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THE WALSH TRANSFORM
BELONGING TO THE SPACE Lp(1 < p < 2)

B.I. Golubov (Moscow, Russia)

Dedicated to Prof. Ferenc Schipp on his 70th birthday and
to Prof. Péter Simon on his 60th birthday

Abstract. The sufficient conditions on the functions under which their

Walsh transforms belong to the space Lp(R+), 1 < p < 2, are given.

1. Introduction

The properties of classical Fourier transform are presented, e.g., in the
book of E. Titchmarsh [1]. The Walsh transform F (f) ≡ f̃ was introduced by
N.G. Fine [2] in 1950. This transform has the properties analogous to the ones
of classical Fourier transform. For example, the inversion formula F (F (f)) = f

and Plansherel equality ‖f̃‖2 = ‖f‖2 for functions f ∈ L2(R+) are valid, where
R+ = [0,+∞) and ‖f‖p denotes the usual Lp(R+)-norm of the function f . If
f ∈ Lp(R+), 1 ≤ p ≤ 2, then f̃ ∈ Lq(R+) and ‖f̃‖q ≤ ‖f‖p, where 1/p+1/q = 1
(see [3], Ch. 9).

The Walsh transform was generalized by N.Ya. Vilenkin [4]. He introduced
the notation of multiplicative Fourier transform for functions defined on locally
compact Abelian group. M.S. Bespalov (see [5], [6] and [7], Ch. 6) proved some
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results for multiplicative Fourier transform on R+ similar to the ones of classical
Fourier transform.

In this article we give the sufficient conditions on the functions under which
their Walsh transforms belong to the space Lp(R+), 1 < p < 2.

2. Definitions and auxiliary results

For a number x ∈ R+ ≡ [0, +∞) and a natural n we set

(2.1) xn ≡ [2nx] (mod 2), x−n ≡
[
21−nx

]
(mod 2),

where [a] denotes the integer part of the number a, and the numbers xn and
x−n are equal to 0 or 1.

Let us note that x−n (or xn) is equal to n-th dyadic digit of integer part
(or fractional part) of the number x ∈ R+ and the dyadic-rational numbers
x ∈ R+ have finite expansions.

Since x−n = 0 for n ≥ n(x) for (x, y) ∈ R+ × R+ the series

t(x, y) =
∞∑

n=1

(xny−n + x−nyn)

is finite and its sum is a nonnegative integer.
The Walsh kernel ψ(x, y) is defined by the equality

(2.2) ψ(x, y) = (−1)t(x,y), (x, y) ∈ R+ × R+.

The Walsh transform F [f ] ≡ f̃ of a function f ∈ L(R+) is defined by the
equality

(2.3) f̃(x) =
∫

R+

ψ(x, y)f(y)dy.

If f ∈ Lp(R+), 1 < p ≤ 2, we define f̃ as the limit of the function sequence

2n∫
0

f(y)ψ(x, y)dy, n ∈ Z+
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by the norm of the space Lq(R+), 1/p + 1/q = 1.

For the Walsh transform the following theorems are valid.

Theorem A. If f ∈ Lp(R+), 1 ≤ p ≤ 2, then f̃ ∈ Lq(R+), 1/p+1/q = 1,
and ‖f̃‖q ≤ ‖f‖p.

The proof of this theorem see e.g. in ([3], p. 35).

Theorem B. If
∫

R+

|f(x)|qxq−2dx < ∞, 2 < q < ∞, then f̃ ∈ Lq(R+).

This theorem is a special case of the similar result for multiplicative Fourier
transform (see [5] or [6]).

