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DISTRIBUTION OF ADDITIVE FUNCTIONS
FOR SOME SUBSETS OF SHIFTED PRIMES

L. Germán and I. Kátai (Budapest, Hungary)

Dedicated to Professor Ferenc Schipp on his seventieth,
and Professor Péter Simon on his sixtieth anniversary

Abstract. Distribution of additive functions on some subsets of integers

is investigated.

1. Introduction, notations

Let M be the set of complex valued multiplicative functions, A be the set
of real valued additive functions, and let

M1 = {f ∈ M, |f(n)| = 1 (n ∈ N)}.

ω(n) denotes the number of prime factors of n whilst Ω(n) counts the number
of prime power divisors of n. p with or without indices always denotes primes.
P stands for the whole set of the primes. Let furthermore {x} be the fractional
part of x and ‖x‖ be the distance of x to the nearest integer. As usual e(α) :=
:= e2πiα for all real values of α, and λ(E) denotes the Lebesgue measure of a
measurable set E ⊆ R.

Let Pk = {n | ω(n) = k} and Nk = {n | Ω(n) = k}. Further πk(x) =
= #{n ≤ x, ω(n) = k}, Nk(x) = #{n ≤ x, Ω(n) = k}.

Mathematics Subject Classification: 11K06



176 L. Germán and I. Kátai

A theorem of Erdős-Wintner [1] asserts that for an additive arithmetical
function f the limit

(1.1) lim
x→∞

1
x

#{n ≤ x | f(n) < y} = F (y)

exists for almost all y, and F is a distribution function, if and only if

(1.2) − (1.3)
∑

|f(p)|>1

1
p

< ∞,
∑

|f(p)|≤1

f2(p)
p

< ∞.

and

(1.4)
∑

|f(p)|≤1

f(p)
p

converges.

Let

(1.5) a(x) :=
∑
p≤x

|f(p)|≤1

f(p)
p

.

They proved also that

1
x

#{n ≤ x | f(n) − a(x) < y}

has a limit as x → ∞ for almost all y, if and only if (1.2), (1.3) hold true.
H. Delange [2] proved that for g ∈ M1 the limit

(1.6)
1
x

∑
n≤x

g(n) → M(g)

exists and it is nonzero, if in the notation

h(pα) = g(pα) − g(pα−1) (α = 1, 2, . . .), p ∈ P,

∞∑
α=0

h(pα)
pα

�= 0 (p ∈ P),

and

(1.7)
∑
p∈P

1 − g(p)
p

is convergent.
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If this condition is satisfied then

M(g) =
∏
p

( ∞∑
α=0

h(pα)
pα

)
.

I. Kátai proved in [3] that the convergence of the series (1.2), (1.3), (1.4) imply
the existence of the limit distribution of f ∈ A on the set of shifted primes, i.e.
that

lim
x→∞

1
π(x)

#{p ≤ x|f(p + 1) < y} = F ∗(y) a.a. y

if (1.2), (1.3), (1.4) are convergent. He proved also that the convergence of
(1.2), (1.3) imply the existence of

lim
x→∞

1
π(x)

#{p ≤ x | f(p + 1) − a(x) < y}

for almost all y.
Furthermore he proved that if (1.7) holds for some g ∈ M1, then

lim
x→∞

1
π(x)

∑
p≤x

g(p + 1) = M∗(g),

where

M∗(g) =
∏
p

⎛⎝1 − 1
p − 1

+
∑
α≥1

g(pα)
pα

⎞⎠ .

The necessity of the convergence of the series (1.2), (1.3), (1.4) to the existence
of the limit distribution on the set of shifted primes has been proved by
Hildebrand about 20 years later [4]. L. Germán [5] proved both the necessity
and the sufficiency of the convergence of the three series ((1.2), (1.3), (1.4)) to
the existence of the distribution of

lim
1

πk(x)
#{n ≤ x | n ∈ Pk, f(n + 1) < y},

where k may depend on x, up to k ≤ ε(x)
√

log log x with ε(x) → 0 as x → ∞.
We note that the assertions remain valid, if we change n ∈ Pk into n ∈ Nk,
and we write Nk(x) instead of πk(x).

