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Abstract. There are given a hole solution of integral Turán problem and

a partial solution of pointwise Turán problem for periodic positive definite

functions.

1. Introduction

Continuous and positive definite functions appear naturally in function
theory, approximation theory, probability theory, discrete geometry, analytic
number theory, time series analysis, optics, crystallography, signal processing.
Optimization problems in these fields translate into extremal problems for
such functions. We discuss some extremal problems for continuous positive
definite functions on R and T, known as integral and pointwise Turán problems.
Turán problems admit equivalent reformulation as extremal problems for entire
functions.

A lot of investigations were devoted to multidimensional Turán problems
on Rn and on common locally compact abelian groups. Let us note the works
of C.L. Siegel [1], D.V. Gorbachev [2]. V.V. Arestov and E.E. Berdysheva [3,4],
M.N. Kolountzakis and Sz.Gy. Révész [5,6,7], W. Ehm, T. Gneiting and D.
Richards [8], Sz.Gy. Révész [9]. We are not going to touch these researches.
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The part of the paper, devoted to the solution of the integral Turán
problem on T, is written by V.I. Ivanov. The other part of the paper, devoted
to the pointwise Turán problem, is written by A.V. Ivanov.

2. Positive definite functions

Let G be locally compact abelian group, P (G) the class of continuous inte-
grable positive definite functions, PR(G) its subset of real functions. Function
f is positive definite if for every collection {xi}m

i=1 ⊂ G, {αi}m
i=1 ⊂ C

m∑
i,j=1

f(xi − xj)αiαj ≥ 0.

From Bochner-Weil results [10] follow that

P (G) =
{

f ∈ C(G)
⋂

L(G) : f̂ ≥ 0 on Ĝ
}

,

PR(G) is its subset of even functions. Here f̂ , defined on dual group Ĝ, is
Fourier transform of f .

Let T be the one dimensional torus [0, 1), R the set of real numbers, Z the
set of integer numbers.

We have

P (R) =
{

f(x) ∈ C(R)
⋂

L(R) : f̂ ≥ 0 on R
}

,

PR(R) = {f ∈ P (R) : f − even} ,

P (T) =

{
f(x) =

∑
k∈Z

f̂k exp(2πikx) : f̂k ≥ 0,
∑
k∈Z

f̂k < ∞
}

,

PR(T) =

{
f(x) = f̂0 + 2

∞∑
k=1

f̂k cos (2πkx) : f̂k ≥ 0, f̂0 + 2
∞∑

k=1

f̂k < ∞
}

.

Let us give some examples of positive definite functions

e−πx2
=
∫
R

e−πy2
cos (2πxy)dy ∈ PR(R),
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(1) f∗(x) = (1 − |x|)+ =
∫
R

(
sin (πy)

πy

)2

cos (2πxy)dy ∈ PR(R)

((x)+ = max (x, 0)),

0 < h ≤ 1/2, fh(x) = (1 − |x/h|)+ (|x| ≤ 1/2), fh(x + 1) = fh(x),

(2) fh(x) = h + 2h
∞∑

k=1

(
sin (πkh)

πkh

)2

cos (2πkx) ∈ PR(T).

3. The classes of even functions

Let f : R → R be even function, f̂(x) =
∫
R

f(y) cos (2πyx) dy its Fourier

transform, f(x) =
∫
R

f̂(y) cos (2πyx) dy its inverse Fourier transform.

For 0 < h < 1/2 let us define some classes of even continuous positive
definite functions:

KR(h) =
{

f ∈ C(R)
⋂

L(R) : f(0) = 1, f̂ ≥ 0 on R, supp f ⊂ [−h, h]
}

,

KT(h) =
{

f ∈ C(T) : f(0) = 1, f̂k ≥ 0 on Z+, supp f ⊂ [−h, h]
}

.

We need as well to define some classes of even entire functions of exponen-
tial type.

Let ER(h) (EZ(h)) be the class of even entire functions F (z) of exponential
type 2πh which satisfy the conditions F (x) ≥ 0 on R (on Z), F̂ (0) =

=
∫
R

F (x)dx = F (0) + 2
∞∑

ν=1
F (ν) = 1.