Let us introduce the operation ⊕ of dyadic addition on R+ as follows

x ⊕ y = z for (x, y) ∈ R+ × R+,

where the number z has dyadic digits

zn ≡ xn + yn (mod 2), n ∈ Z \ {0},

and xn, yn are calculated by the rule (2.1).
Let us note that

z =
+∞∑
n=1

zn

2n
+

+∞∑
n=1

2n−1z−n

and the case zn = 1 for n ≥ n(z) is not excluded.
For the Walsh kernel (2.2) the equality

(2.4) ψ(x ⊕ y, t) = ψ(x, t)ψ(y, t)

holds if t, x, y ∈ R+ and x ⊕ y is dyadic irrational.

Lemma 2.1. For n ∈ Z, α > 0 and x > 0 the function

W {α}
n (x) ≡ lim

m→+∞

2m∫
2−n

ψ(x, y)y−αdy

is defined and the limit exists also in the space L(R+), hence W
{α}
n ∈ L(R+).

For α = 1 this statement is known (see. [3], p. 434), and for α > 0 it was
proved in our article [9].
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Let us define the dyadic convolution f ∗ g of the functions f, g ∈ L(R+) as
follows

(f ∗ g)(x) =
∫

R+

f(y)g(x ⊕ y)dy, x ∈ R+.

It is known that f ∗ g ∈ L(R+), (f ∗ g)̃ = f̃(x)g̃(x) for all x ∈ R+ The
dyadic convolution exists also in the case f ∈ Lp(R+) 1 ≤ p ≤ ∞, g ∈ L(R+),
moreover f ∗ g ∈ Lp(R+) and (f ∗ g)̃ = f̃(x)g̃(x) almost everywhere on R+ for
1 ≤ p ≤ 2. This can be proved by using the equality (2.4) (see e.g. [10], Ch. 1,
Theorem 2.6).

Definition 2.1. Let α > 0, f, g ∈ Lp(R+), 1 ≤ p ≤ ∞, and

lim
n→+∞ ‖f ∗ W {α}

n − g‖Lp(R+) = 0.

Then the function g ≡ Ip
α(f) will be called the strong dyadic integral (SDI) of

order α of the function f in the space Lp(R+).
For α = 1, p = 1, this definition was introduced by H.J. Wagner [11].

Lemma 2.2. Let f, g ∈ Lp(R+), 1 ≤ p ≤ 2, and let the function g be SDI
of order α > 0 of the function f in the space Lp(R+). Then g̃(x) = f̃(x)x−α

almost everywhere on R+.

Proof. It follows from the Lemma 2.1 that W̃
{α}
n (x) = x−αX[2−n,+∞)(x)

for x ∈ R+. Therefore

(2.5) (f ∗ W {α}
n )̃(x) = f̃(x)x−αX[2−n,+∞)(x)

almost everywhere in R+. From Theorem A we have

‖(f ∗ W {α}
n )̃ − g̃‖q ≤ ‖f ∗ W {α}

n − g‖p,
1
p

+
1
q

= 1.

By the conjecture of the lemma the right-hand side of this inequality tends
to 0 as n → +∞. Therefore the left-hand side also tends to 0. Hence, there
exists the subsequence nk → +∞ such that lim

k→+∞
(f ∗W

{α}
n )̃(x) = g̃(x) almost

everywhere on R+. Now the assertion of the lemma follows from the equality
(2.5).

Let us note that in the case p = 1 the assertion of the Lemma 2.2 can be
made more precise. In this case g̃(x) = f̃(x)x−α for x > 0, moreover g̃(0) = 0.
It was proved by H.J. Wagner [11] in the case p = 1, α = 1 (see also [3], p.
435), and by the author [9] in the case p = 1, α > 0.
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Theorem C. If a function f belongs to the space Lp(R+), 1 < p ≤ 2, then
the inequality

(2.6)
∫

R+

xp−2
∣∣∣f̃(x)

∣∣∣p dx ≤ Bp‖f‖p
p

is valid, where the constant Bp > 0 does not depend on the function f.

