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Abstract. We will introduce the definition of the θ-summation on local

fields. It will be given a convolution form of the partial sums of the θ-

summation. It will be shown examples for the θ-summation in the dyadic

and in the arithmetic case.

1. Preliminaries

Let Z denote the set of integers, R+ represent the set of nonnegative real

numbers and denote (B,
◦
+, ◦) the dyadic (logical) field, (B,

•
+, •) the arithmetic

field and (R, +, ·) the usual real field.
Recall that B is the set of binary infinite sequence x = (xn, n ∈ Z), xn ∈

∈ {0, 1} satisfying lim
n→−∞xn = 0, B∗ := B \ {Θ} (Θ = (Θn = 0, n ∈ Z)).

The norm on B is defined by

(1) ‖x‖ := 2−π(x) (x ∈ B),

where π(Θ) := +∞ and for x ∈ B∗, π(x) := n if and only if xn = 1 and xj = 0
for all j < n.



138 T. Eisner

The dyadic sum and dyadic product of x, t ∈ B is defined as
(2)

(x
◦
+ t)n := xn + tn (mod 2), (x ◦ t)n =

∞∑
j=−∞

xjtn−j (mod 2) (n ∈ Z).

The arithmetic sum x
•
+ t of x, t ∈ B is defined as

(3) (x
•
+ t)n := rn (n ∈ Z),

where the bits qn, rn ∈ {0, 1} (n ∈ Z) are defined recursively using the additive
digits of x, t as follows

qn = rn = 0 for n < m := min{π(x), π(t)},

and
xn + tn + qn−1 = 2qn + rn for n ≥ m.

The arithmetic product x • t of the elements x, t ∈ B∗ is defined as

(4) (x • t)n := rn (n ∈ Z),

where the bits qn, rn ∈ {0, 1} (n ∈ Z) are defined recursively using the additive
digits of x, t as follows

qn = rn = 0 for n < m := min{π(x), π(t)},

and ∞∑
j=−∞

xjtn−j + qn−1 = 2qn + rn for n ≥ m.

Also define x • Θ = Θ for all x ∈ B.

The fundamental sequence in B is the sequence en := (δnj , j ∈ Z), defined
for each n ∈ Z, where δnj represents the Kronecker delta.

The zero element of B is the sequence Θ in both cases. The dyadic additive
inverse of x ∈ B is itself, the arithmetic additive inverse of x ∈ B is its reflection,
x− (x−

j = 0 for j ≤ π(x) and x−
j = 1 − xj for j > π(x)). The identity of the

dyadic and arithmetic multiplication is e := e0 (see Schipp-Wade [1]). The
multiplicative inverse of x ∈ B∗ := B\{Θ} will be denoted by x◦ and x•,
respectively.
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The norm (1) is non-Archimedian and multiplicative in both cases, i.e.

‖x
◦
+ t‖ ≤ max{‖x‖, ‖t‖}, ‖x ◦ t‖ = ‖x‖ · ‖t‖ (x, t ∈ B),

‖x
•
+ t‖ ≤ max{‖x‖, ‖t‖}, ‖x • t‖ = ‖x‖ · ‖t‖ (x, t ∈ B).

The functions ρ◦(x, t) := ‖x
◦
+ t‖ (x, t ∈ B), ρ•(x, t) := ‖x

•
+ t−‖ (x, t ∈ B)

are metrics on B. The dyadic addition and dyadic multiplication are continuous
with respect to the metric ρ◦, arithmetic addition and arithmetic multiplication
are continuous with respect to the metric ρ•.

Thus (B,
◦
+, ◦) and (B,

•
+, •) are locally compact topological fields (see

Schipp-Wade [1]).
The interval with rank n ∈ Z, and center x ∈ B is defined as

In(x) := {t ∈ B : xj = tj (j < n)}.

It is known (see Schipp-Wade [1]) that the image of every interval under an
addition and under a multiplication is again an interval in both cases. In fact,
if J = In(b) (n ∈ Z, a, b ∈ B), then

(5)

a
◦
+ J := {a

◦
+ x : x ∈ J} = In(a

◦
+ b),

a ◦ J := {a ◦ x : x ∈ J} = In+π(a)(a ◦ b),

a
•
+ J := {a

•
+x : x ∈ J} = In(a

•
+ b),

a • J := {a • x : x ∈ J} = In+π(a)(a • b).

