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DISTRIBUTION OF ADDITIVE FUNCTIONS
FOR SOME SUBSETS OF SHIFTED PRIMES

L. Germdn and I. Kétai (Budapest, Hungary)

Dedicated to Professor Ferenc Schipp on his seventieth,
and Professor Péter Simon on his siztieth anniversary

Abstract. Distribution of additive functions on some subsets of integers
is investigated.

1. Introduction, notations

Let M be the set of complex valued multiplicative functions, A be the set
of real valued additive functions, and let

My ={feM, |f(n)] =1 (neN)}

w(n) denotes the number of prime factors of n whilst £2(n) counts the number
of prime power divisors of n. p with or without indices always denotes primes.
P stands for the whole set of the primes. Let furthermore {z} be the fractional
part of z and ||z|| be the distance of x to the nearest integer. As usual e(«) :=
:= e for all real values of a, and A\(E) denotes the Lebesgue measure of a
measurable set E C R.

Let P = {n | w(n) = k} and Ny = {n | Q(n) = k}. Further m(z) =
= #{n <x, w(n) = k), Nu(a) = #{n <z, Qn) =k},

Mathematics Subject Classification: 11K06



176 L. Germén and I. Katai

A theorem of Erdds-Wintner [1] asserts that for an additive arithmetical
function f the limit

(1.1) lim ~#{n <z | f(n) <y} = Fy)

T—00 I

exists for almost all y, and F' is a distribution function, if and only if

2
(1.2) — (1.3) > 1o 00, S0
fp>1 P foi<t P
and
(1.4) /) converges.
fmi<t P
Let
f(p)
1.5 a(x) := —,
(1.5) (z) Z; »
1F(p)I<1

They proved also that

pn <] J) - o@) <}

has a limit as @ — oo for almost all y, if and only if (1.2), (1.3) hold true.
H. Delange [2] proved that for g € M; the limit

(1.6) % > g(n) = M(g)

n<x

exists and it is nonzero, if in the notation

h(p®) =g(p*) —g(p*™") (a=12,..), peP,

Z(p)

- P

>

#0 (peP),

Q

1—
(1.7) Z 1=9) is convergent.
peP p
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If this condition is satisfied then

ORI (Z h;i“>> .

a=0

I. Kéatai proved in [3] that the convergence of the series (1.2), (1.3), (1.4) imply
the existence of the limit distribution of f € A on the set of shifted primes, i.e.
that

1
lim ——

e w(x)#{p <zl|flp+1) <yt=F*(y) aa vy

if (1.2), (1.3), (1.4) are convergent. He proved also that the convergence of
(1.2), (1.3) imply the existence of

lim %#{p <o |fp+1)—alx) <y}

T—00 T x)

for almost all y.
Furthermore he proved that if (1.7) holds for some g € My, then

r— 00 71'(

lim ix) S g(p+1) = M*(g),

where

" 1 9(")

M(g) =] 1—p_1+z -
p a>1
The necessity of the convergence of the series (1.2), (1.3), (1.4) to the existence
of the limit distribution on the set of shifted primes has been proved by
Hildebrand about 20 years later [4]. L. German [5] proved both the necessity
and the sufficiency of the convergence of the three series ((1.2), (1.3), (1.4)) to

the existence of the distribution of

lim%@)#{ngx |nePy, fln+1) <y},

where k may depend on x, up to k < e(z)y/loglog x with e(x) — 0 as  — co.
We note that the assertions remain valid, if we change n € P, into n € Ny,
and we write Ni(z) instead of 7y (z).

