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Abstract. There are given a hole solution of integral Turan problem and
a partial solution of pointwise Turan problem for periodic positive definite
functions.

1. Introduction

Continuous and positive definite functions appear naturally in function
theory, approximation theory, probability theory, discrete geometry, analytic
number theory, time series analysis, optics, crystallography, signal processing.
Optimization problems in these fields translate into extremal problems for
such functions. We discuss some extremal problems for continuous positive
definite functions on R and T, known as integral and pointwise Turan problems.
Turédn problems admit equivalent reformulation as extremal problems for entire
functions.

A lot of investigations were devoted to multidimensional Turdn problems
on R™ and on common locally compact abelian groups. Let us note the works
of C.L. Siegel [1], D.V. Gorbachev [2]. V.V. Arestov and E.E. Berdysheva [3,4],
M.N. Kolountzakis and Sz.Gy. Révész [5,6,7], W. Ehm, T. Gneiting and D.
Richards [8], Sz.Gy. Révész [9]. We are not going to touch these researches.
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The part of the paper, devoted to the solution of the integral Turan
problem on T, is written by V.I. Ivanov. The other part of the paper, devoted
to the pointwise Turdn problem, is written by A.V. Ivanov.

2. Positive definite functions

Let G be locally compact abelian group, P(G) the class of continuous inte-
grable positive definite functions, Pr(G) its subset of real functions. Function
f is positive definite if for every collection {z;}7*, C G, {a;}7*, C C

m

Z f(.’l?l — .Z’j)Oéiaj > 0.

ij=1

From Bochner-Weil results [10] follow that
P(G)z{feC ) L(@G) nG}

Pg(G) is its subset of even functions. Here f, defined on dual group @, is
Fourier transform of f.

Let T be the one dimensional torus [0,1), R the set of real numbers, Z the
set of integer numbers.

‘We have

P(R) = { ®R) (LR 0 on R}

Pr(R)={f € P[R): f— even},

P(T) = {f(x) = Zﬁexp(kaar) L fo >0, Zﬁ < oo},

keZ kEZ
Pr(T) = {f(x) = fo—&-QZﬁCOS(QWk’x) Cfe >0, fo—i—QZ fr < oo}.
k=1 k=1
Let us give some examples of positive definite functions

2

e~ T — /6*7"92 coSs (27T:Ey)dy € P]R(R)7
R
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W F@=0-lk= [ (W(;Ty)) cos (2nay)dy € P(R)
R

()4 = max (z,0)),
0<h<1/2, fu(e) =@ —=lz/hl)y (2| <1/2),  fulz +1) = fu(@),

2) = h+ QhZ (Smﬂ;’fh > cos (2kz) € Pa(T).

3. The classes of even functions

Let f : R — R be even function, A f f(y) cos (2myx) dy its Fourier

transform, f(x f f ) cos (2myx) dy its inverse Fourier transform.

For 0 < h < 1/2 let us define some classes of even continuous positive
definite functions:

Ki(h) = {f € COR)(L(R): f(0) =1, F 20 on R, supp f C [~h,h]},

Kr(h) = {f €C(T): f(0)=1, f, >0 on Z,, supp f C [—h,h]}.

We need as well to define some classes of even entire functions of exponen-
tial type.

Let Er(h) (Ez(h)) be the class of even entire functions F'(z) of exponential
type 2mh which satisfy the conditions F(xz) > 0 on R (on Z), ﬁ(O) =
= [F(z)dz=F(0)+2 > F(v)=1

R v=1

It is evident that Egr(h) C L(R). According to Plancherel-Polya theorem
[11] Ez(h) C L(R), too.

