
Annales Univ. Sci. Budapest., Sect. Comp. 33 (2010) 193-203

MAXIMAL OPERATORS OF FEJÉR MEANS
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Abstract. The main aim of this paper is to prove that there exists

a martingale f ∈ H1/2 such that the maximal Fejér operator and the

conjugate Fejér operator does not belong to the space L1/2.

1. Introduction

The first result with respect to the a.e. convergence of the Walsh-Fejér
means σnf is due to Fine [1]. Later, Schipp [6] showed that the maximal
operator σ∗f is of weak type (1, 1), from which the a.e. convergence follows
by standard argument. Schipp’s result implies by interpolation also the
boundedness of σ∗ : Lp → Lp (1 < p ≤ ∞). This fails to hold for p = 1
but Fujii [2] proved that σ∗ is bounded from the dyadic Hardy space H1 to
the space L1 (see also Simon [7]). Fujii’s theorem was extended by Weisz [9].
Namely, he proved that the maximal operator σ∗f and the conjugate maximal
operator σ̃

(t)
∗ f is bounded from the martingale Hardy space Hp(G) to the space

Lp(G) for p > 1/2. Simon [8] gave a counterexample, which shows that this
boundedness does not hold for 0 < p < 1/2. In the endpoint case p = 1/2
Weisz [11] proved that σ∗ is bounded from the Hardy space H1/2(G) to the
space weak-L1/2(G). In [4] (see also [3]) the author proved that the maximal
operator σ∗ is not bounded from the Hardy space H1/2(G) to the space L1/2(G).
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In this paper we shall prove a stronger result than the unboundedness of
the maximal operator from the Hardy space H1/2(G) to the space L1/2(G) in
particular, we prove that there exists a martingale f ∈ H1/2(G) such that

‖σ∗f‖1/2 = +∞

and
‖σ̃(t)

∗ f‖1/2 = +∞.

2. Definitions and notation

Let P denote the set of positive integers, N := P ∪ {0}. Denote Z2 the
discrete cyclic group of order 2, that is Z2 = {0, 1}, where the group operation
is the modulo 2 addition and every subset is open. The Haar measure on Z2 is
given such that the measure of a singleton is 1/2. Let G be the complete direct
product of the countable infinite copies of the compact groups Z2. The elements
of G are of the form x = (x0, x1, . . . , xk, . . .) with xk ∈ {0, 1} (k ∈ N). The
group operation on G is the coordinate-wise addition, the measure (denoted
by μ) and the topology are the product measure and topology. The compact
Abelian group G is called the Walsh group. A base for the neighborhoods of
G can be given in the following way:

I0(x) := G,

In(x) := In(x0, . . . , xn−1) := {y ∈ G : y = (x0, . . . , xn−1, yn, yn+1, . . .)}

(x ∈ G, n ∈ N).

These sets are called the dyadic intervals. Let 0 = (0 : i ∈ N) ∈ G denote the
null element of G, In := In(0) (n ∈ N). Set en := (0, . . . , 0, 1, 0, . . .) ∈ G the
n-th coordinate of which is 1 and the rest are zeros (n ∈ N). Let In := G\In.

For k ∈ N and x ∈ G denote

rk(x) := (−1)xk (x ∈ G, k ∈ N)

the k-th Rademacher function. If n ∈ N, then n =
∞∑

i=0

ni2i, where ni ∈

∈ {0, 1} (i ∈ N), i.e. n is expressed in the number system of base 2. Denote
|n| := max{j ∈ N : nj �= 0}, that is, 2|n| ≤ n < 2|n|+1.
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The Walsh-Paley system is defined as the sequence of Walsh-Paley func-
tions:

wn(x) :=
∞∏

k=0

(rk(x))nk = r|n|(x)(−1)

|n|−1∑
k=0

nkxk

(x ∈ G, n ∈ P).

The Walsh-Dirichlet kernel is defined by

Dn(x) =
n−1∑
k=0

wk(x).

Recall that

(1) D2n(x) =

{ 2n, if x ∈ In,

0, if x ∈ In.

The partial sums of the Walsh-Fourier series are defined as follows:

SMf(x) :=
M−1∑
i=0

f̂(i)wi(x),

where the number

f̂(i) =
∫
G

f(x)wi(x)dμ(x)

is said to be the i-th Walsh-Fourier coefficient of the function f .
The norm (or quasinorm) of the space Lp(G) is defined by

‖f‖p :=

⎛⎝∫
G

|f(x)|pdμ(x)

⎞⎠1/p

(0 < p < +∞).

The space weak-Lp(G) consists of all measurable functions f for which

‖f‖weak−Lp(G) := sup
λ>0

λμ(|f | > λ)1/p < +∞.

The σ-algebra generated by the Ik dyadic interval of measure 2−k will be
denoted by Fk (k ∈ N).
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Denote by f = (f (n), n ∈ N) the martingale with respect to (Fn, n ∈ N)
(for details see, e.g. [10]). The maximal function of a martingale f is defined
by

f∗ = sup
n∈N

|f (n)|.

