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Abstract. We will introduce the definition of the #-summation on local
fields. It will be given a convolution form of the partial sums of the 6-
summation. It will be shown examples for the f-summation in the dyadic
and in the arithmetic case.

1. Preliminaries

Let Z denote the set of integers, R, represent the set of nonnegative real

numbers and denote (B, 40—, o) the dyadic (logical) field, (B, —.#, o) the arithmetic
field and (R, +,-) the usual real field.

Recall that B is the set of binary infinite sequence z = (x,,n € Z), ,, €
€ {0,1} satisfying lim z, =0, B*:=B\ {0} (6 = (0, =0,n € Z)).

The norm on B is defined by
(1) lz]| :=27"® (2 € B),

where 7(©) := +o00 and for € B*, 7(z) :=n if and only if z,, =1 and z; =0
for all j < n.



138 T. Eisner

The dyadic sum and dyadic product of z,t € B is defined as

(2)

(z+t)y =xn+t, (mod2), (zot),= i zjtp—; (mod2) (ne€Z).

j=—oc

The arithmetic sum z :Lz of z,t € B is defined as

(3) (x+t)n =1n (n €Z),

where the bits ¢, 7, € {0,1} (n € Z) are defined recursively using the additive
digits of z,t as follows

gn =1, =0 for n<m:=min{r(z),n(t)},

and
Tpn+tn + Gno1 = 2q, + 7, for n>m.

The arithmetic product = e t of the elements x,t € B* is defined as
(4) (zot)ni=rn (nEZ),

where the bits ¢,, 7, € {0,1} (n € Z) are defined recursively using the additive
digits of z,t as follows

gn=1n,=0 for n<m:=min{n(z),n(t)},

and

oo
Z ZTitn—j +qn—1 =2g, + 1, for n>m.

Jj=—00
Also define x ¢ © = © for all z € B.

The fundamental sequence in B is the sequence e” := (0,;,j € Z), defined
for each n € Z, where 6, represents the Kronecker delta.

The zero element of B is the sequence © in both cases. The dyadic additive
inverse of z € B is itself, the arithmetic additive inverse of z € B is its reflection,
z~ (z; =0for j <m(z) and z; = 1—z; for j > m(x)). The identity of the
dyadic and arithmetic multiplication is e := € (see Schipp-Wade [1]). The
multiplicative inverse of z € B* := B\{©} will be denoted by 2° and z°,
respectively.
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The norm (1) is non-Archimedian and multiplicative in both cases, i.e.

[e]

lz + ¢l < max{{lz]l, [[£ll},  lzotl =zl -t (2t eB),

o+l < max{|iz], ¢}zl =zl ] (zteB).

The functions p°(z,t) := ||z ¥ tl| (z,t €B), p*(z,t) == ||§—T-t_|| (z,t €B)
are metrics on B. The dyadic addition and dyadic multiplication are continuous
with respect to the metric p°, arithmetic addition and arithmetic multiplication
are continuous with respect to the metric p®.

Thus (IB%,—T—,o) and (IB%,J—,-) are locally compact topological fields (see
Schipp-Wade [1]).

The interval with rank n € Z, and center z € B is defined as

I(z):={teB: zj=t; (j <n)}

It is known (see Schipp-Wade [1]) that the image of every interval under an
addition and under a multiplication is again an interval in both cases. In fact,
if J=1,(b) (n€Z, a,b € B), then

€J} = lnin((aob),
atJ:= {gq—g cxeJt= In(g+b),
aeJ:={aex:xcJ}=1I,1(a(aeb).
Thus the measure p defined on the set of intervals by
pIn(z)) :==2"" (ne€ZzecB)

is translation invariant and the extension of y to the Borel-sets of B coincides

with the Haar-measure of (B, —T—) and (B, —T—) normalized by u(l(©)) = 1.