We are interested in the following: what can we say if p runs over a subset
of the primes, or in general, if πk runs over a subset of Pk?
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2. Definition of the special subset of primes

Let I1, . . . , It be sets in [0, 1), each of them is a union of finitely many
intervals. Let β1, . . . , βt be real numbers, such that 1, β1, . . . , βt are linearly
independent over Q. Let

N∗ = {n ∈ N | {βjn} ∈ Ij , j = 1, . . . , t},

P∗ = P ∩ N∗, P∗
k = Pk ∩ N∗,

N ∗
k = Nk ∩ N∗.

Let fj(x) be a function defined on [0, 1) so that

fj(x) =

⎧⎨⎩
1 if x ∈ Ij ,

0 if x ∈ [0, 1) \ Ij .

Let us extend the function over R to be periodic mod 1, i.e. let fj(x+k) =

= fj(x) (k ∈ Z). Let the Fourier series of fj(x) be
∞∑

n=−∞
a
(j)
n e(nx). It is clear

that |a(j)
n | ≤ cj

|n| , where cj may depend on Ij . Obviously holds also |a(j)
n | ≤ 1.

Let Δ > 0 be a small positive constant,

f
(Δ)
j (x) =

1
(2Δ)2

Δ∫
−Δ

Δ∫
−Δ

fj(x + u1 + u2)du1du2.

Let

κ(n) =
sin 2πnΔ

4πΔn
.

Then

f
(Δ)
j (x) =

∞∑
n=−∞

b(j)
n e(nx)

b(j)
n = κ(n)2a(j)

n ,

|b(j)
n | ≤ min2

(
1,

1
Δ|n|

)
.

Let
I
(−Δ)
j = {x | (x − 2Δ, x + 2Δ) ⊆ Ij},
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I
(Δ)
j = {x | (x − 2Δ, x + 2Δ) ∩ Ij �= ∅}.

Observe that
λ(I(Δ)

j \ I
(−Δ)
j ) ≤ cjΔ,

where cj is the number of the endpoints of the intervals occurring in Ij .
Let the discrepancy of the sequence y1, . . . , yN mod 1 be defined as usual

by

DN (y1, . . . , yN ) = sup
[α,β)⊆[0,1)

∣∣∣∣ 1
N

#{j = 1, . . . , N {yj} ∈ [α, β)} − (β − α)
∣∣∣∣ .

According to a well-kown theorem of Erdős and Turán [7], we have

(2.1) DN (y1, . . . , yN ) ≤ C

(
T∑

k=1

|ψk|
k

+
1
T

)
,

where C is an absolute constant, T is an arbitrary integer and

ψk =
N∑

j=1

e(kyj).

Let
s(n) := f1(β1n) · · · ft(βtn),

sΔ(n) := f
(Δ)
1 (β1n) · · · f (Δ)

t (βtn).

It is clear that s(n) = 1 if n ∈ N∗ and s(n) = 0 if n �∈ N∗. Furthermore,
s(n) = sΔ(n) if {βjn} ∈ I

(−Δ)
j for j = 1, . . . , t or if {βjn} ∈ [0, 1) \ I

(Δ)
j for

some 1 ≤ j ≤ t and 0 ≤ sΔ(n) ≤ 1 holds always. Let K ≥
(

1
Δ

)4. Then

∑
|n|≥K

|b(j)
n | ≤ 2

∑
n>K

1
Δ2n2

≤ 2Δ2.

Let
f

(Δ,K)
j (x) =

∑
|n|<K

b(j)
n e(nx).

Then

|f (Δ)
1 (β1n) · · · f (Δ)

t (βtn) − f
(Δ,K)
1 (β1n) · · · f (Δ,K)

t (βtn)| ≤ 2tΔ2.
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Let
sΔ,K(n) :=

∑
|n1|<K

. . .
∑

|nt|<K

b(1)
n1

. . . b(t)
nt

e((n1β1 + . . . + ntβt)n).

We obtain that
|s(n) − sΔ,K(n)| ≤ 2tΔ2

if {βjn} ∈ I
(−Δ)
j (j = 1, . . . , t), or {βjn} ∈ [0, 1) \ I

(Δ)
j for some 1 ≤ j ≤ t and

|sΔ,K(n)| ≤ 1 + 2tΔ2

otherwise.

3. Formulation of the results

Let

π∗(x) = #{p ≤ x, p ∈ P∗}, π∗
k(x) = #{n ≤ x, n ∈ N∗, n ∈ Nk},

and
A := λ(I1) · · ·λ(It).