We are interested in the following: what can we say if p runs over a subset
of the primes, or in general, if 7, runs over a subset of Py7
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2. Definition of the special subset of primes

Let I;,...,I; be sets in [0,1), each of them is a union of finitely many
intervals. Let (1,...,0; be real numbers, such that 1,0q,...,5; are linearly
independent over ). Let

N ={neN|{gn}tel;, j=1,...,t},
P =PNN*", Pp=P,NN",
N;: = N, NN*.
Let f;(x) be a function defined on [0, 1) so that

1 if .ﬁEIj,

fi(z) =
0 if ze[01)\

Let us extend the function over R to be periodic mod 1, i.e. let f;(x+k) =
o0
= fj(z) (k € Z). Let the Fourier series of f;(x) be ) agf)e(n:c) It is clear

n=—oo
that |a | < °J‘, where ¢; may depend on I;. Obviously holds also \a | <1

Let A > 0 be a small positive constant,

A
f<A> N /
—A —

[i(@ 4+ w1 + ug)duydus.

l>\J>

Let
(n) sin 2rnA
n)=—————
& 47 An
Then
0 .
Z bDe(na)
b = ()P,
|b%7)| S mln2 (1, A|n|> .
Let

-A
I; ):{x | (z —2A,242A) C I;},
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Y = (x| (x—2A,2+2A0)N1T; £ 0}

Observe that
I\ I < A,

where ¢; is the number of the endpoints of the intervals occurring in I;.

Let the discrepancy of the sequence y1,...,yx mod 1 be defined as usual
by
1 .
DN(yla"’7yN): sup N#{lea7N{y]}€[04»5)}_(5_04) .
[e,3)C[0,1)

According to a well-kown theorem of Erdés and Turan [7], we have

(2.1) Dy (Y1, - yn) <C<Z [l >

where C' is an absolute constant, 7' is an arbitrary integer and

N
Z e(ky;).-
Let
s(n) := fr(Bin)--- fi(Bin),

sa(n) == F(Bin) - ) (Bim).
It is clear that s(n) = 1 if n € N* and s(n) = 0 if n ¢ N*. Furthermore,
s(n) = sa(n) if {Bn} € Ij(fA) for j = 1,...,t or if {B;n} € [0,1) \ I;A) for
some 1 < j <tand0<sa(n) <1 holds always. Let K > (%)4. Then

>

In|>K n>K
Let
AK) Z b(J) e(nx)
In|<K
Then

LAY (Bin) - £ (Ben) — A (Bin) - (55 (Bn)] < 2602,
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Let
sak(n) = Z Z B bBe((niBr + ...+ neBi)n).

[ny|<K [ne| <K

We obtain that
|s(n) — sa.x(n)| < 2tA?

if {B;n} € IJ(fA) (j=1,...,t),0or {Bn} €10,1) \IJ(A) for some 1 < 7 <t and
lsax(n)] <14 2tA?

otherwise.
3. Formulation of the results

Let
™ (z) = #{p < z,p € P*}, mp(x) = #{n <x,n € N*,n € Ni.},

and
A= XNI) - AMIe).

Theorem 1. Let g € My, and assume that

(3.1) ) Re(1 —g(p))

peEP p

is convergent. Then

R > oo+1) = =5 o+ 1) =0 (o),

Especially, if

1—
(3.3) Z 1=9) is convergent,
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then
(3.9 o 2 e+ ) =M (g)

Remarks. (1) Choosing g(n) =1 (n € N) we obtain that
™ (x) = (1+ 0, (1)An(z) (xz — o00).

(2) From Theorem 1 we obtain directly
Theorem 2. Let f € A, and assume that (1.2), (1.3) hold. Let

a(zx) = Z f;p)

|ffp§>f§1
Let
F;(y) 7r*(%)#{p <zpeP’, flp+1)—a(z) <y},
Fuy) = %#{p <zpeP, f(p+1)—alx) <y}

Then FX(y) = F(y), where F(y) := lim F,(y) for almost all y.
The above theorems can be generalized as follow.