The set B can be identified with the set of nonnegative real numbers R
and B* with (0,00). This identification gives a useful interpretation of the
concepts defined above. Define the map a: z+— x (z € B,x € Ry) by

oo
E x,2 "L
n=—oo

From this point of view, we call z,, (n € Z) the binary coefficients of x. The
map « takes I, (z) to a dyadic interval of the form [k-27", (k+1)-27") (n € Z),
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n—1 .
where k = ) ;277 ~1. The map « is 1-1 except for a denumerable set of
j=—o00

B. All definitions above (dyadic addition, multiplication, etc.) correspond to
a similar one defined on R;. That is why we can and will work on R except
for B in the following.

In the sequel w, (z € Ry) stands for the generalized Walsh function
defined on R;. We recall (see Schipp-Wade-Simon [2], Chapter 9 and [1],
Chapter 3) that the generalized Walsh function w, is defined by

(6) we(t) = (1)1 (wot) oy = > wat1_, (mod 2),

n=—oo

where x,,,t, € {0,1} are the binary coeflicients in the dyadic representation.
If  =neN:={0,1,2,---} is a natural number, then w, coincides with the
1-periodic extension of the corresponding Walsh-Paley function. The functions
wy (y € Ry) behave like characters with respect to dyadic addition, i.e. if

x,t € Ry and = + ¢ is dyadic irrational then

(7) wy(z + ) = wy(x)wy ().

The function

t_1

(8) w(t) = 7T = (<) (1€ Ry)

is called the basic character of the additive group of dyadic field. The Walsh-
Paley functions can be expressed by the basic character in the form

(9) we(t) :=w(xzot) (z,t€R,)
and consequently
wy(2) = wa(y), Weea(y) = wa(toy), wa(y) =wWwy (@) (z,y,t€Ry),

where [z] is the integer part of z € R .

In the sequel v, (z € Ry) defined on Ry stands for the characters of the
additive group of arithmetic field. We recall (see Schipp-Wade [1], Chapter 2)
that the basic character in this case is

toq  t

(10) o) = 2 (FHFH) e ry)
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and v, (z € Ry) can be expressed in the form

o ( (z-t;fl CLON

(11) vp(t) :=v(zet)=e > +) (t € Ry),

where (x o t);, (k € Z) are the binary coefficients of = e ¢ in the dyadic
representation. If x = n € N := {0,1,2,---} is a natural number, then

v, coincides with the 1-periodic extension of the characters of the subgroup
L]

([0,1),4). The functions v, has also the character property, if z,¢ € R} and

L]
x +t is dyadic irrational, then

(12) oy 3 1) = v (@), (2).
Moreover

Uy(x) = Ux(y)a Ut'x(y) = Ux(t hd y)v Uﬂf(y) = Vlz] (y)v[y] (x/) (I’yvt € R-i—)a

where [z] is the integer part of z € Ry, ' =z — [z].

In the sequel €, (x € R) defined on R stands for the characters of the real
field (R, +). We recall (see Schipp-Wade [1], Chapter 3) that in this case the
basic character is

(13) e(t) :=e*™  (t eR)
and €, (z € R) is defined by
(14) ex(t) = e(z - t) = ™7 (t € R).

If x =ne€Z:={0,£1,+2,---} is an integer, then ¢, coincides with the
1-periodic extension of the characters of the subgroup ([0,1),4mod 1). The
functions €, have also the character property, if z,t € R, then

(15) &y +1) = ¢ (@)e, (1).

Let LP = LP(R4) (1 < p < 00) denote the usual Banach spaces. We have
introduced three fields (the real field, the logical field and the arithmetic field)
and thus have three distinct Fourier transforms. Let (F,+, ) represent one of
the fields. Let F* denote Z, when F = R, N, when F = R.