Thus the measure μ defined on the set of intervals by

μ(In(x)) := 2−n (n ∈ Z, x ∈ B)

is translation invariant and the extension of μ to the Borel-sets of B coincides

with the Haar-measure of (B,
◦
+) and (B,

•
+) normalized by μ(I0(Θ)) = 1.

The set B can be identified with the set of nonnegative real numbers R+

and B∗ with (0,∞). This identification gives a useful interpretation of the
concepts defined above. Define the map α : x �→ x (x ∈ B, x ∈ R+) by

α(x) := x :=
∞∑

n=−∞
xn2−n−1.

From this point of view, we call xn (n ∈ Z) the binary coefficients of x. The
map α takes In(x) to a dyadic interval of the form [k ·2−n, (k+1)·2−n) (n ∈ Z),
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where k =
n−1∑

j=−∞
xj2−j−1. The map α is 1-1 except for a denumerable set of

B. All definitions above (dyadic addition, multiplication, etc.) correspond to
a similar one defined on R+. That is why we can and will work on R+ except
for B in the following.

In the sequel wx (x ∈ R+) stands for the generalized Walsh function
defined on R+. We recall (see Schipp-Wade-Simon [2], Chapter 9 and [1],
Chapter 3) that the generalized Walsh function wx is defined by

(6) wx(t) := (−1)(x◦t)−1 , (x ◦ t)−1 =
∞∑

n=−∞
xnt−1−n (mod 2),

where xn, tn ∈ {0, 1} are the binary coefficients in the dyadic representation.
If x = n ∈ N := {0, 1, 2, · · ·} is a natural number, then wn coincides with the
1-periodic extension of the corresponding Walsh-Paley function. The functions
wy (y ∈ R+) behave like characters with respect to dyadic addition, i.e. if

x, t ∈ R+ and x
◦
+ t is dyadic irrational then

(7) wy(x
◦
+ t) = wy(x)wy(t).

The function

(8) w(t) := e2πı
t−1
2 = (−1)t−1 (t ∈ R+)

is called the basic character of the additive group of dyadic field. The Walsh-
Paley functions can be expressed by the basic character in the form

(9) wx(t) := w(x ◦ t) (x, t ∈ R+)

and consequently

wy(x) = wx(y), wt◦x(y) = wx(t ◦ y), wx(y) = w[x](y)w[y](x) (x, y, t ∈ R+),

where [x] is the integer part of x ∈ R+ .

In the sequel vx (x ∈ R+) defined on R+ stands for the characters of the
additive group of arithmetic field. We recall (see Schipp-Wade [1], Chapter 2)
that the basic character in this case is

(10) v(t) := e
2πı

(
t−1
2 +

t−2
22

+···
)

(t ∈ R+)
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and vx (x ∈ R+) can be expressed in the form

(11) vx(t) := v(x • t) = e
2πı

(
(x•t)−1

2 +
(x•t)−2

22
+···

)
(t ∈ R+),

where (x • t)k (k ∈ Z) are the binary coefficients of x • t in the dyadic
representation. If x = n ∈ N := {0, 1, 2, · · ·} is a natural number, then
vn coincides with the 1-periodic extension of the characters of the subgroup

([0, 1),
•
+). The functions vx has also the character property, if x, t ∈ R+ and

x
•
+ t is dyadic irrational, then

(12) vy(x
•
+ t) = vy(x)vy(t).

Moreover

vy(x) = vx(y), vt• x(y) = vx(t • y), vx(y) = v[x](y)v[y](x′) (x, y, t ∈ R+),

where [x] is the integer part of x ∈ R+, x′ = x − [x].
In the sequel εx (x ∈ R) defined on R stands for the characters of the real

field (R,+). We recall (see Schipp-Wade [1], Chapter 3) that in this case the
basic character is

(13) ε(t) := e2πıt (t ∈ R)

and εx (x ∈ R) is defined by

(14) εx(t) := ε(x · t) = e2πıxt (t ∈ R).

If x = n ∈ Z := {0,±1,±2, · · ·} is an integer, then εn coincides with the
1-periodic extension of the characters of the subgroup ([0, 1), +mod 1). The
functions εx have also the character property, if x, t ∈ R, then

(15) εy(x + t) = εy(x)εy(t).

Let Lp = Lp(R+) (1 ≤ p ≤ ∞) denote the usual Banach spaces. We have
introduced three fields (the real field, the logical field and the arithmetic field)
and thus have three distinct Fourier transforms. Let (F, +, ·) represent one of
the fields. Let F� denote Z, when F = R, N, when F = R.