Theorem 3. Let g € My, and assume that (3.1) holds. Then

1 1
sup *()Zg(n+1)—TZg(n+l)—>O
2<k<e(z)4/loglog z T\ T neSPI* TrlT neSPIk
n k n
(3.5) (z — o0),

where e(x) — 0 as © — oo. Especially, if (3.3) holds then

1
A > gln+1) — M*(g).

n<x
*
nePk
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This theorem in the special case P} = Pj was proved in [6]. Similarly we
have

Theorem 4. Let f € A, and assume that (1.2), (1.3) hold. Let

a(z) = Z %

p<z
[f(p)I<1

Let

Fialt) = oy #n <7 n € PL S —a(e) <),
Fr2(y) = ﬂ'kl(x) #{n<z, ne€Py, f(n+1)—alx) <y}

Then uniformly for all 2 < k < e(x)+/loglog x we have
Fialy) = Gly)  (z—o0),

where G(y) := lim Fj ,(y) for almost all y.
Tr— 00
Remark. Theorem 3 remains true if we substitute Py by Nj and g (z)

4. Proof of Theorem 1

Assume that (3.1) holds true.
Let S(z) = Y g(p+1), S*(z)= > g(p+1). We have

p<xm p<w
pEP*

S*(x) = glp+1)s(p),

p<z
where s(-) is defined in Section 2. Furthermore, we can change s(p) by sa x (p),

it {B;p} & LY\ 1), Let

(4.1) E(ny,...,n) = > glp+ De((Bin1 + -+ + Bine)p).-

p<z
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Observe that a(()j) = béj) = A(I;). Thus aél) . agl) = A. We have

1S () = AS@) < Y. O] BDIE M, )+

Iy | <K,...,|ng| <K
(42) ng)#(0 0)

.....

where the Error comes from those primes p for which {;p} € IJ(A) \Ij(_A)

holds for at least one j.
We can estimate it by using the Erdés-Turdan theorem. Let

(4.3) Uiy =Y e(kB;p).
p<z
. A —A A —A . . . .
Since A\(I7 \ I; =) < cA, and I \ I; 7 is a union of finitely many intervals,

therefore by choosing T = %, we have

T
Err0r§0A+Z Z %W)k,j

- 1
Jj=l1<k<k

According to a well-known theorem due to I.M. Vinogradov, ap is uniformly
distributed for every irrational «, then for o = f31,....0; as well, consequently
Yr.; = 0g(1)m(x) as © — oo for every k and j.

Thus
Error < 2cA if x> .

Now we estimate (4.1).
Let Y, — oo arbitrarily slowly. Let

gi(n) =[] 90, g0 =[] 9.

p*|In P |n
p<Yy p>Yy

We know that there is complex number 7(x), |7(x)| = 1, such that

(4.4) Y lg2(p+1) = 7(2)] < e(Ya)m(w),

p<z

where £(Y,) — 0, if Y, — oco. (For the proof of (4.4) see [3].) Let

Ey(n):= H p.

p%|In
p<Yg
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One can prove that

(4.5) a%#@ﬁmEn@+D>ﬁﬂ-W (2 — o0)

if A, — 00 as ¢ — oo.
Consequently

|[E(ny,...,ne)| < e(Y, Zgl p+ Le((nifr+ ... +m6)p)| -

p<z

Let n = n1B1 + ... +ntB:. Let u(m) be defined by > u(d) = g1(m), i.e. let
dlm

u(p®) = g(p®) — g(p>~1), if p < Y,, and 0 otherwise. Observing (4.5), we have

Y oailp+Detmp) = u(d) Y e(mp)+o(n(x)),

p+1=0 (mod d)
p<z

where d runs over those integers for which P(d) < Y,, and d < YA+,
Now we estimate

T S R M bt ((TO)

p+1=0(d) a=0 p<lx

Since n + ¢ is irrational, therefore according to a classical result of I.M.