This theorem is a special case of the theorem, that was formulated by
M.S. Bespalov (see [5], Theorem 4 or [6], Theorem 3) for multiplicative Fourier
transforms. But he did not publish the proof of his theorem. He restricted
himself by pointing out that the proof is similar to that for classical Fourier
transform. For completeness we prove Theorem C, because we use it below for
the proof of the Theorem 3.2. Our proof differs from that mentioned in [5] and
[6].

For the proof of Theorem C we need some lemmas. For the Walsh kernel
(2.2) we will use the notation ψ(x, y) ≡ ψy(x).

Lemma 2.3. The system

(2.7)
{

2−
n
2 ψm2−n(x)X[0,2n)(x)

}∞
m=0

≡ {am(x)}∞m=0

is orthonormal on Dn = [0, 2n) for any fixed n ∈ Z+.

This result is well known (see e.g. [8], Ch. 1, Proposition 5.1).

Lemma 2.4. The equalities ãm,n(x) = 2
n
2 X[m2−n,(m+1)2−n)(x) are valid,

where m ∈ Z+, n ∈ Z, x ∈ R+.

This result is known also (see e.g. [8], Ch. 2, Lemma 1.1).

Let us denote by f̂n(k), n ∈ Z+, the Fourier coefficients of the function

(2.8) fn(x) = f(x), x ∈ Dn,

with respect to orthonormal system (2.7), i.e. we set

(2.9) f̂n(k) = 2−
n
2

∫
Dn

fn(t)ψk2−n(t)dt, k ∈ Z+.

Lemma 2.5. For any function f ∈ Lp(Dn), 1 ≤ p < ∞, n ∈ Z+, the
subsequence {S2m(f)}∞m=0 of its Fourier sums with respect to the system (2.7)
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converges to the function f in the space Lp(Dn) and almost everywhere on Dn.
Moreover, the inequality

(2.10) ‖S2n+m(f) − f‖p ≤ 21/pωp(f, 2−m)

holds, where

ωp(f, δ) = sup
0≤u≤δ

2n−u∫
0

|f(x + u) − f(x)|dx, δ ∈ Dn

is integral modulus of continuity of the function f in the space Lp(Dn).

Proof. For the case p = 1 this statement was proved in [8], (Ch. 2,
Lemma 5.3). For the case 1 ≤ p < ∞ we will prove it by similar way. In [8] (p.
64) the following equality

(2.11) S2n+m(f, x) = 2m

∫
Im

j

f(t)dt

has been proved, where Im
j is dyadic interval of range m, containing the point

x ∈ Dn. It follows from (2.11) that the subsequence {S2m(f)}∞m=0 converges
to f almost everywhere on Dn. Let us prove the inequality (2.10).

For i = 0, 1, . . . , 2n − 1 and Im
j =

[
i + j

2m , i + j+1
2m

)
it follows from the

equality (2.11)

(2.12)

i+1∫
i

|S2n+m(x, f) − f(x)|p dx =
2m−1∑
j=0

∫
Im

j

|S2n+m(x, f) − f(x)|p dx =

=
2m−1∑
j=0

∫
Im

j

1
|Im

j |

∣∣∣∣∣∣∣
∫

Im
j

(f(t) − f(x))dt

∣∣∣∣∣∣∣
p

dx ≤

≤
2m−1∑
j=0

∫
Im

j

1
|Im

j |

∫
Im

j

|(f(t) − f(x))|p dtdx.

Using the identity of P.L. Ulyanov (see [7], p. 223])

b∫
a

b∫
a

|f(x) − f(y)|pdxdy = 2

b−a∫
0

⎧⎨⎩
b−t∫
a

|f(y + t) − f(y)|pdy

⎫⎬⎭ dt
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in the case [a, b) = Im
j , we have from (2.12) the inequality

i+1∫
i

|S2n+m(x, f) − f(x)|p dx ≤

≤
2m−1∑
j=0

2m+1

2−m∫
0

⎧⎪⎨⎪⎩
i+ j+1

2m −u∫
i+ j

2m

|f(y + u) − f(y)|pdy

⎫⎪⎬⎪⎭ du =

= 2m+1

2−m∫
0

⎧⎨⎩
i+1−u∫

i

|f(y + u) − f(y)|pdy

⎫⎬⎭ du.