Theorem 1. Let g ∈ M1, and assume that

(3.1)
∑
p∈P

Re(1 − g(p))
p

is convergent. Then

(3.2)
1

Aπ(x)

∑
p≤x

p∈P∗

g(p + 1) − 1
π(x)

∑
p≤x

g(p + 1) → 0 (x → ∞).

Especially, if

(3.3)
∑
p∈P

1 − g(p)
p

is convergent ,
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then

(3.4)
1

Aπ(x)

∑
p≤x

p∈P∗

g(p + 1) → M∗(g).

Remarks. (1) Choosing g(n) = 1 (n ∈ N) we obtain that

π∗(x) = (1 + ox(1))Aπ(x) (x → ∞).

(2) From Theorem 1 we obtain directly

Theorem 2. Let f ∈ A, and assume that (1.2), (1.3) hold. Let

a(x) :=
∑
p≤x

|f(p)|≤1

f(p)
p

.

Let
F ∗

x (y) =
1

π∗(x)
#{p ≤ x, p ∈ P∗, f(p + 1) − a(x) < y},

Fx(y) =
1

π(x)
#{p ≤ x, p ∈ P, f(p + 1) − a(x) < y}.

Then F ∗
x (y) =⇒ F (y), where F (y) := lim

x→∞Fx(y) for almost all y.

The above theorems can be generalized as follow.

Theorem 3. Let g ∈ M1, and assume that (3.1) holds. Then

sup
2≤k≤ε(x)

√
log log x

∣∣∣∣∣∣∣∣
1

π∗
k(x)

∑
n≤x

n∈P∗
k

g(n + 1) − 1
πk(x)

∑
n≤x

n∈Pk

g(n + 1)

∣∣∣∣∣∣∣∣ → 0

(3.5) (x → ∞),

where ε(x) → 0 as x → ∞. Especially, if (3.3) holds then

1
Aπk(x)

∑
n≤x

n∈P∗
k

g(n + 1) → M∗(g).
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This theorem in the special case P∗
k = Pk was proved in [6]. Similarly we

have

Theorem 4. Let f ∈ A, and assume that (1.2), (1.3) hold. Let

a(x) :=
∑
p≤x

|f(p)|≤1

f(p)
p

.

Let
F ∗

k,x(y) =
1

π∗
k(x)

#{n ≤ x, n ∈ P∗
k , f(n + 1) − a(x) < y},

Fk,x(y) =
1

πk(x)
#{n ≤ x, n ∈ Pk, f(n + 1) − a(x) < y}.

Then uniformly for all 2 ≤ k ≤ ε(x)
√

log log x we have

F ∗
k,x(y) =⇒ G(y) (x → ∞),

where G(y) := lim
x→∞Fk,x(y) for almost all y.

Remark. Theorem 3 remains true if we substitute Pk by Nk and πk(x)
by Nk(x).

4. Proof of Theorem 1

Assume that (3.1) holds true.
Let S(x) =

∑
p≤x

g(p + 1), S∗(x) =
∑
p≤x

p∈P∗

g(p + 1). We have

S∗(x) =
∑
p≤x

g(p + 1)s(p),

where s(·) is defined in Section 2. Furthermore, we can change s(p) by sΔ,K(p),

if {βjp} �∈ I
(Δ)
j \ I

(−Δ)
j . Let

(4.1) E(n1, . . . , nt) =
∑
p≤x

g(p + 1)e((β1n1 + · · · + βtnt)p).
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Observe that a
(j)
0 = b

(j)
0 = λ(Ij). Thus a

(1)
0 . . . a

(1)
t = A. We have

(4.2)

|S∗(x) − AS(x)| ≤
∑

. . .
∑

|n1|<K,...,|nt|<K

(n1,...,nt) �=(0,...,0)

|b(1)
n1

| . . . |b(t)
nt
||E(n1, . . . , nt)|+

+ cΔπ(x) + Error,

where the Error comes from those primes p for which {βjp} ∈ I
(Δ)
j \ I

(−Δ)
j

holds for at least one j.
We can estimate it by using the Erdős-Turán theorem. Let

(4.3) ψk,j =
∑
p≤x

e(kβjp).

Since λ(IΔ
j \ I−Δ

j ) ≤ cΔ, and IΔ
j \ I−Δ

j is a union of finitely many intervals,
therefore by choosing T = 1

Δ , we have

Error ≤ cΔ +
T∑

j=1

∑
1≤k≤ 1

Δ

1
k
|ψk,j |.