Vinogradov (4.6) is o (”(r)) for every fixed d. For a fixed ni,...,n; we can

choose such an Y, A, tending to infinity for which

1
max |————— g e(np)| — 0 as x — 00.
P@<y. |(z,d, —1) (np)
a<y Az psw
S p+1=0(d)
Since we have only finitely many choices for ni,...,n; we can choose the

minimum of Y, and A,. Hence we obtain that

Z Z D O E(na, ... ne)

ng|<K,...,|ng| <K
(n1.mg)#(0....,0)

— o(n(2)) (& — o).
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Here we used also the fact that

> Y| < oo

Since A is arbitrarily small, the proof is complete.

5. Proof of Theorem 3

Let
Se(x)= Y gn+1), Si(z)= Y gn+1),
ner, ,f‘e%;

where 2 < k < e(x)/lIoglogzx, e(x) — 0 as z — 0.
Assume that (3.1) holds. We can argue as in the proof of Theorem 1.
In [5] it was proved that

1
(5.1) sup
2<k<e(xz)/loglogx Tk (Cﬂ)

for all fixed 0 < 6 < 1. First we overestimate the number of those n € Py, n < x
for which {8;n} € IjA \ Ij_A holds for at least one j. We shall prove that

#{n<z,nePyPhn) <z} -0 (z— )

1
(5.2) sup — g e(lBjn)| — 0,
2§k§5(m)\/loglogzﬂ-k($) ngpm
nePy
for every nonzero integer [ and j =1,...,t.

Hence, by the theorem of Erd6s and Turan we obtain that
(5.3)

lim sup sup

1
T—00 9<k<e(x)y/loglogx Tk (ZL’)

Let us define g1 (n), g2(n), Yz, Az as in the proof of Theorem 1. We can argue
as earlier. We have

Yogin+Delm)= D uld) Y elm) =

#{n <a,n € P, {Bin} € I} \I; 2} < cA.

n<ax P(d)<Yg n+1=0 (mod d)
e asvte N
(5.4) _
- 3 U3 16( 2) X e((n+5)n)
- d d R
P(d)<Yy a=0 n<z
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We shall prove that for every irrational &,

1
(5.5) sup — Z e(kn)| — 0.
2<k<e(z)y/loglog z ﬂ.k(x) n<w

ne€Py

Hence we obtain (5.2), and that (5.4) divided by 74 (x) tends to zero uniformly
as 2 < k < e(z)+/loglogx.

Finally we prove (5.5). We shall write n € Ny as n = pm,p = P(n).
Taking into account (5.1), we obtain that

(5.6) Z e(kn) = o (V) (x) + Z Z e(kmp).

n<z m<zd p<E
nePy mEPE_1 m

Let 7 = W. In order to estimate

(5.7) EYm = ) e(kmp),

we shall approximate km by a rational number % satisfying

(5.8) rm——| < . Gm < T.

We shall use the following lemma due to .M. Vinogradov. (A proof can be
found in [11], Corollary 16.3, page 142.)

Lemma 1. Let y be a large number and assume that R < q < %, 1<

gRSyia (a7Q):1> ‘67% Sq% Then

> elBp) < % - (logy)'°.

If g, > (log2)%°, then we can apply Lemma 1, and get that

x
Y| K n
[l log2

x
m
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Let us assume that ¢, < (log)*°. By using Lemma 3.1 in Vaughan [12], after
partial summation, we obtain that

S| € .
qmmlogﬁ
Thus
1 m(x) 1 1 1
5.9 e(kn)| < ox(1)+c — —+ Yl
69 Z (kn)| < o (1) +e s Z i o mZ S
nePy mePy_q mEPEK 1

The second term on the right hand side of (5.9) is < £. It remains to estimate
the last term.

