ∈ N, (B, q) = 1, and

Fx,B(y) :=
1

π
(

x
B

)#
{

p <
x

B
: f(pB) < y

}
.

Then
max

1≤B≤x1/3

(B,q)=1

sup
y

|Fx,B(y) − F (y)| ≤ δx,

δx → 0 (x → ∞).

Let Jx := [1, δ(x) log log x], where δ(x) → 0 (x → ∞) arbitrarily slowly.

Theorem 7. Assume that f satisfies the conditions stated in Theorem 5.
Then

sup
k∈Jx

sup
y∈R

∣∣∣∣ 1
πk(x)

#
{

n ≤ x, n ∈ Pk

∣∣∣ f(n) − E(x)
D(x)

< y

}
− Φ(y)

∣∣∣∣ → 0
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as x → ∞, and

sup
k∈Jx

sup
y∈R

∣∣∣∣ 1
Nk(x)

#
{

n ≤ x, n ∈ Nk

∣∣∣ f(n) − E(x)
D(x)

< y

}
− Φ(y)

∣∣∣∣ → 0,

as x → ∞.

Theorem 8. Let f ∈ Aq, F be defined as in Theorem 6. Let

H(k)
x (y) :=

1
πk(x)

#{n < x, n ∈ Pk, f(n) < y},

G(k)
x (y) :=

1
Nk(x)

#{n < x, n ∈ Nk, f(n) < y}.

Then
lim

x→∞ sup
k∈Jx

|H(k)
x (y) − F (y)| = 0,

lim
x→∞ sup

k∈Jx

|G(k)
x (y) − F (y)| = 0,

at every continuity point y of F .

Remark. As it is known, F is continuous if
∑

P (ξj �= 0) = ∞, i.e., if
there is a sequence j1 < j2 < . . . and b1, b2, . . . ∈ Aq, such that f(bνqjν ) �= 0.

3. Linear combinations of q-additive functions

Let (1 ≤)a1 < a2 < . . . < ak(< q) be mutually coprime integers, each of
which is coprime to q as well. Let f1, . . . , fk ∈ Aq; g1, . . . , gk ∈ Mq, and

(3.1) l(n) := f1(a1n) + · · · + fk(akn),

(3.2) t(n) := g1(a1n) · · · gk(akn).

We say that a sequence en (n = 1, 2, . . .) of real numbers is ,,tight”, if
there is a sequence AN such that lim sup

N→∞
q−N#{n < qN | |l(n)−AN | > K} :=

:= C(K) → 0 as K → ∞. We say that en is ,,bounded in mean”, if C(K) → 0
at the choice AN = 0 (N ∈ N).
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We investigated the existence of the distribution of l(n) and the mean
value of t(n) in our papers [10], [11], [12]. In [11] we proved

Theorem 9. The sequence l(n) defined in (3.1) is tight if and only if
there exist suitable real numbers γ1, . . . , γk such that for the functions ψl(n) :=
:= fl(n) − γl(n), the relations

(3.3) D2
l :=

∞∑
j=0

∑
b∈Aq

ψ2
l (bqj) < ∞

are satisfied.

Let

(3.4) A
(l)
N =

1
q

N−1∑
j=0

∑
b∈Aq

ψl(bqj),

(3.5) EN =
k∑

l=1

A
(l)
N .

Theorem 10. Assume that the conditions of Theorem 9 are satisfied.
Then
(1)

lim q−N#{n < qN | l(n) − EN < y} (= F (y))

exists for a.a. y. EN is defined by (3.5);
(2) the sequence l(n) has a limit distribution if additionally EN has a finite
limit as N → ∞.

Let

μl(u) =
1
q

∑
c∈Aq

fl(cqu), p(u) =
k∑

l=1

μl(u),

πu(c1, . . . , ck) =
1

qu+1
#{n < qu+1 | εu(ajn) = cj , j = 1, . . . , k},

τu =
∑

c1,...,ck∈Aq

(f1(c1q
u) + · · · + fk(ckqu) − p(u))2πu(c1, . . . , ck),

λu :=
k∑

j=1

∑
b∈Aq

f2
j (bqu).
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We proved in [11] that for u ≥ 2 d1λu ≤ τu ≤ d2λu holds with positive
constants d1, d2, which may depend at most on q.

Theorem 11. Let a1, . . . , ak and l(n) be as earlier. Let σ2
N =

N−1∑
u=0

τu.

Assume furthermore that

max
l=1,...,k

max
c∈A

|fl(cqM )|
σM

→ 0 as M → ∞.

Then

lim
1
x

#
{

n < x
∣∣∣ l(n) − F (Nx)

σNx

< y

}
= Φ(y),

where (N =)Nx =
[

log x
log q

]
, F (N) =

N−1∑
u=0

p(u).