Given f ∈ L1 := L1(F) the Fourier transform of f is the function on F
defined by

(16) (Ff)(x) :=
∫
F

f(t)u(x · t)dt (x ∈ F),
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where u is the basic character of (F,+), and u is the complex conjugation of
u. Specially the trigonometric Fourier transform is denoted by

(17) f̂(x) :=

∞∫
−∞

f(t)ε(x · t)dt (x ∈ R),

the Walsh-Fourier transform is denoted by

(18) f◦(x) :=

∞∫
0

f(t)w(x ◦ t)dt (x ∈ R+),

and the Fourier transform in the arithmetic case is denoted by

(19) f•(x) :=

∞∫
0

f(t)v(x • t)dt (x ∈ R+).

It is known that, if f,Ff ∈ L1, then the inversion formula is true. Namely,

(20) f(x) =
∫
F

(Ff)(t)u(x · t)dt for a.a. x ∈ F

(see Schipp-Wade-Simon [2]).

The dilation operator generated by b ∈ F∗ is defined by

(δbf)(x) := f(x · b) (x ∈ F),

and the translation operator generated by h ∈ F is defined by

(τhf)(x) := f(x + h) (x ∈ F).

It is known (see Schipp-Wade [1]) that

(21) (F ◦ δb) (f) =
1
‖b‖ (δb−1 ◦ F) (f) (f ∈ L1(F), b ∈ F∗).
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2. The θ-summation

We begin with the definition of the θ-summation. We will do it with a
function θ : [0,∞) → R. We consider only functions θ with the property:

(22)
∞∑

k=0

|θ(k ◦ 2−n)| =
∞∑

k=0

|θ(k · 2−n)| < ∞ (n ∈ N).

Definition 1. Let z = (zn, n ∈ N) be a bounded real sequence, and θ a
function with the property (22). The series

(23)
∞∑

k=0

zk

is called θ-summable, if the sequence

(24) tn :=
∞∑

k=0

θ
(
k · 2−n

)
zk (n ∈ N)

is convergent. The limit of the sequence (tn, n ∈ N) is called the θ-sum of the
series (23).

We examine, when will this summation be permanent. Assume that the
series (23) is convergent, and use the following notations:

(25) s0 := 0, sk :=
k−1∑
j=0

zj (k ∈ N∗).

After applying the Abel-rearrangment for (24), we get

(26) tn =
∞∑

k=1

(
θ
(
(k − 1) · 2−n

)
− θ

(
k · 2−n

))
sk (n ∈ N).

Applying the theorem of Toeplitz (see Zygmund [6]) we get, that the summation
(24) is permanent if and only if for the double series

(27) αnk := θ
(
(k − 1) · 2−n

)
− θ

(
k · 2−n

)
(k ∈ N∗, n ∈ N),
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the conditions

(28) sup
n∈N

∞∑
k=1

|αnk| < ∞, lim
n→∞

∞∑
k=1

αnk = 1, lim
n→∞αnk = 0 (k ∈ N∗),

hold. Since

(29)
∞∑

k=1

αnk = θ(0),

it follows that if for the function θ condition (22) hold and

(30) i) θ ∈ BV (R+), ii) θ(0) = 1, iii) lim
t→0+

θ(t) = θ(0)

are satisfied then the summation, which is generated by θ is permanent. Here
BV denotes the set of functions with bounded variation on R+.

Assume now that the double sequence θ(k·2−n) has the following property:

(31) θ
(
2k · 2−n

)
= θ

(
(2k + �) · 2−n

)
(0 ≤ � < 2k, k, n ∈ N).

In such a case using again the Abel arrangement, we get

(32) tn = θ(0)s1+
∞∑

k=0

θ(2k ·2−n)
2k+1−1∑

�=2k

z� = θ(0)s1+
∞∑

k=0

θ(2k ·2−n)(s2k+1−s2k)

for all n ∈ N, and so

(33) tn = θ(0)s1 +
∞∑

k=1

(
θ(2k−1 · 2−n) − θ(2k · 2−n)

)
s2k − θ(2−n)s1.

It follows from the Toeplitz-theorem that, if the function θ fulfils the
conditions (30) and (27), then

(34) lim
n→∞ s2n = s ⇒ lim

n→∞ tn = s (s ∈ R).