By summing these inequalities over i = 0, 1, . . . , 2n−1, we obtain the inequality

‖S2n+m(f) − f‖p
p ≤ 2m+1

2−m∫
0

⎧⎨⎩
2n−u∫
0

|f(y + u) − f(y)|pdy

⎫⎬⎭ du.

From here it follows easily

‖S2n+m(f) − f‖p ≤ 21/pωp

(
f, 2−m

)
.

Since f ∈ Lp(Dn), we conclude from the last inequality that the sequence
S2m(f) converges to the function f in the space Lp(Dn).

The proof of the last Lemma 2.6 is based on the following theorem of Paley
(see e.g. [13], p. 182).

Theorem D. Let {ϕk(x)}∞k=0 be orthonormal uniformly bounded system
on the interval [a, b] satisfying the inequality |ϕk(x)| ≤ M, x ∈ [a, b], k ∈ Z+.
Then there exists a constant 0 < Ap < ∞ such that the Fourier coefficients{

f̂(k)
}∞

k=0
of any function f ∈ Lp[a, b], 1 < p ≤ 2, with respect to this system

satisfy the inequality

∣∣∣f̂(0)
∣∣∣p +

∞∑
k=1

kp−2
∣∣∣f̂(k)

∣∣∣p ≤ ApM
2−p ‖f‖p

Lp[a,b] ,

where the constant Ap depends only on p.



212 B.I. Golubov

Lemma 2.6. If f ∈ Lp(Dn), 1 < p ≤ 2, n ∈ Z+, then for the Fourier
coefficients (2.9) of the function (2.8) the inequality

(2.13)
∣∣∣f̂n(0)

∣∣∣p +
∞∑

k=1

∣∣∣f̂n(k)
∣∣∣p

k2−p
≤ Ap · 2( p

2−1)n‖f‖p
Lp(Dn)

is valid.

Proof. The inequality (2.13) follows from Theorem D since the functions
of the orthonormal system (2.7) are bounded by the constant 2−n/2 on the
interval Dn = [0, 2n).

Proof of Theorem C. Let us set

(2.14) fn(x) = f(x)XDn
(x), x ∈ R+,

where XE(x) is the characteristic function of the set E ⊂ R+. The symbol
fn below will denote both the function (2.14) and its restriction (2.8) on the
interval Dn. The meaning of the notation will be clear from the context.

By the Lemma 2.5 the equality

(2.15) fn(x) = f̂n(0)2−n/2XDn
(x)+

∞∑
i=0

⎧⎨⎩
2i+1−1∑
k=2i

f̂n(k)2−
n
2 ψk2−n(x)

⎫⎬⎭XDn
(x)

is valid, where the series on the right-hand side converges both in the space
Lp(R+), 1 < p ≤ 2, and almost everywhere on R+. By applying the Walsh
transform to both sides of the equality (2.15) and using Lemma 2.4, we obtain
(2.16)

f̃n(x) = 2
n
2 f̂n(0)X[0,2−n)(x) +

+∞∑
i=0

⎧⎨⎩2
n
2

2i+1−1∑
k=2i

f̂n(k)X[k2−n,(k+1)2−n)(x)

⎫⎬⎭ ,

where the series in the right-hand side of (2.16) converges to f̃n(x) everywhere
on R+. Since the intervals In

k = [k2−n, (k + 1)2−n) , k ∈ Z+, are mutually
disjoint, the brackets in the right-hand side of the equality (2.16) can be
omitted. After that we obtain the equality

f̃n(x) = 2
n
2 f̂n(0)X[0,2−n)(x) + 2

n
2

∞∑
k=1

f̂n(k)X[k2−n,(k+1)2−n)(x),
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where the series in the right-hand side converges to f̃n(x) everywhere on R+.
From this equality we obtain easily

xp−2
∣∣∣f̃n(x)

∣∣∣p = xp−2
∣∣∣f̂n(0)

∣∣∣p 2
n
2 pX[0,2−n)(x)+

(2.17) +2
n
2 p

∞∑
k=1

∣∣∣f̂n(k)
∣∣∣p xp−2X[k2−n,(k+1)2−n)(x).