According to a well-known theorem due to I.M. Vinogradov, αp is uniformly
distributed for every irrational α, then for α = β1, . . . .βt as well, consequently
ψk,j = ox(1)π(x) as x → ∞ for every k and j.

Thus
Error ≤ 2cΔ if x > x2.

Now we estimate (4.1).
Let Yx → ∞ arbitrarily slowly. Let

g1(n) :=
∏

pα‖n
p≤Yx

g(pα), g2(n) :=
∏

pα‖n
p>Yx

g(pα).

We know that there is complex number τ(x), |τ(x)| = 1, such that

(4.4)
∑
p≤x

|g2(p + 1) − τ(x)| ≤ ε(Yx)π(x),

where ε(Yx) → 0, if Yx → ∞. (For the proof of (4.4) see [3].) Let

EY (n) :=
∏

pα‖n
p<Yx

pα.
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One can prove that

(4.5)
1

π(x)
#{p ≤ x | EYx

(p + 1) > Y Ax
x } → 0 (x → ∞)

if Ax → ∞ as x → ∞.
Consequently

|E(n1, . . . , nt)| ≤ ε(Yx)π(x) +

∣∣∣∣∣∣
∑
p≤x

g1(p + 1)e((n1β1 + . . . + ntβt)p)

∣∣∣∣∣∣ .
Let η = n1β1 + . . . + ntβt. Let u(m) be defined by

∑
d|m

u(d) = g1(m), i.e. let

u(pα) = g(pα)− g(pα−1), if p ≤ Yx, and 0 otherwise. Observing (4.5), we have∑
g1(p + 1)e(ηp) =

∑
u(d)

∑
p+1≡0 (mod d)

p≤x

e(ηp) + o(π(x)),

where d runs over those integers for which P (d) ≤ Yx, and d ≤ Y Ax
x .

Now we estimate

(4.6)
∑

p+1≡0(d)
p≤x

e(ηp) =
1
d

d−1∑
a=0

e
(
−a

d

)∑
p≤x

e
((

η +
a

d

)
p
)

.

Since η + a
d is irrational, therefore according to a classical result of I.M.

Vinogradov (4.6) is o
(

π(x)
d

)
for every fixed d. For a fixed n1, . . . , nt we can

choose such an Yx, Ax tending to infinity for which

max
P (d)≤Yx

d≤Y
Ax
x

∣∣∣∣∣∣∣
1

π(x, d,−1)

∑
p≤x

p+1≡0(d)

e(ηp)

∣∣∣∣∣∣∣ → 0 as x → ∞.

Since we have only finitely many choices for n1, . . . , nt we can choose the
minimum of Yx, and Ax. Hence we obtain that∑

. . .
∑

|n1|<K,...,|nt|<K

(n1,...,nt) �=(0,...,0)

|b(1)
nt

| . . . |b(t)
nt
||E(n1, . . . , nt)| = o(π(x)) (x → ∞).
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Here we used also the fact that∑
|b(j)

nj
| < ∞.

Since Δ is arbitrarily small, the proof is complete.

5. Proof of Theorem 3

Let
Sk(x) =

∑
n≤x

n∈Pk

g(n + 1), S∗
k(x) =

∑
n≤x

n∈P∗
k

g(n + 1),

where 2 ≤ k ≤ ε(x)
√

log log x, ε(x) → 0 as x → ∞.
Assume that (3.1) holds. We can argue as in the proof of Theorem 1.
In [5] it was proved that

(5.1) sup
2≤k≤ε(x)

√
log log x

1
πk(x)

#{n ≤ x, n ∈ Pk, P (n) < x1−δ} → 0 (x → ∞)

for all fixed 0 < δ ≤ 1. First we overestimate the number of those n ∈ Pk, n ≤ x

for which {βjn} ∈ IΔ
j \ I−Δ

j holds for at least one j. We shall prove that

(5.2) sup
2≤k≤ε(x)

√
log log x

1
πk(x)

∣∣∣∣∣∣∣
∑
n≤x

n∈Pk

e(lβjn)

∣∣∣∣∣∣∣ → 0,

for every nonzero integer l and j = 1, . . . , t.
Hence, by the theorem of Erdős and Turán we obtain that

(5.3)

lim sup
x→∞

sup
2≤k≤ε(x)

√
log log x

1
πk(x)

#{n ≤ x, n ∈ Pk, {βjn} ∈ IΔ
j \ I−Δ

j } ≤ cΔ.