It is evident that ER(h) ⊂ L(R). According to Plancherel-Polya theorem
[11] EZ(h) ⊂ L(R), too.

Between classes KR(h) and ER(h), KT(h) and EZ(h) it is possible to
establish bijections. According to Paley-Wiener theorem [12] if f(x) ∈ KR(h),
then F (z) = f̂(z) ∈ ER(h) and F (0) = f̂(0) =

∫
R

f(y)dy. Conversely, if

F (z) ∈ ER(h), then f(x) = F̂ (x) ∈ KR(h) and f(0) = F̂ (0).
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Similarly if

f(x) = f̂0 + 2
∞∑

ν=1

f̂ν cos (2πνx) ∈ KT(h),

then

F (z) =

h∫
−h

f(x) cos (2πzx)dx ∈ EZ(h)

and F (ν) = f̂ν . If F (z) ∈ EZ(h), then according to Paley-Wiener theorem and
Poisson summation formula [12]

f(x) =
∑
k∈Z

F̂ (x + k) = F (0) + 2
∞∑

ν=1

F (ν) cos (2πνx) ∈ KT(h).

4. Extremal problems

The integral Turán problem. Let us define the integral Turán problems
for R and T. To calculate the following values:

(3) AR(h) = sup

⎧⎨⎩
h∫

−h

f(x)dx : f ∈ KR(h)

⎫⎬⎭ ,

(4) AT(h) = sup

⎧⎨⎩
h∫

−h

f(x)dx : f ∈ KT(h)

⎫⎬⎭ .

Taking account the connections between classes KR(h) and ER(h), KT(h)
and EZ(h), we get

(5) AR(h) = sup {F (0) : F ∈ ER(h)} ,

(6) AT(h) = sup {F (0) : F ∈ EZ(h)} .
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The pointwise Turán problem. Let us define the pointwise Turán
problems for R and T. For 0 < x < h to calculate the following values

(7) AR(x, h) = sup {f(x) : f ∈ KR(h)} ,

(8) AT(x, h) = sup {f(x) : f ∈ KT(h)} .

As in the case of integral Turán problems we have

(9) AR(x, h) = sup

⎧⎨⎩
∫
R

F (y) cos (2πxy)dy : F ∈ ER(h)

⎫⎬⎭ ,

(10) AT(x, h) = sup

⎧⎨⎩
∫
R

F (y) cos (2πxy)dy : F ∈ EZ(h)

⎫⎬⎭ .

5. The case of line

The problems (3), (7) were solved by Boas and Kac in 1945 in [13]. The
solutions were based on the representation for positive definite function f(x)
from KR(h) in the form of

(11) f(x) =
∫
R

u(x + y)u(y)dy,

where u(x) = 0, |x| ≥ h/2, u ∈ L2(R), f(0) = ‖u‖2
2 = 1, f̂(0) =

∣∣∣∣∣ h/2∫
−h/2

udx

∣∣∣∣∣
2

.

The function u(x) is called a Boas-Kac convolution root of f(x). With (11),
by the Cauchy-Bunyakovsky inequality, we get the estimation

∣∣∣∣∣∣
h∫

−h

f(x)dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
h/2∫

−h/2

udx

∣∣∣∣∣∣∣
2

≤ h

h/2∫
−h/2

|u|2dx = hf(0) = h.
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It is attained at function f∗(x/h) defined in (1). Boas-Kac convolution root for
the function f∗(x/h) is u∗

h(x) = (1/
√

h)χ[−h/2,h/2](x), where χ[−h/2,h/2] is the
characteristic function of the interval [−h/2, h/2]. The corresponding entire

function is F ∗
h (z) = h

(
sin (πhz)

πhz

)2

. Thus

AR(h) = h.

They also proved that

AR(x, h) = cos

(
π]

h
x

[
+ 1

)
,

where ]x[ is a least integer not lower than x.

6. The integral Turán problem in the case of torus

The problem (4) was set up by P. Turán in 1970 in a private conversation
with S.B. Stechkin. It has application in the analytic number theory. The pe-
riodic positive definite function from KT(h) does not admit the representation
(11) that is why the problem (4) is much more complicated.