4. Linear combinations of q-additive functions over P

We keep the notations introduced in §3. In [13] the following assertion is
proved.

Theorem 12. We have
(1) over the set P is tight if and only if it is tight over N;
(2) has limit distribution over P, if it has a limit distribution over N.

We can prove furthermore the following

Theorem 13. Assume that the condition stated in Theorem 11 holds
true. Let KN = [log N ], N = Nx. Assume that σ2

KN
/σ2

N → 0, (σ2
N −

−σ2
N−KN

)/σ2
N → 0 as N → ∞. Then

lim
x→∞

1
π(x)

#
{

p < x
∣∣∣ l(p) − F (N)

σN
< y

}
= Φ(y),
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5. Mean-value of products of q-multiplicative functions having
absolute value 1

Let t(n) be as in (3.2), assume that gj ∈ Mq (j = 1, . . .). Let tj(n) =
= t(nqj), Mj(x) =

∑
n<x

tj(n), mj(N) = q−NMj(qN ),

αj = lim inf
N→∞

|mj(N)|, βj = lim sup
N→∞

|mj(N)|.

We proved the following assertion in [10].

Theorem 14.
(1) We have αj = βj (j = 1, 2, . . .). If βj > 0 for some j, then βl → 1.
(2) The relation βl → 1 holds, if there exists an integer j, and γ1, . . . , γk ∈ R

such that
qj(a1γ1 + . . . + akγk) = integer,

and ∞∑
s=0

∑
b∈Aq

Re(1 − gl(bqs)e(−γlbq
s)) < ∞

holds for l = 1, . . . , k. Here e(α) := exp(2πiα).

6. Distribution of q-additive functions on the set of integers charac-
terized by the number of given digits

In [14] we proved the following Theorem 15.

Theorem 15. Let f ∈ Aq, the series in (1.10) be convergent. Let r(N) =

= (r(N)
1 , . . . , r

(N)
q−1) be such a sequence for which

∣∣∣∣∣qr
(N)
j

N
− 1

∣∣∣∣∣ < δN (j = 1, . . . , N − 1),

where δN → 0 (N → ∞). Let

SN (r(N)) = {n < qN | βl(n) = r
(N)
l , l = 1, . . . , q − 1},
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MN (r(N)) = #SN (r(N)).

Then
lim

N→∞
1

MN (r(N))
#{n ∈ SN (r(N)) | f(n) < y} = F (y)

for almost all y, where F (y) := P (
∑

Xj < y), Xj are defined in (1.11).

Theorem 16. Let f ∈ A2, such that
∑

f(2j),
∑

f2(2j) are convergent.
Let ξ0, ξ1, ξ2, . . . be random variables, P (ξν = 0) = 1 − η, P (ξν = f(2ν)) =
= η, θη =

∑
ξν , Fη(y) = P (θη < y). Then

lim
N→∞

max
k
N ∈[δ,1−δ]

∣∣∣∣∣ 1(
N
k

)#{n < 2N , α(n) = k, f(n) < y} − F k
N

(y)

∣∣∣∣∣ = 0

for almost all y. It holds for all y ∈ R if f(2ν) �= 0 holds for infinitely many ν.

Theorem 17. Let f ∈ A2, |f(2j)| be bounded. Let hN ∈ A2 be defined

by hN (2j) := f(2j) − AN

N , where AN =
N−1∑
j=0

f(2j). Let

σ2
N (η) := (1 − η)η

N−1∑
j=0

h2
N (2j).

Assume that σ2
N (1/2) → ∞ (N → ∞). Let δ > 0 be an arbitrary constant,

δ < 1/2. Then

lim
N→∞

sup
k
N ∈[δ,1−δ]

sup
y∈R

∣∣∣∣∣ 1(
N
k

)#

{
n < 2N , α(n) = k

∣∣∣ f(n) − k
N AN

σN

(
k
N

) < y

}
−

−Φ(y)| = 0.

In [15] we proved

Theorem 18. Let f ∈ A2. Assume that there exists some ξ ∈ (0, 1) and
a sequence kN of integers such that kN/N → ξ (N → ∞) and

1(
N
kN

)#{n < 2N | α(n) = kN , f(n) < y} → G(y) (N → ∞)

for a.a y, where G is a distribution function. Then G(y) = Fξ(y) (defined in
Theorem 16) and both series in (1.10) are convergent.
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7. On q-multiplicative functions taking a fixed value on the set of
primes

In [17] we proved

Theorem 19. Let q ≥ 2 be fixed. Then there exists a constant c = c(q)
such that for every q ∈ Mq for which g(p) =constant if p runs over P, then
there exists k ∈ [1, c] such that gk(nq) = 1 holds for every n ∈ N.

In [18] the following assertion has been proved.

Theorem 20. Let q ≥ 2, B(≥ 1) be an arbitrary constant. Then there
exists a constant c1 := c1(q, B) with the following property.