It is easy to see that, if θ (x) = θ (‖x‖) (x ∈ R+), then θ has the property (31).
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3. θ-summation of Fourier-series

Let f : [0, 1) → R be an integrable function, and θ a function with the
property (22). We will denote the Walsh-Fourier coefficients of f with cw

k (f)
(k ∈ N), the Fourier-coefficients of f with respect to the system (vk, k ∈ N)
with cv

k(f), and the trigonometric Fourier coefficients of f with cε
k(f) (k ∈ Z).

Let (uk, k ∈ F�) represent one of the three systems and denote

ck(f) =

1∫
0

f(t)uk(t)dt (k ∈ F�)

the Fourier coefficient of f with respect to this system. The linear combinations
of the functions uk (k ∈ F�) are called the trigonometric polynomial of F.

For 1 ≤ p ≤ ∞ denote Xp the closure in Lp-norm of the trigonometric
polynomial of F. It is known that Xp = Lp[0, 1) if p < ∞. In the case F = B
the space X∞ is the set of W-continuous functions and if F = R then X∞ is
the collection of one periodic continuous functions. The norm of Xp will be
denoted by ‖ · ‖p.

The Fourier series of f is called θ-summable, if the sequence

(35) σθ
n(f) :=

∑
k∈F	

ck(f)θ
(
k · 2−n

)
uk (n ∈ F�)

converges. For the trigonometric system see [3], [4].

We will show that σθ
n can be expressed as a convolution operator:

Theorem 1. Assume that the function θ fulfils the conditions (30) and
(22). If θ, θ̂ ∈ L1

F
and f ∈ Xp (1 ≤ p ≤ ∞), then

(36)
(
σθ

nf
)
(x) = 2n

∫
F

f(x + t)(Fθ)(2nt)dt (x ∈ [0, 1)),

and for all f ∈ Xp

(37) ‖σθ
nf − f‖p → 0 (n → ∞).

Proof. We will use the following notation:

(
V θ

n f
)
(x) = 2n

∫
F

f(x + t)(Fθ)(2nt)dt (x ∈ F).
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The operators V θ
n , σθ

n : Xp → Xp are bounded. Indeed, since |cn(f)| ≤ ‖f‖p

for the operator σθ
n we get

‖σθ
nf‖p ≤

∞∑
k=0

|ck(f)|
∣∣θ (k · 2−n

)∣∣ ≤ ‖f‖p

∞∑
k=0

∣∣θ (k · 2−n
)∣∣ .

Applying the generalized Minkowsky-inequality for V θ
n by (22) we have

‖V θ
n f‖p ≤

⎛⎝ 1∫
0

∣∣∣∣∣∣2n

∫
F

f(x + t)(Fθ)(2nt)dt

∣∣∣∣∣∣
p

dx

⎞⎠1/p

≤

≤
∫
F

⎛⎝ 1∫
0

|2nf(x + t)(Fθ)(2nt)|p dx

⎞⎠1/p

dt =

= ‖f‖p

∫
F

|2nFθ(2nt)| dt = ‖f‖p

∫
F

|(Fθ)(t)| dt = ‖f‖p · ‖Fθ‖L1
F

.

Since for all fixed n ∈ F� the operators V θ
n , σθ

n : Xp → Xp are bounded,
and Xp is the closure of the trigonometric polynomials it is enough to prove our
statements for the system (uk, k ∈ F�). Let f = uk (k ∈ F�). By the definition
of σθ

n (35) and V θ
n we get that(

σθ
nf

)
(x) = θ

(
k · 2−n

)
uk(x),

V θ
n (x) = 2n

∫
F

uk(x+t)(Fθ)(2nt)dt = 2n

∫
F

uk(x)uk(t)(Fθ)(2nt)dt =

= 2nuk(x)
∫
F

uk(t)(Fθ)(2nt)dt = uk(x)
∫
F

uk(2−nt)(Fθ)(t)dt =

= uk(x)
∫
F

uk·2−n(t)(Fθ)(t)dt = θ(k · 2−n)uk(x).

We used the character property of the functions (uk, k ∈ F�) and the inversion
formulae (20). From this we can easy estimate
(38)
‖σθ

nuk −uk‖p ≤ ‖θ(k ·2−n)uk −uk‖p ≤ |θ(k ·2−n)−1| · ‖uk‖p = |θ(k ·2−n)−1|.

Because of (30), |θ(k · 2−n) − 1| → 0 (n → ∞) and so ‖σθ
nuk − uk‖X → 0

(n → ∞). Using the Banach-Steinhaus theorem we get the statements of the
theorem.
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3.1. Estimations for the L1-norm of the Walsh-Fourier transform

First we investigate functions with compact support. It is known that if
supp θ ⊂ [0, 1], then

‖θ◦‖1 =
∞∑

k=0

|cw
k (θ)|

⎛⎝cw
k (θ) =

1∫
0

θ(t)wk(t) dt, k ∈ N

⎞⎠ .