The function (2) fh(x) ∈ KT(h), so AT(h) ≥ h. S.B. Stechkin [14] found
that AT(1/q) = 1/q, q ∈ N and AT(h) = h + O(h2) (h → 0). A.Yu. Popov
proved that AT(h) > h, h �= 1/q. Earlier this inequality was proved by G.
Halász. D.V. Gorbachev [2] made it more precise proving that AT(h) = h +
O(h3), h → 0. It was a hypothesis of A.Yu. Popov. D.V. Gorbachev and
A.S. Manoshina [15] showed the problem (4) for rational h can be reduced to a
discrete variant of a well known Fejér problem about the greatest value at zero
of nonnegative trigonometric polynomial with fixed average value.

The first discrete Fejér problem. For p, q ∈ N, p ≤ q/2, (p, q) = 1
calculate the value

(12) λ(p, q) = sup tp−1(0),

if

tp−1(x) = 1 + 2
p−1∑
k=1

t̂k cos
(

2πkx

q

)
≥ 0, x ∈ Zq = {0, 1, . . . , q − 1}.
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Here (p, q) = 1 means, that p and q are relatively prime.

The problem (12) is the discrete variant of well known classic Fejér
problem. Calculate the value

Λ(p) = sup tp−1(0),

if

tp−1(x) = 1 +
p−1∑
k=1

t̂k cos (2πkx) ≥ 0, x ∈ T.

This problem was set and solved by L. Fejér [16].
In [15] the equality

(13) AT

(
p

q

)
=

λ(p, q)
q

is proved and the values λ(p, q) are calculated for small p.

In 2004 V.I. Ivanov and Yu.D. Rudomazina [17, 18, 19] solved the discrete
analog of Fejér problem and thus the solution of integral Turán problem for
rational h was achieved. In 2006 V.I. Ivanov [20] managed to solve the integral
Turán problem for irrational h.

In what follows are outlined the main points of the solution of problems
(4), (12).

7. Special partition of a set of natural numbers

Let us denote for the real number x: [x] is its integral part, {x} its
fractional part, 〈x〉 the distance to its nearest integer. We have

x = [x] + {x} , 〈x〉 = min
ν∈Z

|x − ν| = min {{x} , 1 − {x}} ,

[x] ∈ Z, {x} ∈ [0, 1) , 〈x〉 ∈ [0, 1/2] .

For h ∈ (0, 1/2) let us define the partition of a set of natural numbers N
by

S0 (h) = {ν ∈ N : 〈νh〉 = 0} , S1 (h) = {ν ∈ N : 〈νh〉 ∈ (0, h)} ,
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S2 (h) = {ν ∈ N : 〈νh〉 ≥ h} .

These sets do not intersect and N = S0 (h) ∪ S1 (h) ∪ S2 (h).

Note that for h = p/q (irreducible fraction)

S0

(
p

q

)
= {νq : ν ∈ N}, S1

(
p

q

)
=
{[

qν

p

]
,

[
qν

p

]
+ 1 : ν ∈ N, ν �= ps

}
.

For irrational h

S0 (h) = ∅, S1 (h) =
{[ν

h

]
,

[ν

h

]
+ 1 : ν ∈ N

}
.

8. The case of rational h

The solutions of (4) for rational h = p/q and of (12) are based on
constructing of special trigonometric polynomial.

Lemma 1. If p, q ∈ N, p ≤ q/2, (p, q) = 1, then there is an even
trigonometric polynomial

fp,q (x) = f̂p,q
0 + 2

p−1∑
k=1

f̂p,q
k cos

(
2πkx

q

)
,

satisfying the conditions

1) f̂p,q
k > 0 (k = 0, 1, . . . , p − 1),

2) fp,q (ν) = 1 (ν ∈ {0} ∪ S0 (p/q)) , fp,q (ν) = 0 (ν ∈ S1 (p/q)), 0 <
< fp,q (ν) < 1 (ν ∈ S2 (p/q)).