Between classes Kg(h) and Er(h), Kr(h) and Ez(h) it is possible to
establish bijections. According to Paley-Wiener theorem [12] if f(x) € Kgr(h),
then F(z) = ]?(z) € Egr(h) and F(0) = f(O) = [ f(y)dy. Conversely, if

R

F(2) € Ex(h), then f(z) = F(x) € Kg(h) and £(0) = F(0).
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Similarly if

flz) = Fo+ QZﬁ,cos (2mvz) € Kr(h),

v=1

then
h

F(z)= /f(x) cos (2mzx)dx € Ez(h)

—h

and F(v) = f,. If F(z) € Ez(h), then according to Paley-Wiener theorem and
Poisson summation formula [12]

oo

fl@) = F(z+k) =F(0)+2> F(v)cos(2mvz) € Kr(h).
keZ v=1

4. Extremal problems

The integral Turan problem. Let us define the integral Turdn problems
for R and T. To calculate the following values:

h
(3) Ap(h) = sup /f@waeKmm ,
h
h
(4) An(h) = sup / f(a)dz : f € Ka(h)
“n

Taking account the connections between classes Kg(h) and Eg(h), Kt(h)
and Ez(h), we get

(5) Ar(h) =sup{F(0): F € Er(h)},

(6) Ar(h) =sup{F(0): F € Ez(h)}.
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The pointwise Turan problem. Let us define the pointwise Turan
problems for R and T. For 0 < z < h to calculate the following values

(7) Ag(z,h) = sup{f(z): f € K(h)},

(8) Ar(xz, h) =sup{f(z) : f € Kr(h)}.

As in the case of integral Turdn problems we have

9) Agr(x, h) = sup /F(y) cos (2mxy)dy : F € Eg(h) 7,
R

(10) Ar(z, h) = sup /F(y) cos (2may)dy : F € Ez(h)
R

5. The case of line

The problems (3), (7) were solved by Boas and Kac in 1945 in [13]. The
solutions were based on the representation for positive definite function f(x)
from Kg(h) in the form of

(1) @)= [ e+ g)ato)s
R
R h/2 2
where u(x) = 0, |z| > h/2, u € Ly(R), £(0) = ||ul|3 =1, f(0) = _hf/2 udx

The function u(x) is called a Boas-Kac convolution root of f(z). With (11),
by the Cauchy-Bunyakovsky inequality, we get the estimation

h/2 2 h/2

/hf(x)dx = /udx <h / |u|>dz = hf(0) = h.
h

h/2 —h/2
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It is attained at function f*(z/h) defined in (1). Boas-Kac convolution root for
the function f*(z/h) is uj(z) = (1/\/5))([,;1/2,;1/2] (w), where X[_p/2,1/2) is the
characteristic function of the interval [—h/2,h/2]. The corresponding entire

, 2
function is Fyf(z) = h (m) . Thus

mhz
Ar(h) = h.

They also proved that

Agr(z,h) = cos <m7r_|_1> ,

where |z[ is a least integer not lower than z.
6. The integral Turan problem in the case of torus

The problem (4) was set up by P. Turdn in 1970 in a private conversation
with S.B. Stechkin. It has application in the analytic number theory. The pe-
riodic positive definite function from Kr(h) does not admit the representation
(11) that is why the problem (4) is much more complicated.

The function (2) f(z) € Kr(h), so Ar(h) > h. S.B. Stechkin [14] found
that Ar(1/q) = 1/q, ¢ € N and Ar(h) = h + O(h?) (h — 0). A.Yu. Popov
proved that Ar(h) > h, h # 1/q. Earlier this inequality was proved by G.
Haldsz. D.V. Gorbachev [2] made it more precise proving that Ar(h) = h +
O(h?®), h — 0. It was a hypothesis of A.Yu. Popov. D.V. Gorbachev and
A.S. Manoshina [15] showed the problem (4) for rational h can be reduced to a
discrete variant of a well known Fejér problem about the greatest value at zero
of nonnegative trigonometric polynomial with fixed average value.

The first discrete Fejér problem. For p,q € N, p < ¢/2, (p,q) =1
calculate the value

(12) )‘(pa q) = Suptpfl(o)v

if

p—1

~ 2rk

tpl(x):1+2Ztkcos(7qu>>0, r€Zqy=A{0,1,...,9—1}.
k=1
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Here (p,q) = 1 means, that p and ¢ are relatively prime.