Given f € L' := LY(F) the Fourier transform of f is the function on F
defined by

(16) (fﬁ@%:/fwmwwﬁ(zem,
F
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where wu is the basic character of (F,+), and @ is the complex conjugation of
u. Specially the trigonometric Fourier transform is denoted by

(17) f@)i= [ ettt @ew),
the Walsh-Fourier transform is denoted by

(18) @)= [ fQw(zot)dt (zeRy),

and the Fourier transform in the arithmetic case is denoted by
(19) /f v(zet)dt (reRy).
0

It is known that, if f, Ff € L', then the inversion formula is true. Namely,
(20) f(z) = /(ff)(t)u(x -t)dt for a.a. z€F
F

(see Schipp-Wade-Simon [2]).
The dilation operator generated by b € F* is defined by

(Gof)(x) := f(z-b) (z€F),
and the translation operator generated by h € I is defined by
(T f)(x) := f(x+h) (zeF).

It is known (see Schipp-Wade [1]) that

(21) (F o) (f) = 1 (B2 0 F)(f)  (f € L'(F), b F).

Hbll
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2. The f-summation

We begin with the definition of the 6-summation. We will do it with a
function 6 : [0,00) — R. We consider only functions § with the property:

(22) S lo(ko2™)=> 10(k-27")| <oo  (neEN).
k=0 k=0

Definition 1. Let z = (z,,n € N) be a bounded real sequence, and 6 a
function with the property (22). The series

(23) i 2
k=0

is called -summable, if the sequence
(24) ty = 29 (k-27") 2z (neN)
k=0

is convergent. The limit of the sequence (t,,n € N) is called the f-sum of the
series (23).

We examine, when will this summation be permanent. Assume that the
series (23) is convergent, and use the following notations:

k-1
(25) $0:=0, sp:= sz (k e N¥).
j=0
After applying the Abel-rearrangment for (24), we get
(26) th=> (0((k=1)-27") =60 (k-27")) s (n€EN).
k=1

Applying the theorem of Toeplitz (see Zygmund [6]) we get, that the summation
(24) is permanent if and only if for the double series

(27) =0 ((k—1)-27") =0 (k-27") (ke N".,neN),
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the conditions

(28) :161}1\)1; || < o0, nlinéo;a”k =1, 7Lh_)nolo any, =0  (keN"),
hold. Since
(o)
(29) > ank = 6(0)
k=1
it follows that if for the function 6 condition (22) hold and
(30) i) e BV(Ry), ii) 0(0) =1, i) - lim 0(t) = 0(0)

are satisfied then the summation, which is generated by 6 is permanent. Here
BV denotes the set of functions with bounded variation on R*.

Assume now that the double sequence 6(k-27") has the following property:
(31) o(2"-27") =0 (2" +0)-27) (0< <2k koneN).

In such a case using again the Abel arrangement, we get

ok+1_1

(32) n = 9 81+ZQ Qk 2- n Z Zp = 0 81+29 Qk 82k+1—82k)
£=2F

for all n € N, and so

(33) tn = 0(0)s1 + Z B(2F1 27 — 928 277)) sk — B(27™) s

It follows from the Toeplitz-theorem that, if the function 6 fulfils the
conditions (30) and (27), then

(34) lim sgn =5 = limt,=s (se€R).

n—oo n—oo

It is easy to see that, if 6 (x) = 0 (||z|]) (x € RT), then # has the property (31).
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3. f-summation of Fourier-series

Let f :[0,1) — R be an integrable function, and 6 a function with the
property (22). We will denote the Walsh-Fourier coefficients of f with ¢}’(f)
(k € N), the Fourier-coefficients of f with respect to the system (vg, k € N)
with ¢¥(f), and the trigonometric Fourier coefficients of f with ¢ (f) (k € Z).

Let (ug, k € F*) represent one of the three systems and denote

exlf) = / f@yatyd (k€ F)
0

the Fourier coefficient of f with respect to this system. The linear combinations
of the functions uy, (k € F¥) are called the trigonometric polynomial of F.