The polynomial fp,q has zeros on interval 1 ≤ x ≤ q/2 in the points of the
set

Sp,q =
{[

qi

p

]
: i = 1, . . . ,

[p

2

]}⋃{[
qi

p

]
+ 1 : i = 1, . . . ,

[
p − 1

2

]}
.
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The set Sp,q/q approximate the zeros i/p of the well known Fejér polynomial

Fp−1(x) = 1 + 2
p−1∑
k=1

(
1 − k

p

)
cos (2πkx) =

1
p

(
sin (πpx)
sin (πx)

)2

on the subgroup of the torus {i/q}. The set Sp,q has the arithmetic structure

Sp,q = {q 〈r̄k/q〉 : k = 1, . . . , p − 1} ,

where r̄p = 1 or r̄(q − p) = 1 in Zq.

Lemma 2. If p, q ∈ N, p ≤ q/2, (p, q) = 1, then for every even polynomial

f(x) =
p−1∑
k=0

f̂k cos
(

2πkx

q

)

the quadrature formula

f̂0 = f̂p,q
0 f(0) + 2

p−1∑
k=1

f̂p,q
k f(r̄k)

is fulfilled.

From Lemma 2 we have the upper estimation for (12)

λ(p, q) ≤ 1

f̂p,q
0

.

This estimation is achieved for the polynomial

Fp,q(x) =
fp,q(x)

f̂p,q
0

.

The polynomial in (12) Fp,q is called the discrete extremal Fejér polynomial.

According to (13) the following theorem is proved.

Theorem 1. For every p, q ∈ N, p ≤ q/2, (p, q) = 1

λ(p, q) = Fp,q(0) =
1

f̂p,q
0

,
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AT

(
p

q

)
=

λ(p, q)
q

=
Fp,q(0)

q
=

1

qf̂p,q
0

.

Let us put the solution of problem (4) that does not use (13).

Lemma 3. If p, q ∈ N, p ≤ q/2, (p, q) = 1, then there is an even
trigonometric polynomial

gp,q (x) = ĝp,q
0 + 2

[q/2]∑
k=p

ĝp,q
k cos

(
2πkx

q

)
,

for which the following conditions are satisfied

1) ĝp,q
0 = 1

qf̂p,q
0

, ĝp,q
k ≥ 0 (k = p, ..., [q/2]),

2) gp,q (ν) = 1 (ν ∈ {0} ∪ S0 (p/q)), gp,q (ν) = 0 (ν ∈ S2 (p/q)), 0 <
< gp,q (ν) < 1 (ν ∈ S1 (p/q)).

The coefficients of polynomial gp,q(x) are calculated by the following
formula

ĝp,q
k =

fp,q(r̄k)

qf̂p,q
0

.

Lemma 3 allows to write down quadrature formulas that will give upper
bound for the function (4). Lemma 1 allows to construct extremal functions.

Lemma 4. For every function

f (x) = f̂0 + 2
∞∑

k=1

f̂k cos (2πkx),
∞∑

k=1

∣∣∣f̂k

∣∣∣ < ∞

the quadrature formula

1

qf̂p,q
0

f (0) + 2
[q/2]∑
k=p

ĝp,q
k f

(
k

q

)
= f̂0 + 2

∑
k∈S0(p/q)

f̂k + 2
∑

k∈S1(p/q)

f̂kgp,q (k)

is fulfilled.

From Lemma 4 we have the following upper estimation for (4)

(14) AT

(
p

q

)
≤ 1

qf̂p,q
0

.
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Their accuracy is checked at function

ϕp,q(x) =
1

qf̂p,q
0

⎧⎪⎨⎪⎩1 + 2
∑

k∈S2(p/q)

⎛⎝ sin
(

πk
q

)
πk
q

⎞⎠2

fp,q (k) cos (2πkx)

⎫⎪⎬⎪⎭ ,

for which the following conditions are satisfied

ϕp,q (x) ∈ KT

(
p

q

)
, ϕp,q (x) > 0 and decrease on [0, p/q) .

This function was suggested in [15]. Let us note that this function is
piecewise linear.

Lemma 5. For every even entire function F (z) ∈ L (R) of exponential
type the following quadrature formula is fulfilled

1

qf̂p,q
0

F̂ (0) + 2
[q/2]∑
k=p

ĝp,q
k F̂

(
k

q

)
=

= F (0) + 2
∑

k∈S0(p/q)

F (k) + 2
∑

k∈S1(p/q)

F (k) gp,q (k) .