Let g ∈ Mq for which there exists a sequence N1 < N2 < . . . of integers
and a sequence kν ∈ [1, B log nν ], kν ∈ N and αν such that

(7.1)
g(π) = αν if π ∈ [qNν , 4qNν ]

and π ∈ Pkν
,

where Pkν
is the whole set of integers with exactly k prime factors.

Then there is an integer r ∈ [1, c2], such that gr(nq) = 1 (n ∈ N).

8. Mean value of g ∈ Mq over P

Then main problem we are interested in is to investigate the sum

(8.1) P (x) :=
∑
p≤x

g(p).

Let

(8.2) S(x | α) :=
∑
l<x

(l,q)=1

g(l)e(lα) (e(β) = exp(2πiβ)).

We would like to give necessary and sufficient conditions for g to satisfy

(8.3)
P (x)
π(x)

→ 0 (x → ∞).
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One can see easily that (8.3) implies that

(8.4) x−1S(x | r) → 0 (x → ∞)

holds for every r ∈ Q.

In [19] we formulated our

Conjecture 1. (8.2) holds if and only if (8.4) holds for every r ∈ Q.

Conjecture 2. If g ∈ Mq, |g(n)| ≤ 1, and

lim
1

π(x)

∑
p≤x

g(p) (=: Mq)

exists, and Mq �= 0, then

(8.5)
∑

j

∑
a∈Aq

(1 − g(aqj)) is convergent,

(8.6) Mq =

⎧⎨⎩ 1
ϕ(q)

∑
(a,q)=1

g(a)

⎫⎬⎭
∞∏

j=1

⎧⎨⎩1
q

∑
a∈Aq

g(aqj)

⎫⎬⎭ .

Presently we can prove only the following weaker assertion.

Let Y (x) be a monotonically increasing function such that Y (x) → ∞ and
log Y (x)

log x → 0 as x → ∞. Let Nx := {n ≤ x, p(n) > Y (x)}, where p(n) is the
smallest prime factor of n. Let N(x) = #(Nx).

Let L be the strongly multiplicative function such that

L(pa) = L(p) =

{ 1
p−2 if p > 2 and p |/ q,

0 otherwise.

In [20] the following assertion has been proved.
Let

(8.7) U(x) =
∑

n∈Nx

g(n),
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where g ∈ Mq. Then

(8.8)

∣∣∣∣U(x)
N(x)

∣∣∣∣2 ≤
∑
d<D

L(d)
d

d−1∑
a=0

∣∣∣q−MS
(
qM

∣∣∣a
d

)∣∣∣2 +

+
c1

D
+ ox(1),

where M is an arbitrary integer, for which qM ∈ [q−1x1/4, qx1/4], c1 = c1(q)
is a positive constant, the constant implicitly standing in ox(1) depends only on
the choice of Y (x) (and does not depend on g). D > 0 is an arbitrary number.

Remark. (1) (8.8) shows that the fulfilment of (8.4) (for every r ∈ Q)
implies that

U(x)
N(x)

→ 0 (x → ∞).

(2) We are able to prove that Conjecture 1 follows from Conjecture 3.
Let

T
(M)
l1,l2

= Tl1,l2 =

= #{p1, p2 ∈ P, p2 − p1 = l2 − l1, p1 ≡ l1 (mod qM ), p1 ≤ x}.

Conjecture 3. There exists a constant 0 < δ < 1
2 such that for M =

= [δN ], N =
[

log x
log q

]
we have

(8.9)
∑

l1,l2<qM

(li,q)=1
l1 �=l2

∣∣∣∣T (M)
l1,l2

− x

ϕ(qM )(log x)2
H(l2 − l1)

∣∣∣∣ <
ε(x)xqM

(log x)2

with a suitable function ε(x) → 0 (x → ∞), where

H(d) =
∏
p|d
p|/q

(
1 +

1
p − 2

)
.
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9. Distribution of additive functions on the set of shifted integers
the number of prime factors of which is fixed

Kátai proved in [21] that f ∈ A has a limit distribution on the set {p + 1 |
p ∈ P}, i.e.

(9.1) lim
x→∞

1
π(x)

#{p < x | f(p + 1) < y} = F̃ (y),

exists for a.a. y, and F̃ is a distribution function, if the series in (1.5) are
convergent.

A. Hildebrand proved twenty years later in [22] that if (9.1) holds, then
the series in (1.5) converge. L. Germán proved the following assertion.

Theorem 21. Let f ∈ A, 2 ≤ k ≤ ε(x)
√

log log x, ε(x) → 0 as
x → ∞. Let

Fk,x(z) :=
1

πk(x)
#{n ≤ x | n ∈ Pk, f(n + 1) < z}.