If we integrate the equality (2.17) over Dn, we have

∫
Dn

∣∣∣f̃n(x)
∣∣∣p

x2−p
dx = 2n(1−p/2)

⎧⎨⎩
∣∣∣f̂n(0)

∣∣∣p
p − 1

+
2n−1∑
k=1

∣∣∣f̂n(k)
∣∣∣p

p − 1
[
(k + 1)p−1 − kp−1

]⎫⎬⎭ .

Since (k+1)p−1−kp−1 ∼ (p−1)kp−2 as k → +∞, we obtain from the previous
equality

(2.18)
∫

Dn

∣∣∣f̃n(x)
∣∣∣p

x2−p
dx ≤ Cp2n(1−p/2)

⎧⎨⎩∣∣∣f̂n(0)
∣∣∣p +

2n−1∑
k=1

∣∣∣f̂n(k)
∣∣∣p

k2−p

⎫⎬⎭ .

By integrating the equality (2.17) over the set [2n, +∞) we have

+∞∫
2n

xp−2
∣∣∣f̃n(x)

∣∣∣p dx = 2
n
2 p

∞∑
k=2n

∣∣∣f̂n(k)
∣∣∣p (k+1)2−n∫

k2−n

xp−2dx =

= 2n(1−p/2)
∞∑

k=2n

∣∣∣f̂n(k)
∣∣∣p [(k + 1)p−1 − kp−1]

p − 1
≤

(2.19) ≤ Cp2n(1−p/2)
∞∑

k=2n

∣∣∣f̂n(k)
∣∣∣p kp−2.

By summing the inequalities (2.18) and (2.19) we obtain

(2.20)
∫

R+

∣∣∣f̃n(x)
∣∣∣p

x2−p
dx ≤ Cp2n(1−p/2)

⎧⎨⎩∣∣∣f̂n(0)
∣∣∣p +

∞∑
k=1

∣∣∣f̂n(k)
∣∣∣p

k2−p

⎫⎬⎭ .
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From (2.20) by the Lemma 2.6 we have the inequality

(2.21)
∫

R+

∣∣∣f̃n(x)
∣∣∣p

x2−p
dx ≤ ApCp‖f‖p

Lp(Dn) ≤ ApCp‖f‖Lp(R+).

Since f ∈ Lp(R+), 1 < p ≤ 2, so lim
n→∞ ‖f̃n − f̃‖q = 0, where 1/p + 1/q =

= 1. Hence there exists a sequence of natural numbers nk → +∞, such that
f̃nk

(x) → f̃(x) as k → +∞ for almost all x ∈ R+. If we substitute the index
n by nk in the left-hand side of the inequality (2.21) and apply the theorem
of Fatou (see [14], p. 133), we obtain the inequality (2.6) with the constant
Bp = ApCp.

For the proof of the Theorem 3.1 below we will use the following

Theorem E. If f ∈ Lp(R+), 1 < p ≤ ∞ and F (x) = x−1
x∫
0

f(t)dt, then

F ∈ Lp(R+).

This theorem was proved by G.H. Hardy (see [12], Theorem 327).

3. Proof of main results

In Theorems 3.1 and 3.2 below the Walsh transform is defined by the
equality (2.3), where the integral is understood as improper with singular point
+∞.

Theorem 3.1.* Let the function f(x) be defined and nonincreasing on
R+ and f(x) → 0 as x → +∞. Then the improper integral in right-hand side
of (2.3) converges at each point x > 0, and if f(x)x1−2/p ∈ Lp(R+), where
1 < p < 2, then f̃(x) ∈ Lp(R+).