The problem (12) is the discrete variant of well known classic Fejér
problem. Calculate the value

A(p) = supt,-1(0),

if
p—1
tp—1(xz) =1+ ZtAk cos (2rkx) >0, xz€T.
k=1
This problem was set and solved by L. Fejér [16].
In [15] the equality

(13) Ap <p> _Ap,9)

q q

is proved and the values A(p, q) are calculated for small p.

In 2004 V.I. Ivanov and Yu.D. Rudomazina [17, 18, 19] solved the discrete
analog of Fejér problem and thus the solution of integral Turdan problem for
rational h was achieved. In 2006 V.I. Ivanov [20] managed to solve the integral
Turdn problem for irrational h.

In what follows are outlined the main points of the solution of problems

(4), (12).
7. Special partition of a set of natural numbers

Let us denote for the real number z: [z] is its integral part, {z} its
fractional part, (z) the distance to its nearest integer. We have

p=lal+{o}, (@) =miple —v| = min{{z},1 - {z}},

[x] € Z, {z} €][0,1), (z) €10,1/2].

For h € (0,1/2) let us define the partition of a set of natural numbers N
by
So(h) ={rveN:(vh) =0}, Si1(h)={rveN:(vh)e (0,h)},
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Sy (h) ={v € N: (vh) > h}.
These sets do not intersect and N = Sy (h) U Sy (h) U Ss (h).
Note that for h = p/q (irreducible fraction)

() -tvem 5 (5)-{[2) 3] vrenren)

For irrational h

8. The case of rational h

The solutions of (4) for rational h = p/q and of (12) are based on
constructing of special trigonometric polynomial.

Lemma 1. Ifp,q € N, p < ¢q/2, (p,q) = 1, then there is an even
trigonometric polynomial

p—1
~ ~ 2rkx
foq(x) = f7+2 E N cos< . ),
k=1

satisfying the conditions
) fP9>0 (k=0,1,....,p—1),

2) fra(W) =1 (wef{0}USo(p/q), [fpqa(W)=0 (veSi(p/q)),0<
<fpaW) <1 (veSi(p/q))-

The polynomial f, , has zeros on interval 1 < = < ¢/2 in the points of the

Sp,q:{[(ﬂ :¢:1,...,[§}}U{[ﬂ+1:z‘:1,...,{p;1}}.
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The set S, 4/q approximate the zeros i/p of the well known Fejér polynomial

Fyi(z)=1 +2:Z_j (1 - f}) cos (2rkz) = 2}) (mf

on the subgroup of the torus {i/q}. The set S, ; has the arithmetic structure

Spe=1q¢{Fk/q) :k=1,...,p—1},

where 7p =1 or 7(¢ — p) =1 in Z,.
Lemma 2. Ifp,q € N, p < q/2, (p,q) = 1, then for every even polynomial

<27rkac>
Z 1 COS
k=0

the quadrature formula

fo=F2f(0 +2Zf,€qf 7k)

k=1

18 fulfilled.
From Lemma 2 we have the upper estimation for (12)
Apq) <

p,q’
0

This estimation is achieved for the polynomial

p,q(x) = fpf;?f)-
0

The polynomial in (12) F), , is called the discrete extremal Fejér polynomial.
According to (13) the following theorem is proved.
Theorem 1. For every p,q €N, p < ¢q/2, (p,q) =1

1

p.q
0

Ap,q) = Fp,q(o) =

b
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Ag (P> _AP:9) _ Fpa(0) _

q

¢  q qfr
Let us put the solution of problem (4) that does not use (13).

Lemma 3. Ifp,qg € N, p < q/2, (p,q) = 1, then there is an even
trigonometric polynomial

fa/2) .
Ipa (%) =G5 +2 ng ( p )

for which the following conditions are satisfied

1) aPq _ f/}p,q’ gpq >O (k:pa7[q/2])7
0

2) gpq(v) = 1 (v€{0}USo (9/9)); gpg(¥) = 0 (v € S2(p/q)), 0 <
<Gpq () <1 (veSi(p/q).