We will use the estimation of the functions

J (1)
n (x) :=

x∫
0

wk(t) dt, J (2)
n (x) :=

x∫
0

J (1)
n (t) dt (x ∈ [0, 1], n ∈ N).

It is known that
(39)
i) J

(1)
2n+k := wkJ

(1)
2n , J

(1)
2n+k(1) := 0, ‖J (1)

2n+k‖∞ ≤ 2−n−2 (n ∈ N),

ii) J
(2)
2n+2m+k(1) := 0, ‖J (2)

2n+2m+k‖∞ = 2−n−m−1 (0 ≤ k < 2m, 0 ≤ m < N)

(see Schipp-Wade-Simon [2]).

Using these estimations, we can prove the following

Lemma 1. Assume that the function θ ∈ C1[0, 1] is twice differentiable
on the open interval (0, 1) and θ′′ ∈ L1[0, 1). Then

‖θ◦‖1 =
∞∑

k=0

|cw
k (θ)| < N(θ) := ‖θ‖1 + ‖θ′‖1 + ‖θ′′‖1 < ∞.

Proof. Let � = 2n + 2m + k (0 ≤ k < 2m, 0 ≤ m < n). Then J
(1)
� (0) =

= J
(1)
m (1) = 0, J

(2)
� (0) = J

(2)
m (1) = 0. Integrating by parts we get

1∫
0

θ(t)w�(t) dt = −
1∫

0

θ′(t)J (1)
� (t) dt = −[θ′(t)J (2)

� (t)]1t=0 +

1∫
0

θ′′(t)J (2)
� (t) dt,

and so
|cw

� (θ)| ≤ ‖θ′′‖1‖J (2)
� ‖∞ ≤ ‖θ′′‖12−n−m−1.
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If � = 2n, then

1∫
0

θ(t)w�(t) dt = −
1∫

0

θ′(t)J (1)
� (t) dt,

so
|cw

� (θ)| ≤ ‖θ′‖1‖J (1)
� ‖∞ ≤ ‖θ′‖12−n−2.

From this follows that

‖θ◦‖1 ≤ |cw
0 (θ)| +

∞∑
n=0

|cw
2n(θ)| +

∞∑
n=0

n−1∑
m=0

2m−1∑
k=0

|cw
2n+2m+k(θ)| = Σ1 + Σ2 + Σ3.

From this follows that
(40)

i) |Σ1| ≤ ‖θ‖1,

ii) |Σ2| ≤ ‖θ′‖1/2,

iii) |Σ3| ≤ ‖θ′′‖1

∞∑
n=0

2−n−1
n−1∑
m=0

2m−1∑
k=0

2−m = ‖θ′′‖1

∞∑
n=0

n2−n−1 ≤ ‖θ′′‖1.

In the general case we suppose that θ ∈ L1(R+). Then for x ∈ [k, k + 1)
(k ∈ N)

θ◦(x) :=

∞∫
0

θ(t)wx(t) dt =

∞∫
0

θ(t)w[x](t)w[t](x) dt =
∞∑

�=0

w�(x)

�+1∫
�

θ(t)wk(t) dt.

Introduce the functions

θ�(t) := θ(t + �) (� ∈ N, t ∈ [0, 1)),

the function θ◦ can be written in the form

θ◦(x) =
∞∑

�=0

w�(x)cw
k (θ�) (x ∈ [k, k + 1), k ∈ N).

From this follows that

‖θ◦‖1 ≤
∞∑

�=0

∞∑
k=0

|cw
k (θ�)| <

∞∑
�=0

N(θ�).
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We proved the following

Lemma 2. Assume that θ ∈ C2(R+). Then

‖θ◦‖1 ≤
∞∑

�=0

N(θ�).

3.2. The Fourier-coefficients with respect UDMD system

By a dyadic interval of rank n in [0, 1) we mean an interval of the form
[p/2n, (p + 1)/2n), where 0 ≤ p < 2n and n ∈ N. Given a ∈ [0, 1) and n ∈ N,
there is one and only one interval of rank n which contains a. We denote it with
In(a). We denote the σ-algebra generated by the intervals In(a) (a ∈ [0, 1)) by
An.