Proof. For the Walsh kernel (2.2) at each point (x, y), where x > 0 and
y ∈ R+ the inequality

(3.1)

∣∣∣∣∣∣
y∫

0

ψ(x, t)dt

∣∣∣∣∣∣ ≤ 3/x

* This theorem is a counterpart to a theorem of Hardy and Littlewood on
classical Fourier transform (see, e.g. [1], Theorem 82).
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holds (see [3], p. 428). Therefore if the function f(x) is nonincreasing on R+

and f(x) → 0 as x → +∞, the improper integral∫
R+

f(y)ψ(x, y)dy

with singular point +∞ converges at each point x > 0. Hence the Walsh
transform f̃(x) is defined by the equality (2.3) at all points x > 0.

Let us assume that the function f satisfies the condition

(3.2) f(x)x1−2/p ∈ Lp(R+), 1 < p < 2.

Let us write f̃(x) as the sum of two summands as follows

(3.3) f̃(x) =

1/x∫
0

f(y)ψ(x, y)dy +

+∞∫
1/x

f(y)ψ(x, y)dy ≡ F1(x) + F2(x), x > 0.

Now we will prove that F1, F2 ∈ Lp(R+). According to the mean value theorem
of Bonne there exists a point ξ > 1/x such that

F2(x) = f(1/x)

ξ∫
1/x

ψ(x, y)dy.

Hence it follows from (3.1)

|F2(x)| ≤ 6f(1/x)/x, x > 0.

Therefore we obtain from (3.2)

(3.4)
∫

R+

|F2(x)|pdx ≤ 6p

∫
R+

[f(1/x)/x]pdx = 6p

∫
R+

[f(y)]pyp−2dy < ∞,

that is F2 ∈ Lp(R+).

Let us prove now that F1 ∈ Lp(R+). Since ψ(x, y) = ±1 (see(2.2)), then
the equality

|F1(x)| ≤
1/x∫
0

f(1/y)dy, x > 0
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is valid. Hence we have

(3.5)
∫

R+

|F1(x)|pdx ≤
∫

R+

⎛⎜⎝ 1/x∫
0

[f(y)]dy

⎞⎟⎠
p

dx =
∫

R+

⎛⎝ 1
t2/p

t∫
0

[f(y)]dy

⎞⎠p

dt.

We note that the condition (3.2) is equivalent to

(3.6) g(x) :≡ f(x)x1−2/p ∈ Lp(R+).

Since f(x) = g(x)x2/p−1,

y−2/p

y∫
0

[f(t)]dt = y−2/p

y∫
0

g(t)t
2
p−1dt ≤ y−1

y∫
0

g(t)dt ≡ G(y).

As long as 1 < p < 2, by the Theorem E of Hardy it follows from the condition
(3.6) that G(y) ∈ Lp(R+). Then from (3.5) we have F1 ∈ Lp(R+).

Thus it is proved that both summands in right-hand side of the equality
(3.3) belong to the space Lp(R+). Hence the inclusion f̃ ∈ Lp(R+) is proved.

The following theorem may be considered as an analog of a theorem of
Titchmarsh relating to classical Fourier transform (see [1], Theorem 83).

Theorem 3.2. Let the function ϕ ∈ Lp(R+), 1 < p < 2, has the strong
dyadic integral Ip

(2/p)−1(ϕ) ≡ f . Then the inclusion f̃ ∈ Lp(R+) holds.

Proof. According to the Lemma 2.2 the equality f̃(x) = φ̃(x)x1−2/p is
valid almost everywhere on R+. If φ ∈ Lp(R+), 1 < p < 2, then by the
Theorem C we have ϕ̃(x)x1−2/p ∈ Lp(R+), that is f̃ ∈ Lp(R+).
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