For 1 < p < oo denote X, the closure in LP-norm of the trigonometric
polynomial of F. It is known that X, = LP[0,1) if p < co. In the case F = B
the space X, is the set of W-continuous functions and if F = R then X, is
the collection of one periodic continuous functions. The norm of X, will be
denoted by || - [|,.

The Fourier series of f is called #-summable, if the sequence

(35) ol (f) =Y (O (k- 27" ux (n€F)

keFt

converges. For the trigonometric system see [3], [4].
We will show that ¢? can be expressed as a convolution operator:

Theorem 1. Assume that the function 0 fulfils the conditions (30) and
(22). If0,0 € L} and f € X,, (1 < p < 00), then

(36) (@) @) =2 [ farOFOE (e l0.1),
F
and for all f € X,

(37) loof—flp—0  (n—o0).

Proof. We will use the following notation:

(VOF) (@) = 2° / @+ O(FO@ Dt (x € F).
F
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The operators V,?, 0% : X, — X, are bounded. Indeed, since |c,(f)] < [|f|l,

for the operator o we get

o fllp < S lew(£)] [0 (k-2 |<||f||p2\a (k-27)].
k=0

Applying the generalized Minkowsky-inequality for V! by (22) we have

P 1/p

1
IV fllp < f(z+1)(FO)(2"t)dt| dz <
[l

1 1/p
n n p —
SF/ 0/2 Fa+ OFOE D Pde | dt =
= ||f\\p/|2n7:9(2nt)|dt= ||f||p/\(7:9)(t)|dt= 1£llp - 1701 L1
F F

Since for all fixed n € F* the operators V,?, o2 : X, — X, are bounded,
and X, is the closure of the trigonometric polynomials it is enough to prove our

statements for the system (uy, k € F¥). Let f = ug (k € F*). By the definition
of 02 (35) and V! we get that

(02f) (x) =0 (k-27") ug(2),
Vi (x)=2" / ug (z+t)(FO)(2"¢t)dt = 2" /uk(x)uk(t)(}'e)@”t)dt =

F F

— 2u(z) / () (FO) (2™ )dt = un(x) / (2774 (FO) ()t =

F

= ug(x) /Uk‘gfn(t)<]:9)(t)dt =0(k-27")up(x).
F

We used the character property of the functions (ug, k € F#) and the inversion
formulae (20). From this we can easy estimate

(38)

ok —urllp < 100k 27" ur —ugllp < 10(k-27") = 1| Juxl, = |0(k-27") —1].
Because of (30), [6(k-27") — 1| — 0 (n — oo) and so |[ofur — uk|x — 0

(n — o0). Using the Banach-Steinhaus theorem we get the statements of the
theorem.
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3.1. Estimations for the L!-norm of the Walsh-Fourier transform

First we investigate functions with compact support. It is known that if
supp 0 C [0,1], then

6ol =D le @) | e (6) = /G(t)wk(t) dt, keN
k=0 0

We will use the estimation of the functions

JW(z) == /wk(t) dt, J?(x):= /Jgn(t) dt (z€[0,1],n € N).
0 0

It is known that
(39)
. 1 1 1 1 —n—
§) I = w S IS (1) =0, (IS e <2777 (neN),
- 2 2 —n—m-— m
i) I, g (1) =0, T2, g o =2 L (0<k<2™0<m<N)

(see Schipp-Wade-Simon [2]).

Using these estimations, we can prove the following

Lemma 1. Assume that the function 6§ € C1[0,1] is twice differentiable
on the open interval (0,1) and 0" € L*[0,1). Then

oo

16°1l =D 1e ()] < N(6) = 18]l + 16l + 16" [|x < oc.
k=0

Proof. Let £ =2"+2" 4+ k (0 < k < 2™,0 <m < n). Then J\"(0) =

= ,(nl)(l) =0, JéQ)(O) = y(f)(l) = 0. Integrating by parts we get

/ O(t)we(t) dt = — / 0/ (1) (t) dt = —[6'(£) 7 (1)]1e + / 0" ()] (t) dt,
0 0 0

and so )
e (@) < 10”1 1T3 oo < (16712771
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If £ = 2™, then