Let us define g1(n), g2(n), Yx, Ax as in the proof of Theorem 1. We can argue
as earlier. We have

(5.4)

∑
n≤x

n∈Pk

g1(n + 1)e(ηn) =
∑

P (d)≤Yx

d≤Y
Ax
x

u(d)
∑

n+1≡0 (mod d)
n≤x

n∈Pk

e(ηn) =

=
∑

P (d)≤Yx

d≤Y
Ax
x

u(d)
d

d−1∑
a=0

e
(
−a

d

) ∑
n≤x

n∈Pk

e
((

η +
a

d

)
n
)

.
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We shall prove that for every irrational κ,

(5.5) sup
2≤k≤ε(x)

√
log log x

1
πk(x)

∣∣∣∣∣∣∣
∑
n≤x

n∈Pk

e(κn)

∣∣∣∣∣∣∣ → 0.

Hence we obtain (5.2), and that (5.4) divided by πk(x) tends to zero uniformly
as 2 ≤ k ≤ ε(x)

√
log log x.

Finally we prove (5.5). We shall write n ∈ Nk as n = pm, p = P (n).
Taking into account (5.1), we obtain that

(5.6)
∑
n≤x

n∈Pk

e(κn) = ox(1)πk(x) +
∑

m≤xδ

m∈Pk−1

∑
p≤ x

m

e(κmp).

Let τ = x
(log x)30 . In order to estimate

(5.7) Σm :=
∑
p≤ x

m

e(κmp),

we shall approximate κm by a rational number am

qm
satisfying

(5.8)
∣∣∣∣κm − am

qm

∣∣∣∣ <
1

qmτ
, qm < τ.

We shall use the following lemma due to I.M. Vinogradov. (A proof can be
found in [11], Corollary 16.3, page 142.)

Lemma 1. Let y be a large number and assume that R ≤ q ≤ y
R , 1 ≤

≤ R ≤ y
1
4 , (a, q) = 1,

∣∣∣β − a
q

∣∣∣ ≤ 1
q2 . Then

∑
p≤y

e(βp) � y√
R

· (log y)16.

If qm > (log x)40, then we can apply Lemma 1, and get that

|Σm| �
x
m

log2 x
m

.
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Let us assume that qm ≤ (log x)40. By using Lemma 3.1 in Vaughan [12], after
partial summation, we obtain that

|Σm| � x

qmm log x
m

.

Thus

(5.9)
1

πk(x)

∣∣∣∣∣∣∣
∑
n≤x

n∈Pk

e(κn)

∣∣∣∣∣∣∣ ≤ ox(1)+c
π(x)
πk(x)

1
L

∑
qm≥L

m∈Pk−1
m≤x

1
m

+
1

πk(x)

∑
qm<L

m∈Pk−1
m<xδ

|Σm|.

The second term on the right hand side of (5.9) is ≤ c
L . It remains to estimate

the last term.
Let l ≤ L, and consider those m ∈ Pk−1, for which qm = l. Assume that

these numbers are m1 < . . . < mT (< xδ). Then
∣∣∣mjκ − amj

l

∣∣∣ < 1
lτ , and so∣∣∣lκ − amj

mj

∣∣∣ < 1
mjτ for every j = 1, . . . , T . Assume that T ≥ 2. Then

(5.10)
∣∣∣∣amu

mu
− amv

mv

∣∣∣∣ ≤ 1
τ

(
1

mu
+

1
mv

)
and this may hold, only if amu

mu
= amv

mv
. Let

R

S
=

amj

mj
(j = 1, . . . , T ) (R, S) = 1.

Thus Rmj ≡ 0 (mod S), and so mj ≡ 0 (mod S) (j = 1, . . . , T ). S = Sl

cannot be bounded as x → ∞. Doing this for l = 1, . . . , L, the last sum on the
right hand side of (5.9) is less than

(5.11) � π(x)
πk(x)

L∑
l=1

1
l

∑
νSl∈Pk−1

νSl<xε

1
νSl

� k

log log x

{
1

1S1
+ . . . +

1
LSL

}
.

In [5] it was proved that

sup
2≤k≤ε(x)

√
log log x

1
πk(x)

#{n ≤ x, n ∈ Pk, p(n) < exp exp(
√

log log x)} → 0

(x → ∞),
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thus the right hand side of (5.11) tends to zero as x → ∞, we obtain that (5.9)
is ox(1), uniformly as 2 ≤ k ≤ ε(x)

√
log log x.