Assume that there is a sequence k = kx and a distribution function F such that
Fkx,x ⇒ F . Then the 3 series in (1.5) are convergent.

Conversely, assume that the series in (1.5) are convergent. Then, with a
distribution function G(y),

max
2≤k≤ε(x)

√
log log x

|Fk,x(y) − G(y)| → 0 (x → ∞)

if y is a continuity point of G. Consequently F = G. The characteristic
function ϕ(t) of F (y) is given by

ϕ(t) =
∏
p∈P

((
1 − 1

p − 1

)
+

∞∑
α=1

eitf(pα)

pα

)
.

10. Distribution of additive functions over Pk,Nk

In [16] we proved the following theorems.
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Theorem 22. Let f ∈ A, and assume that the series in (1.5) are
convergent. For η ∈ (0, 2) let ξp = ξp(η) be the random variable distributed

by P (ξp = f(pα)) =
(
1 − η

p

)(
η
p

)α

. Assume that ξp (p ∈ P) are completely

independent, θ(η) :=
∑

p∈P
ξp(η). Let Fη(y) := P (θ(η) < y). Let furthermore

(10.1) Gk,x(y) :=
1

Nk(x)
#{n ≤ x, n ∈ Nk, f(n) < y}.

Assume furthermore that

(10.2)
∑

f(p) 
=0

1/p = ∞.

Let ξk,x = k
log log x , 0 < δ < 1/2. Then

(10.3) lim
x→∞ max

ξk,x∈[δ,2−δ]
max
y∈R

|Gk,x(y) − Fξk,x
(y)| = 0.

If (10.2) does not hold, then

(10.4) lim
x→∞ max

ξk,x∈[δ,2−δ]
|Gk,x(y) − Fξk,x

(y)| = 0

for every y which is a continuity point of F1(y).

Theorem 23. Let f be as in Theorem 22. Assume that f(2α) = 0 (α =
= 1, 2, . . .). Let δ > 2, A > 2 + δ be constants. Then

lim
x→∞ max

ξk,x∈[2+δ,A]
|Gk,x(y) − F ∗

2 (y)| = 0

for every y, which is a continuity point of F ∗
2 . Here F ∗

2 (y) = P

(∑
p>2

ξp(2) < y

)
.

Theorem 24. Let g ∈ M, and assume that

∑
p

1 − g(p)
p

is convergent. Let δ > 0 be fixed, 0 < η < 2,

ep(η) =
(

1 − η

p

)(
1 +

g(p)η
p

+
g(p2)η2

p2
+ · · ·

)
,
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Mη(g) =
∏
p

ep(η).

We have

lim
x→∞ max

ξk,x∈[δ,2−δ]

∣∣∣∣∣∣∣
1

Nk(x)

∑
n≤x

n∈Nk

g(n) − Mξk,x
(g)

∣∣∣∣∣∣∣ = 0.

Here ξk,x = k
log log x .

Theorem 25. Let g be as in Theorem 24. Assume furthermore that
g(2α) = 1 (α = 1, 2, . . .). Let 0 < δ, A > 2 + δ be constants. Then

lim
x→∞ max

ξk,x∈[2+δ,A]

∣∣∣∣∣∣∣
1

Nk(x)

∑
n≤x

n∈Nk

g(n) − M∗
2 (g)

∣∣∣∣∣∣∣ = 0,

where
M∗

2 (g) =
∏
p>2

ep(2).

Theorem 26. Let f ∈ A, f(pα) = O(1), if p ∈ P. Let Ax =
=

∑
p≤x

f(p)
p , f∗ ∈ A is defined on prime powers pα by f∗(pα) = f(pα)− αAx

log log x .

Let B2
x =

∑
p≤x

1
p (f∗(p))2. Let Bx → ∞. Then

maxk
ξk,x∈[δ,2−δ]

max
y∈R

∣∣∣∣∣ 1
Nk(x)

#

{
n ≤ x

∣∣∣ f∗(n)
Bx

√
ξk,x

< y, n ∈ Nk

}
− Φ(y)

∣∣∣∣∣ → 0

as x → ∞. Here δ > 0 is an arbitrary constant.

Theorem 27. Let f, f∗, Ax, Bx be as in Theorem 26. Let 0 < δ, A >
> 2 + δ be constants. Then

maxk
2+δ≤ξk,x≤A

max
y∈R

∣∣∣∣ 1
Nk(x)

#
{

n ≤ x
∣∣∣ f∗(n)

Bx

√
2

< y

}
− Φ(y)

∣∣∣∣ → 0 (x → ∞).
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[18] Kátai, I. and Subbarao, M.V., The distribution of integers with
given number of prime factors in almost all short intervals, The Riemann
Zeta Function and Related Themes: Papers in Honour of Professor K.
Ramachandra, Lecture Notes Series 2, Ramanujan Mathematical Society,
2006, 115-120.
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