The upper bound (14) for (4) arises from Lemma 5 and (6). Its accuracy
is checked at function

Gp,q (z) =
1

qf̂p,q
0

⎛⎝ sin
(

πz
q

)
πz
q

⎞⎠2

fp,q (z) =

=
1

qf̂p,q
0

∏
k∈S0(p/q)

(
1 −

( z

k

)2
)2 ∏

k∈S1(p/q)

(
1 −

( z

k

)2
)

∈ EZ (p/q).

9. The case of irrational h

For calculating values AT (h), with irrational h it is sufficient to prove their
continuity at h.
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Theorem 2. At the interval (0, 1/2] the function AT (h) is continuous
and increasing.

The proof of continuity AT (h) is based on the approach suggested by
V.S. Balagansky [21] while proving the continuity of an exact constant in the
Jackson inequality in the space L2 (T) as function of argument at the module
of continuity.

The continuity of function AT (h) and equality (6) allows to obtain values
for irrational h by using their values for rational h and with the help of the
passage to the limit. Thus we get the following theorem.

Theorem 3. If h ∈ (0, 1/2) is irrational, then

AT (h) =

⎛⎝1 + 2
∑

ν∈S2(h)

∏
k∈S1(h)

(
1 −

(ν

k

)2
)⎞⎠−1

.

The extremal function Gh (z) in (6) has zeros at set S1 (h) and the extremal
function in the integral Turán problem (4) ϕh (x) is positive and does not
decrease at the interval [0, h).

The extremal functions in Theorem 3 are of the form

Gh (z) = AT (h)
∏

k∈S1(h)

(
1 −

( z

k

)2
)

,

(15) ϕh (x) = Gh (0) + 2
∞∑

k=1

Gh (k) cos (2πkx).

We get for rational h = p/q Gh (x) = Gp,q (x) , ϕh (x) = ϕp,q (x).

Lemma 6. For every even function

f (x) = f̂0 + 2
∞∑

k=1

f̂k cos (2πkx),
∞∑

k=1

∣∣∣f̂k

∣∣∣ < ∞

the quadrature formula

Gh (0) f (0)+2
∑

k∈S2(h)

Gh (k) f (〈kh〉) = f̂0 +2
∑

k∈S0(h)

f̂k +2
∑

k∈S1(h)

f̂kϕh (〈kh〉)

is fulfilled.
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Lemma 7. For every even entire function F ∈ L (R) of exponential type
the quadrature formula

Gh (0) F̂ (0) + 2
∑

k∈S2(h)

Gh (k) F̂ (〈kh〉) =

= F (0) + 2
∑

k∈S0(h)

F (k) + 2
∑

k∈S1(h)

F (k)ϕh (〈kh〉)

is fulfilled.

10. The characterization of extremal functions in (4) and (6)

It is sufficient to characterize the extremal functions in problem (6).
Extremal functions in Turán problem (4) will be obtained by means of the
correspondence between problems (4) and (6) mentioned above. For rational
h = p/q ∈ (0, 1/2) the solution of (6) is not unique. All extremal functions
have the form of

G (z, p, q) = AT

(
p

q

)
fp,q (z)

∞∏
k=1

(
1 −

(
z

qk

)2
)(

1 −
(

z

zk

)2
)

,

where zk ∈ [qk − 1, qk + 1].

For irrational h the extremal function Gh (z) is the only possible solution
in (15).

The extremal function can be written in the form

G (z, h) = AT (h)
∞∏

k=1

(
1 −

(
z

[k/h]

)2
)(

1 −
(

z

[k/h] + 1

)2
)

for every h ∈ (0, 1/2).
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11. The pointwise Turán problem for the case of torus

Let us consider the pointwise Turán problem (8). This problem is
investigated in the paper of V.V. Arestov, E.E. Berdysheva and H. Berens
[22]. They solved this problem in the case h = 1/2, 0 < x < 1/2

AT

(
x,

1
2

)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if x is irrational,

1 if x = r
2q , r is even,

1
2

(
1 + cos π

q

)
if x = r

2q , r is odd.