In case f ∈ L1(G), the maximal function can also be given by

f∗(x) = sup
n∈N

1
μ(In(x))

∣∣∣∣∣∣∣
∫

In(x)

f(u)dμ(u)

∣∣∣∣∣∣∣ , x ∈ G.

For 0 < p < ∞ the Hardy martingale space Hp(G) consists of all
martingales for which

‖f‖Hp
:= ‖f∗‖p < ∞.

If f ∈ L1(G) then it is easy to show that the sequence (S2nf : n ∈ N) is a
martingale. If f is a martingale, that is f = (f (0), f (1), . . .) then the Walsh-
Fourier coefficients must be defined in a little bit different way:

f̂(i) = lim
k→∞

∫
G

f (k)(x)wi(x)dμ(x).

The Walsh-Fourier coefficients of f ∈ L1(G) are the same as the ones of
the martingale (S2nf : n ∈ N) obtained from f .

For n = 1, 2, . . . and a martingale f the Fejér means of the Walsh-Fourier
series of the function f is given by

σnf(x) =
1
n

n−1∑
j=0

Sj(f ;x).

For a martingale

f ∼
∞∑

n=0

(fn − fn−1)

the conjugate transforms are defined by the martingale

f̃ (t) ∼
∞∑

n=0

rn(t)(fn − fn−1),



Maximal operators of Fejér means of Walsh-Fourier series 197

where t ∈ [0, 1) is fixed. Note that f̃ (0) = f . As is well known, if f

is an integrable function then the conjugate transforms f̃ (t) do exist almost
everywhere, but they are not integrable in general.

Let
ρ0 := r0, ρk := rn, if 2(n−1) ≤ k < 2n.

Then the n-th partial sum of the conjugate transforms is given by

S̃(t)
n f(x) :=

n−1∑
k=0

ρk(t)f̂(k)wk(x).

The conjugate Fejér means of a martingale f are introduced by

σ̃(t)
n f(x) =

1
n

n−1∑
j=0

S̃
(t)
j f(x) (t ∈ [0, 1); n ∈ P).

For the martingale f we consider maximal operators

σ∗f = sup
n∈P

|σnf(x)|, σ̃
(t)
∗ f = sup

n∈P
|σ̃(t)

n f(x)|.

The n-th Fejér kernel of the Walsh-Fourier series is defined by

Kn(x) :=
1
n

n−1∑
k=0

Dk(x).

A bounded measurable function a is a p-atom, if there exists a dyadic
interval I, such that
(a)

∫
I

adμ = 0;

(b) ‖a‖∞ ≤ μ(I)−1/p;
(c) supp a ⊂ I.

The basic result of atomic decomposition is the following one.

Theorem A (Weisz [10]). A martingale f = (f (n) : n ∈ N) is in Hp (0 <
< p ≤ 1) if and only if there exists a sequence (ak, k ∈ N) of p-atoms and a
sequence (μk, k ∈ N) of real numbers such that for every n ∈ N,

(2)
∞∑

k=0

μkS2nak = f (n),
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∞∑
k=0

|μk‖p < ∞.

Moreover,

‖f‖Hp
∼ inf

( ∞∑
k=0

|μk|p
)1/p

,

where the infimum is taken over all decompositions of f of the form (2).

3. Formulation of main result

Theorem 1. There exists a martingale f ∈ H1/2(G) such that

‖σ∗f‖1/2 = +∞

and
‖σ̃(t)

∗ f‖1/2 = +∞

for all t ∈ G.

4. Auxiliary propositions

Lemma 1. ([5]) Let 2 < A ∈ P and qA := 22A + 22A−2 + . . . + 22 + 20.
Then

qA−1|KqA−1(x)| ≥ 22m+2s−3

for x ∈ I2A(0, . . . , 0, x2m = 1, 0, . . . , 0, x2s = 1, x2s+1, . . . , x2A−1), m =
= 0, 1, . . . , A − 3, s = m + 2,m + 3, . . . , A − 1.

5. Proof of the theorem

Proof of Theorem 1. Let {mk : k ∈ P} be an increasing sequence of
positive integers such that
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(3)
∞∑

k=1

1

m
1/2
k

< ∞,

(4)
k−1∑
l=0

24ml

ml
<

24mk

mk
,

(5)
k24mk−1

mk−1
≤ 22mk

mk
.

Let
f (A)(x) :=

∑
{k: 2mk<A}

λkak,

where
λk :=

1
mk

and
ak(x) := 22mk(D22mk+1(x) − D22mk (x)).

It is to show that the martingale f := (f (0), f (1), . . . , f (A), . . .) ∈ H1/2(G).
Indeed, since

f (A)(x) =
∞∑

k=0

λkS2Aak(x)

from (3) and Theorem A we conclude that f ∈ H1/2(G).
We write

(6) σqmk
f(x) =

1
qmk

22mk−1∑
j=0

Sjf(x) +
1

qmk

qmk
−1∑

j=22mk

Sjf(x) = I + II.