1 1
/ O(t)we(t) dt = — / o' (£)J) (1) dt
0 0

w 1 —n—
12 (0)] < 110111175 loo < 1167112772,

SO

From this follows that

oo n—12"-1

10°001 < 1 O)]+ 1 01+ 3 3 3 [ 4(6)] = B1 + T + 5.
n=0

n=0m=0 k=0

From this follows that

(40)
i) 5] < 0],
i) S| < )|0]]1/2,
n—12"-1 00
iti) | Ss] < 116"l ZQ YD 2= Y n2 T < 9
m=0 k=0 n=0

In the general case we suppose that € L'(Ry). Then for z € [k, k + 1)
(ke N)

00 00 o l+1
0° () = / ot / 0wy (g (@) de = 3 we(2) / 0()w(t) dt.
0 0 £=0 [

Introduce the functions
Oi(t) :=0(t+¢) (LeN, tel0,1)),

the function 6° can be written in the form

ZW z)cl(0y) (z €[k, k+1), keN).

From this follows that

0 < 305 ke 6] < ZN ).

£=0 k=0
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We proved the following
Lemma 2. Assume that 0 € C%*(R,). Then

16°(l <D N (6y).
=0

3.2. The Fourier-coefficients with respect UDMD system

By a dyadic interval of rank n in [0,1) we mean an interval of the form
[p/2", (p+1)/2™), where 0 < p < 2" and n € N. Given a € [0,1) and n € N,
there is one and only one interval of rank n which contains a. We denote it with
I,,(a). We denote the o-algebra generated by the intervals I,(a) (a € [0,1)) by
A

Let ¢, (n € N) A,-measurable functions with |¢,| = 1. Then

Gn = TnPn (n € N)

is an UDMD sequence, where 7, is the nth Rademacher function. We denote
by ¥ = (¢, m € N) the product system of ® = (¢,,,n € N):

e | <m => mp2" €N, m, € {0, 1}) .
n=0 n=0
It is called the UDMD product system.
In this section we will examine the order of the Fourier coefficients
fm) = (f,¥m) (meN)

of the function f € L'[0,1) with respect to the system V.
Let

x

(41) Ro(z) = /rn(t)dt (@€ [0,1), neN).
0

Obviously R, is linear on dyadic intervals with rank n + 1, and
(42)  R,(k27) =0, Ru((k+1/2)-27") =2+ (kneN).

The basis of the estimation is the following
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Lemma 3. Assume that the function f € L'[0, 1] is absolutely continuous,
and let v, :== Rp, (n € N). Then

(43) fm) = —(FAm)m') (m=2"+m',0 <m’ < 2").
Proof. Let
0:=Ym, TImys1(x /jme (x € [0,1],m, ¢ € N).

Integrating by parts we get that
(44)
1 1 1
:/f(t) 1/7171 fjml /f/ jml /fl jml
0 0 0

because f U (t)dt = 0 for all m € Nym > 0. It follows from the definition of

¥, that 1fm*2”+m’,0§m’<2”,nEN7 then

e / G (£)dt = / (1) o (1)t = / (O (£ b (£) =

et 0) [ 04 = e D) = 20 0

Substitute this in (44), we get our statement.

With the aid of Lemma 3 we get

Theorem 2. Let f be absolutely continuous function, and f' € L*([0,1)).
Then f e .