The paper [7] is devoted to the problem (8), too.

Like as in the case of integral Turán problem there is a connection between
problem (8) for rational x = ν/q, h = p/q and some discrete Fejér problem.

The second discrete Fejér problem. For ν, p, q ∈ N, p ≤ q/2, ν ≤ p−1
calculate the value

(16) λ(ν, p, q) = sup t̂ν ,

if

tp−1(x) = 1 + 2
p−1∑
k=1

t̂k cos
(

2πkx

q

)
≥ 0, x ∈ Zq.

In the continuous case, when

tp−1(x) = 1 + 2
p−1∑
k=1

t̂k cos (2πkx) ≥ 0, x ∈ T,

this problem was solved by L. Fejér [16] (ν = 1), G. Szegö [23], E. Egerváry
and O. Szasz [24] (ν > 1).

Theorem 4. If ν, p, q ∈ N, p ≤ q/2, ν ≤ p − 1, (ν, p, q) = 1, then

AT

(
ν

q
,
p

q

)
= λ(ν, p, q).

If the polynomial t∗p−1(x) is extremal for the problem (16), then the function

ψp,q(x) =
1
q

⎧⎪⎨⎪⎩1 + 2
∞∑

k=1

⎛⎝ sin
(

πk
q

)
πk
q

⎞⎠2

t∗p−1(k) cos (2πkx)

⎫⎪⎬⎪⎭
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is extremal for the problem (8).

Lemma 8. The following equality

λ(νd, p, qd) = λ

(
ν,

[
p − 1

d

]
+ 1, q

)
is true.

We can assume, that (ν, q) = 1. The next modification of Theorem 4
follows from monotonicity of function AT(x, h) as function of h and the Lemma
8.

Theorem 5. If ν, p, q ∈ N, p ≤ q/2, ν ≤ p − 1, (ν, q) = 1, then

AT

(
ν

q
, h

)
= λ(ν, p, q), h ∈

(
p − 1

q
,
p

q

]
.

We have managed to solve the problem (16) only for the highest coefficient
ν = p − 1. In this case the extremal polynomial in the continuous problem is
1 + c((p − 1)x). But in this elementary case the discrete approximation of
continuous problem is rather complicated. The following theorem is true.

Theorem 6. If (p − 1, q) = 1, q is odd, then

λ(p − 1, p, q) =
1

2 cos (π/q)
· Fp−1,q(0)
Fp−1,q(1)

.

If (p − 1, q) = 1, q is even, then

λ(p − 1, p, q) =
Fp−1,q(0)
2Fp−1,q(1)

.

Here Fp−1,q(x) is the extremal polynomial of order p − 2 in the first discrete
Fejér problem.

Upper estimation for the value (16) is done with the help of quadrature
formula in Theorem 7.

Theorem 7. If (p − 1, q) = 1, q is odd, then for every even polynomial

f(x) =
p−1∑
k=0

f̂k cos
(

2πkx

q

)
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the quadrature formula

1
2 cos (π/q)

· Fp−1,q(0)
Fp−1,q(1)

f̂0 − f̂p−1 =
p−2∑
k=0

Akf(r̄(2k + 1))

is true, where

2r̄(p − 1) = 1 in Zq, Ak > 0 (k = 0, 1, . . . , p − 2).

If (p − 1, q) = 1, q is even, then

Fp−1,q(0)
2Fp−1,q(1)

f̂0 − f̂p−1 =
q/2∑

k=q/2−p+2

Bkf(r̄k),

where

r̄(p − 1) = 1 in Zq, Bk > 0 (k = q/2 − p + 2, . . . , q/2).

Zeros of extremal polynomials in the problem (16) with ν = p− 1 coincide
with nodes of quadrature formulas in Theorem 7.

If (p − 1, q) = 1, then Theorems 5, 6 allow to calculate AT

(
p−1

q , h
)

for

h ∈
(

p−1
q , p

q

]
.

12. Conclusion

It will be interesting to investigate Fejér and Turán problems for finite
abelian groups

G = Zm1 × Zm2 × . . . × Zmn

and for compact abelian zero-dimensional groups

G =
∞∏

k=1

Zmk
.

There are some results in [19] and [25].
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