Let j ∈ {22mk , . . . , 22mk+1 − 1} for some k = 1, 2, . . .. Then it is evident
that

f̂(j) := lim
A→∞

f̂ (A)(j) =
22mk

mk

and f̂(j) = 0, if j �∈ {22mk , . . . , 22mk+1 − 1}, k = 1, 2, . . ..
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Consequently, for 22mk ≤ j < qmk
we can write

(7)

Sjf(x) =
22mk−1+1−1∑

v=0

f̂(v)wv(x) +
j−1∑

v=22mk

f̂(v)wv(x) =

=
k−1∑
l=0

22ml+1−1∑
v=22ml

f̂(v)wv(x) +
j−1∑

v=22mk

f̂(v)wv(x) =

=
k−1∑
l=0

22ml+1−1∑
v=22ml

22ml

ml
wv(x) +

22mk

mk

j−1∑
v=22mk

wv(x) =

=
k−1∑
l=0

22ml

ml
(D22ml+1(x) − D22ml (x)) +

22mk

mk
(Dj(x) − D22mk (x)).

Applying (7) in II, we have

(8)

II =
(qmk

− 22mk)
qmk

k−1∑
l=0

22ml

ml
(D22ml+1(x) − D22ml (x))+

+
22mk

qmk
mk

qmk
−1∑

j=22mk

(Dj(x) − D22mk (x)) = II1 + II2.

Since
Dj+22mk (x) = D22mk (x) + w22mk (x)Dj(x)

for II2, we write

(9)

|II2| =
22mk

qmk
mk

∣∣∣∣∣∣
qmk−1−1∑

j=0

(Dj+22mk (x) − D22mk (x))

∣∣∣∣∣∣ =

=
22mk

qmk
mk

∣∣∣∣∣∣w22mk (x)
qmk−1−1∑

j=0

Dj(x)

∣∣∣∣∣∣ =

=
22mk

mk

qmk−1

qmk

∣∣∣Kqmk−1(x)
∣∣∣ .

Since
D2n(x) ≤ 2n,
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from (4) we can write

(10) |II1| ≤ c
k−1∑
l=0

24ml

ml
<

24mk−1

mk−1
.

Combining (8)-(10) we get

(11) |II| ≥ c

mk
qmk−1

∣∣∣Kqmk−1(x)
∣∣∣− c24mk−1

mk−1
.

Let j < 22mk . Then from (4) we can write

|Sjf(x)| ≤
22mk−1+1−1∑

v=0

|f̂(v)| ≤ c
24mk−1

mk−1
,

(12) I ≤ c
1

qmk

22mk−1∑
j=0

|Sjf(x)| ≤ c
24mk−1

mk−1
.

Combining (6), (11) and (12) we get

(13) |σqmk
f(x)| ≥ c

mk
qmk−1

∣∣∣Kqmk−1(x)
∣∣∣− c

24mk−1

mk−1
.

Let x ∈ I2mk
(0, . . . , 0, x2l = 1, 0, . . . , 0, x2s = 1, x2s+1, . . . , x2mk−1), for

some l = [mk/2], [mk/2]+1, . . . ,mk −3, s = l+2, l+3, . . . ,mk −1, then from
Lemma 1 and (5) we have

|σqmk
f(x)| ≥ c

mk
22l+2s − c

24mk−1

mk−1
≥ c

mk
22l+2s−1.

Hence we can write∫
G

|σ∗f(x)|1/2dμ(x) ≥
∫
G

|σqmk
f(x)|1/2dμ(x) ≥

≥
mk−1∑

l=[mk/2]

mk−1∑
s=l

∫
I2mk

(0,...,0,x2l=1,0,...,0,x2s=1,x2s+1,...,x2mk−1)

|σqmk
f(x)|1/2dμ(x) ≥
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≥ c

m
1/2
k

mk−3∑
l=[mk/2]

mk−1∑
s=l

22mk−2s

22mk
2l+s ≥

≥ c

m
1/2
k

mk−3∑
l=[mk/2]

mk−1∑
s=l

2l

2s
≥ cm

1/2
k → ∞ as k → ∞,

‖σ∗f‖1/2 = +∞.

From the simple calculation we obtain that

S̃
(
jt)f(x) =

k−1∑
l=0

r2ml
(t)

22ml

ml
(D22ml+1 − D22ml (x))+

+r2mk
(t)

22mk

mk
(Dj(x) − D22mk (x)) for 2mk ≤ j < qmk

and ∣∣∣S̃(t)
j f(x)

∣∣∣ ≤ 22mk−1+1−1∑
v=0

|f̂(v)| ≤ c
24mk−1

mk−1
for j < 2mk.

Then the estimation of
∣∣∣σ̃(t)

∗ f(x)
∣∣∣ is analogous to the estimation of |σ∗f(x)|

and we have
‖σ̃(t)

∗ f‖1/2 = +∞.

Theorem 1 is proved.
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