Proof. Using the Cauchy inequality, Lemma 3, the Parseval formula and
(42) we get that

2n+1_1 2n+1_1 1/2
Yoo fmy<2v2 L Y fm)P | =
m=2" m=2"

on_1 1/2
= 2"/ (Z |<fwn><m'>|2> <22\ 7,0l < 272 |£
m’=0
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for all n € N. Consequently

1fller =D 1f ()] =
n=0
A oo 2nti g A . oo
=1F O+ Y 1fm) < 1fO)[+ Y2771 f|2 < 0.
n=0 m=2" n=0

It is known that the systems (wp,n € N) and (v,,n € N) are UDMD
product systems. So, Theorem 2 gives an other condition for the function 8 in
the dyadic case:

Corollary 1. If the absolutely continuous function 6 has compact support
with supp 6 C [0,1], and 0’ € L?[0,1), then in the logical and in the arithmetic
case 6 € L]0, 00).

4. Examples

In this section we consider some known examples for the #-summation. We
will examine the conditions of Theorem 1, and in certain cases the conditions
of Corollary 1. For the trigonometric case see [6].

1. The 2"th partial sum. If we use the function
(45) O(x) = X[o,l)(x),

where Xjo,1) denotes the characteristic function of the interval [0,1), the 0-
summation will yield the 2"-th partial sum. The Walsh-Fourier transform of
(45) is itself, and it is in L'[0, 00), so the conditions of Theorem 1 are met.

0 is absolutely continuous with compact support and its derivative is in
L?[0,1), so by Corollary 1, °,0* € L'[0,1) and the conditions of Theorem 1
are fulfilled in the arithmetic and in the logical case, too.

2. The (C,1)-summation. If we use the function
1—-2z ifzel0,1),

(46) O(z) =
0 if x € [1,00),
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then the #-summation results in the 2"th subsequence of the (C,1)-sums. The
function 6 is of course in L'[0,00). It follows from Lemma 1 that 6° is in
L'[0,00), so the conditions of Theorem 1 are satisfied.

On the other hand 6 is absolutely continuous with compact support and its
derivative is in L2[0, 1), so by Corollary 1, 6°,6* € L'[0,00) and the conditions
of Theorem 1 are fulfilled in the arithmetic and in the logical case, too.

3. De La Vallée-Poussin summation. If we use the function

1 if 2 € [0,1/2),
(47) O(x) =X 2(1—=z) ifzell/2,1),
0 if x € [1,00),

then the #-summation results in the 2"th subsequence of the De La Vallée-
Poussin-sums. The function 6 is of course in L[0,00). It follows from Lemma
1 that 6° is in L'[0, 00), so the conditions of Theorem 1 are fulfilled.

Furthermore 6 is absolutely continuous function with compact support
and its derivative is in L?[0,1), so by Corollary 1, §°,0* € L'[0,00) and the
conditions of Theorem 1 are satisfied in the arithmetic and in the logical case,
too.

4. The Riesz-summation. If we use the function

(1—2z")> ifze|0,1),
(48) 0(z) =
0 if x € [1, 00),

where 1 < a < oo and 0 < 7 < oo, then the f-summation results in the 2"th
subsequence of the Riesz-sums. The function 6 is of course in L'[0, 00). Since
a-y>1,s060" € L'[0,1) and so Lemma 1 holds.

Furthermore 6 is absolutely continuous with compact support and its
derivative is in L?[0,1) if v > 1/2, so by Corollary 1, §°,0° € L'[0,00) and the
conditions of Theorem 1 are met in the arithmetic and in the logical case, too,
if v>1/2.

5. Weierstrass summation. If we use the function

O(z) =e™™ (0<z<o00,v>0),

then the f-summation results in the 2"th subsequence of the Weierstrass-sums.
The function @ is of course in L1[0,00). In this case we get by Lemma 2 and
Lemma 1 that

fe) > = Y _pY ,yg’}/*l
16 ||L1§ZN(€>§Z<K-e et )<oo,
£=0
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where K is a constant, which depends only on ~.