Let [ < L, and consider those m € Pj_q, for which ¢,, = [. Assume that

< and so

Am ;
these numbers are m; < ... < mp(< 2°). Then ‘mjm S e

a

’m—

< # for every j =1,...,T. Assume that T' > 2. Then

1(1 1)
<—-|—+——
T\ My My

and this may hold, only if 2« = amﬂ Let

my

mj
mj

am“, o amv

(5.10)

My My

R A, - )
— = ! =1,...,1 =1.
S m; (.] ’ ’ ) (R?S)

Thus Rm; =0 (mod S), andsom; =0 (modS) (j=1,...,7). =5
cannot be bounded as x — oo. Doing this for [ = 1,..., L, the last sum on the
right hand side of (5.9) is less than

m(z) o= 1 1 k 1 1
A1 — — <KL — =+ ..
(5.11) < () Z l Z,l vS; < loglog x {151 T LSL}

In [5] it was proved that

#{n < zx,n € Pg,p(n) < expexp(y/loglogz)} — 0

sup

2<k<e(x)4/loglog x Tk (.Z‘)

(z — o0),
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thus the right hand side of (5.11) tends to zero as  — oo, we obtain that (5.9)
is 04(1), uniformly as 2 < k < e(x)+/loglog .
The proof of Theorem 3 is complete.

6. Multiplicative functions on the set Nj

Let & » = @, 6 be a positive constant, § < % In [8] it was proved

that for every irrational «,

1
6.1 sup sup g(n)e(na)| — 0 as T — 00.
61 8<€r.0<2—8 geMy Tk(T) ; (n)e(na)
ne€Py
The inequality
(62) | Y gme(na) — 0
. sup sup —— g(n)e(na)| — as T — 00
s<r..<2-5 gemy Ni(@) | £
neEN}

holds as well. Arguing as in the proof of Theorem 1, we obtain

Theorem 5. Let S be as in §2, § > 0. Then

(6.3) sup sup L A Z g(n)e(na) — Z g(n)e(na)l — 0

§<tn.o<2-5 geM; Ne()

n<x n<x
neNy nEN;

as x — 00,

furthermore

(6.4) sup sup
6<Ep 0<2—5 geM;y Tk ()

A gme(na) = 3 gln)e(na)| -0

n<z n<z
nePy, neP;

as T — OQ.

Hence, and from the results proved in [9, 10] we obtain immediately the
following assertions.
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Assume that g € My, and (1.7) is convergent. Let 0 < § <

<n<2-4,
ot = (1-1) (14 220 DT ),

(SIS

M, (g) :=[1ep(n). The product is convergent.
P

Theorem 6. If (1.7) is convergent, then

1

lim su - n —M _ 0
”H°°5S5k‘12275 ANg(z) ; 9(n) &0 (9)

nE./\/‘;
and

lim sup % Z g(n) — Mg, .(g)| = 0.

e—00 5<g; <28 | ATk(T) £
nep*
k

Theorem 7. Let f € A, f(p%) is bounded as p® runs over the prime
powers. Let

f * (e} (e} 1 *
Z 7 f (p ) = f(p ) - ga,szm Bi = Z 7(f (p))Q'
p<z p p<z
Assume that f* is extended to N so that f* € A. Let B, — .
Then
=0.

lim ma.
z—00 §<Ey, ,/<2 5 yGR

Bz \/ gk,a:

1 . [r(n)
m# {nﬁx,né]\fk,} - ®(y)

Here
Y
1 u?
D(y) = — / e~ 7 du.

2T

— 00

Theorem 8. Let f € A. Assume that the 3 series in (1.2), (1.3), (1.4)
are convergent. Let

1

L) = gz e W

#H{n <zmneNg, f(n) <y}
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Furthermore, for some n € (0,2), and p € P let §, = &,(n) be the random
variable distributed by

P& = ) = (1-2) (”) (@=0,12,..).

p p

Assume that &,(p € P) are completely independent. Let

o) =>_ &)

As we know from the theorem of Kolmogorov, the right hand side is convergent.

Let F,,(y) == P(©,(n) <y). Then

[1]

I Fy L (y) — F ~0.
min;otsggglfgg_(;gleagfq k@(y> Ek,z(y)|
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