The coefficients of polynomial g, ,(z) are calculated by the following
formula
G = fp.a(Tk)

k - = .

afy?

Lemma 3 allows to write down quadrature formulas that will give upper
bound for the function (4). Lemma 1 allows to construct extremal functions.

Lemma 4. For every function

f(x) = fo+22fkcos (2rkx), Z‘fk’<oo

the quadrature formula

lq/2] k
“FQng)q ( ) f0+2 Z fk+2 Z fkgp,q )

0 keSo(p/q) keSi(p/q)

1s fulfilled.

From Lemma 4 we have the following upper estimation for (4)

p 1
» ()2
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Their accuracy is checked at function

2
sin (%’“)
@ 1 + 2 Z T fp,q (k) COsS (27Tk'$) 5
keSa(p/q) a

1
Pp.q(T) =

for which the following conditions are satisfied
©p.q () € K1 (Z) , @pg(x) >0 and decrease on [0,p/q) .

This function was suggested in [15]. Let us note that this function is
piecewise linear.

Lemma 5. For every even entire function F (z) € L(R) of exponential
type the following quadrature formula is fulfilled

~ w2
F(o)+2) :@\”’QF<> =
(0) FE

Fp.a
a/fo k=p

=F0)+2 Y  Fk)+2 >  F(k)gpg(k).

keSo(p/q) keS1(p/q)

The upper bound (14) for (4) arises from Lemma 5 and (6). Its accuracy
is checked at function
2

= T TZ
afy? n

Gpq(2) frq (2) =

_ Alm I1 (1(2)2)2 11 <1(2>2)6Ez(p/q)-

keSi(p/q)

9. The case of irrational h

For calculating values At (h), with irrational h it is sufficient to prove their
continuity at h.
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Theorem 2. At the interval (0,1/2] the function Ay (h) is continuous
and increasing.

The proof of continuity Ar (h) is based on the approach suggested by
V.S. Balagansky [21] while proving the continuity of an exact constant in the
Jackson inequality in the space Ls (T) as function of argument at the module
of continuity.

The continuity of function At (k) and equality (6) allows to obtain values
for irrational i by using their values for rational h and with the help of the
passage to the limit. Thus we get the following theorem.

Theorem 3. If h € (0,1/2) is irrational, then

—1

dey = (142 % H( ()>

veSy(h) keSi(h)
The extremal function G, (z) in (6) has zeros at set Sy (h) and the extremal

function in the integral Turdn problem (4) ¢, (x) is positive and does not
decrease at the interval [0, h).

The extremal functions in Theorem 3 are of the form

G (=) = 4r () ] (1 - (Z)2> :

keSi(h)

(15) on () = ) + QZGh cos (2mkx).

We get for rational h = p/q G (z) = Gpq(z), @n(T) = @pq(T).

Lemma 6. For every even function

f(x) fo+2kaCOS (2mkz), Z‘fk’<00

the quadrature formula

Grh(0)F(0)+2 Y Gu(k)f((kh)) =Fo+2 Y fet2 > Fuon ((kh))

keSz(h) keSo(h) keSi(h)

1s fulfilled.
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Lemma 7. For every even entire function F' € L (R) of exponential type
the quadrature formula

Gh(0)F(0)+2 > Gu(k)F((kh) =
keSa(h)

=F0)+2 Y F(k)+2 > F(k)en((kh)
keSo(h) keSi(h)

1s fulfilled.
10. The characterization of extremal functions in (4) and (6)

It is sufficient to characterize the extremal functions in problem (6).
Extremal functions in Turdn problem (4) will be obtained by means of the
correspondence between problems (4) and (6) mentioned above. For rational
h = p/q € (0,1/2) the solution of (6) is not unique. All extremal functions
have the form of

6 i) = 42 (L) (z)ﬁ (1 - (q,ﬂ)) (1 - (k)>

where 2z € [gk — 1, ¢k + 1].