The proof of Theorem 3 is complete.

6. Multiplicative functions on the set Nk

Let ξk,x = k
log log x , δ be a positive constant, δ < 1

2 . In [8] it was proved
that for every irrational α,

(6.1) sup
δ≤ξk,x≤2−δ

sup
g∈M1

1
πk(x)

∣∣∣∣∣∣∣
∑
n≤x

n∈Pk

g(n)e(nα)

∣∣∣∣∣∣∣ → 0 as x → ∞.

The inequality

(6.2) sup
δ≤ξk,x≤2−δ

sup
g∈M1

1
Nk(x)

∣∣∣∣∣∣∣
∑
n≤x

n∈Nk

g(n)e(nα)

∣∣∣∣∣∣∣ → 0 as x → ∞

holds as well. Arguing as in the proof of Theorem 1, we obtain

Theorem 5. Let S be as in §2, δ > 0. Then

(6.3) sup
δ≤ξk,x≤2−δ

sup
g∈M1

1
Nk(x)

∣∣∣∣∣∣∣∣A
∑
n≤x

n∈Nk

g(n)e(nα) −
∑
n≤x

n∈N∗
k

g(n)e(nα)

∣∣∣∣∣∣∣∣ → 0

as x → ∞,

furthermore

(6.4) sup
δ≤ξk,x≤2−δ

sup
g∈M1

1
πk(x)

∣∣∣∣∣∣∣∣A
∑
n≤x

n∈Pk

g(n)e(nα) −
∑
n≤x

n∈P∗
k

g(n)e(nα)

∣∣∣∣∣∣∣∣ → 0

as x → ∞.

Hence, and from the results proved in [9, 10] we obtain immediately the
following assertions.
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Assume that g ∈ M1, and (1.7) is convergent. Let 0 < δ < 1
2 , δ ≤

≤ η ≤ 2 − δ,

ep(η) =
(

1 − η

p

)(
1 +

g(p)η
p

+
g(p2)η2

p2
+ . . .

)
,

Mη(g) :=
∏
p

ep(η). The product is convergent.

Theorem 6. If (1.7) is convergent, then

lim
x→∞ sup

δ≤ξk,x≤2−δ

∣∣∣∣∣∣∣∣
1

ANk(x)

∑
n≤x

n∈N∗
k

g(n) − Mξk,x
(g)

∣∣∣∣∣∣∣∣ = 0

and

lim
x→∞ sup

δ≤ξk,x≤2−δ

∣∣∣∣∣∣∣∣
1

Aπk(x)

∑
n≤x

n∈P∗
k

g(n) − Mξk,x
(g)

∣∣∣∣∣∣∣∣ = 0.

Theorem 7. Let f ∈ A, f(pα) is bounded as pα runs over the prime
powers. Let

Ax :=
∑
p≤x

f(p)
p

, f∗(pα) := f(pα) − ξα,x2Ax, B2
x =

∑
p≤x

1
p
(f∗(p))2.

Assume that f∗ is extended to N so that f∗ ∈ A. Let Bx → ∞.
Then

lim
x→∞ max

δ≤ξk,x≤2−δ
max
y∈R

∣∣∣∣∣ 1
ANk(x)

#

{
n ≤ x, n ∈ N ∗

k ,
f∗(n)

Bx

√
ξk,x

}
− Φ(y)

∣∣∣∣∣ = 0.

Here

Φ(y) =
1
2π

y∫
−∞

e−
u2
2 du.

Theorem 8. Let f ∈ A. Assume that the 3 series in (1.2), (1.3), (1.4)
are convergent. Let

F ∗
k,x(y) :=

1
#{n ≤ x, n ∈ N ∗

k }
#{n ≤ x, n ∈ N ∗

k , f(n) < y}.
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Furthermore, for some η ∈ (0, 2), and p ∈ P let ξp = ξp(η) be the random
variable distributed by

P (ξp = f(pα)) =
(

1 − η

p

)(
η

p

)α

(α = 0, 1, 2, . . .).

Assume that ξp(p ∈ P) are completely independent. Let

Θ(η) =
∑

p

ξp(η).

As we know from the theorem of Kolmogorov, the right hand side is convergent.
Let Fη(y) := P (Θp(η) < y). Then

lim
x→∞ max

δ≤ξk,x≤2−δ
max
y∈N

|F ∗
k,x(y) − Fξk,x

(y)| = 0.
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