6. Abel summation. If we use the function
O(z)=e" (0<z<o0, kK>0)

then the limit of 0¥ is equal to the Weierstrass-sum. The function 6 is of course
in L'[0,00). In this case we get by Lemma 2 and Lemma 1 that

16°]1: <> N(0) Z( +1+/<;> e b < 0.
=0

7. Norm-depending 0 functions. Assume that 0 (z) = 0 (||z||) (z €
€ RT). Then its L'-norm is

OO

(49) 161l = / o= > [0 2"
k=—o0
Its Walsh-Fourier transform is
oo 1 o 2T
0°(z) = / O(t)w, (t)dt = / O(tywa (t)dt + / O(t)we (t)dt =
0 0 k=0 2k
1 oo 2k+1
- / b(tyw. ()dt + 3 0(2") / wy (t)dt =
0 k=0 2k
(50) "
1 ok _ 2 4+0+1
= /Q(t) w[t] x)dt + ZH Qk Z / w[x w[t] (x)dt =
0 = =0 gy
1 ok 1 2k 4 o041
= /9 1] t)dt + Z@ 2k Z U)Qk_;’_g / W) (t)dt
0 PLEW)

for all z € RT. The integral of the Walsh-functions are zero over every interval
with length 1 except the wg, so

6°([]) if >1,
0°(x) = { 4o 2oy B! :
([=]) +k§09(2 ) go worpe(z) if we[0,1),
(51) 6° ([x] if z>1,

)
) 6°(0) + kgoﬂ(Zk)rk(a:)Dzk(x) if zel0,1).
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From this expression we can estimate the L'-norm of 6°:

161 =/\a°<t>|dt=
1
s
<O+ S 20 + SR = 3 28@) + 3 %) <
k=0 k=1 k=0 k=0
<ol + 3 1o (k)
k=0

0°(0 +29 (2%)rs (@) Do (z)

dx+/|9° D] dx <

From this follows that, if @ is integrable (6 € L'), and its Walsh-Fourier series
is absolutely convergent, then it Walsh-Fourier transform is in L', too.

If 0 () = 6 (||z|) (x € R"), then # has the form

(52) =3 2 D) = Dornr(@) - ¢ (. 1y),

2n+1

n (0,1), where the (a,,n € N) is a real sequence. If m£%1+9(x) =0(0) =

then the sequence (a;,,n € N) is convergent, and its limit is 1 ( lim «, = 1).

n—oo

Let us count the Fourier-coefficients of 6.

00 2" —1 ontl_q
(e7%)
00 =3 g (23wl 3w =
n=0 k=0 k=0
< 2" —1 ontl_q
(53) = an-l Z wk(x)_ Z wk(m) =
n=0 k=0 k=2n
00 ontl_q
Qi e
= St Z wi(x)sgn(2” — k) |,
n=0 k=0
where
1, if ¢>0,
sgn(t) = {
-1, if ¢<0.
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If we replace the order of the summation, we get for all z € [0,1) that
(54)

oo an o
= Z w () Z T sgn(2" — k) =
k=0 n>log, (k+1)—1,neN

oo

Qnp
- wo(x) Z on+1 +
n=0
oo 271 o
) " Son(on J —
22 wae(a) > gt SER(2 =Y ) =
j=0 ¢=0 n>log, (29 +4+1)—1,neN
co 29-1 oo a a
_ n %
C) DR 3) SRINEY [ PR
n=0 7j=0 ¢=0 n=j+1

If ay, = 1 (n — o0), then v, :==1—a, — 0 (n — 00), and so

oo oo

J n__ J 9] _ J
(55) 2 Zl on-+1 2+1 2 . on+1 2j+1"

The condition of the absolute convergence is
(56)
oo 27

S0 —Z'“”'+ZZ I
k=0

7=0 £=0 |n=j+1

oo

oo
2]‘ Tn Y

on+l — 9j+1

(]

> el
n=0 j=0 n=j+1
N R DI RN DI DIE
|an|
Z on+1 + Z |'7n‘ < 00
n=0

n=0

|
<
I

That means, if > |y,| < oo, then §° € L[0, 4+00).
n=0
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