For irrational h the extremal function G}, (2) is the only possible solution
in (15).

The extremal function can be written in the form

cten - [T (1 (i) ) (- (i)

for every h € (0,1/2).
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11. The pointwise Turan problem for the case of torus

Let us consider the pointwise Turdn problem (8). This problem is
investigated in the paper of V.V. Arestov, E.E. Berdysheva and H. Berens
[22]. They solved this problem in the case h =1/2,0 <z < 1/2

1 if x is irrational,

A <x,1) 71 ifacz%, ris even,
%(1—}—(}05%) ifx:ﬁ, r is odd.

The paper [7] is devoted to the problem (8), too.

Like as in the case of integral Turan problem there is a connection between
problem (8) for rational x = v/q, h = p/q and some discrete Fejér problem.

The second discrete Fejér problem. For v,p,q e N, p < ¢/2, v <p-—1
calculate the value

(16) A(Vapv q) = SUP?V»
if

L 2k
tp_l(x)zl—i—QZtAkcos( . )20, T € Zqg.
k=1

In the continuous case, when

p—1
tp—1(xz) =1+ 22%\;C cos (2rkz) >0, z€T,
k=1

this problem was solved by L. Fejér [16] (v = 1), G. Szegé [23], E. Egervéry
and O. Szasz [24] (v > 1).

Theorem 4. Ifv,p,g e N, p<gq/2, v <p-—1, (v,p,q) =1, then
v
A'IF (1 p) = )‘(Vap7 q)
q q
If the polynomial ty,_,(x) is extremal for the problem (16), then the function

. 2
> (sin (%)

*

_ tp—l

(k) cos (2mkx)
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is extremal for the problem (8).
Lemma 8. The following equality

A(vd, p, gd) = A (v, {pﬂ + 1,q)

s true.

We can assume, that (v,q) = 1. The next modification of Theorem 4
follows from monotonicity of function Ar(z, k) as function of A and the Lemma
8.

Theorem 5. Ifv,p,g €N, p<q/2,v<p-—1, (v,q) =1, then

Ar (Zh) = A\v,p,q), he <p”’} :

qa g

We have managed to solve the problem (16) only for the highest coefficient
v = p — 1. In this case the extremal polynomial in the continuous problem is
14 ¢((p — 1)z). But in this elementary case the discrete approximation of
continuous problem is rather complicated. The following theorem is true.

Theorem 6. If (p — 1,q) = 1, q is odd, then

B 1 prl,q(o)
~ 2cos(7/q) . Fy1,4(1)

)\(p_ 17107 q)
If (p—1,q) =1, q is even, then

Fy1.4(0)
Ap—1 = —pbai
(r—1,p,9) 2F, 10(1)

Here F,_1 4(x) is the extremal polynomial of order p — 2 in the first discrete
Fejér problem.

Upper estimation for the value (16) is done with the help of quadrature
formula in Theorem 7.

Theorem 7. If (p — 1,q) =1, q is odd, then for every even polynomial
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the quadrature formula

1 . Fp*l,q(o)
2cos(m/q) Fp1,4(1)

p—2
fo—Fo1 =D Auf(7(2k + 1))

k=0
is true, where
2Fp—1)=11in Z;, Ar>0 (k=0,1,...,p—2).

If (p—1,q9) =1, q is even, then

/2
o PR d
L1400 fo—fp—1= E By f(Tk),
2Fp—17q(1) k=q/2—p+2

where
Fp—1)=1in Z,, Bpr>0 (k=¢q/2—p+2,...,q/2).

Zeros of extremal polynomials in the problem (16) with ¥ = p—1 coincide
with nodes of quadrature formulas in Theorem 7.

If (p —1,q) = 1, then Theorems 5, 6 allow to calculate Ap (%,h) for
he (E E]

q ’q
12. Conclusion

It will be interesting to investigate Fejér and Turdn problems for finite
abelian groups
G =7y XLy X ... X Ly,

and for compact abelian zero-dimensional groups

G = ka .

3

k=1

There are some results in [19] and [25].
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