Let ϕn (n ∈ N) An-measurable functions with |ϕn| = 1. Then

φn := rnϕn (n ∈ N)

is an UDMD sequence, where rn is the nth Rademacher function. We denote
by Ψ = (ψm,m ∈ N) the product system of Φ = (φn, n ∈ N):

ψm :=
∞∏

n=0

φmn
n

(
m =

∞∑
n=0

mn2n ∈ N, mn ∈ {0, 1}
)

.

It is called the UDMD product system.

In this section we will examine the order of the Fourier coefficients

f̂(m) := 〈f, ψm〉 (m ∈ N)

of the function f ∈ L1[0, 1) with respect to the system Ψ.
Let

(41) Rn(x) :=

x∫
0

rn(t)dt (x ∈ [0, 1), n ∈ N).

Obviously Rn is linear on dyadic intervals with rank n + 1, and

(42) Rn(k2−n) = 0, Rn((k + 1/2) · 2−n) = 2−(n+1) (k, n ∈ N).

The basis of the estimation is the following
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Lemma 3. Assume that the function f ∈ L1[0, 1] is absolutely continuous,
and let γn := Rnϕn (n ∈ N). Then

(43) f̂(m) = −(̂f ′γ̄n)(m′) (m = 2n + m′, 0 ≤ m′ < 2n).

Proof. Let

Jm,0 := ψm, Jm,�+1(x) :=

x∫
0

Jm,�(t)dt (x ∈ [0, 1],m, � ∈ N).

Integrating by parts we get that
(44)

f̂(m) :=

1∫
0

f(t)J ′
m,1(t)dt =

[
fJm,1

]1
0
−

1∫
0

f ′(t)Jm,1(t)dt = −
1∫

0

f ′(t)Jm,1(t)dt,

because
1∫
0

ψm(t)dt = 0 for all m ∈ N, m > 0. It follows from the definition of

ψm that if m = 2n + m′, 0 ≤ m′ < 2n, n ∈ N, then

Jm,1(x) =

x∫
0

ψm(t)dt =

x∫
0

φn(t)ψm′(t)dt =

x∫
0

rn(t)ϕn(t)ψm′(t)dt =

= ϕn(x)ψm′(x)

x∫
0

rn(t)dt = ϕn(x)ψm′(x)Rn(x) = γn(x)ψm′(x).

Substitute this in (44), we get our statement.

With the aid of Lemma 3 we get

Theorem 2. Let f be absolutely continuous function, and f ′ ∈ L2([0, 1)).
Then f̂ ∈ �1.

Proof. Using the Cauchy inequality, Lemma 3, the Parseval formula and
(42) we get that

2n+1−1∑
m=2n

|f̂(m)| ≤ 2n/2

⎛⎝2n+1−1∑
m=2n

|f̂(m)|2
⎞⎠1/2

=

= 2n/2

(
2n−1∑
m′=0

|(̂f ′γn)(m′)|2
)1/2

≤ 2n/2||f ′γn||2 ≤ 2−n/2−1||f ′||2
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for all n ∈ N. Consequently

||f̂ ||�1 =
∞∑

n=0

|f̂(n)| =

= |f̂(0)| +
∞∑

n=0

2n+1−1∑
m=2n

|f̂(m)| ≤ |f̂(0)| +
∞∑

n=0

2−n/2−1||f ′||2 < ∞.

It is known that the systems (wn, n ∈ N) and (vn, n ∈ N) are UDMD
product systems. So, Theorem 2 gives an other condition for the function θ in
the dyadic case:

Corollary 1. If the absolutely continuous function θ has compact support
with supp θ ⊂ [0, 1], and θ′ ∈ L2[0, 1), then in the logical and in the arithmetic
case θ̂ ∈ L1[0,∞).

4. Examples

In this section we consider some known examples for the θ-summation. We
will examine the conditions of Theorem 1, and in certain cases the conditions
of Corollary 1. For the trigonometric case see [6].

1. The 2nth partial sum. If we use the function

(45) θ(x) = χ[0,1)(x),

where χ[0,1) denotes the characteristic function of the interval [0, 1), the θ-
summation will yield the 2n-th partial sum. The Walsh-Fourier transform of
(45) is itself, and it is in L1[0,∞), so the conditions of Theorem 1 are met.

θ is absolutely continuous with compact support and its derivative is in
L2[0, 1), so by Corollary 1, θ◦, θ• ∈ L1[0, 1) and the conditions of Theorem 1
are fulfilled in the arithmetic and in the logical case, too.

2. The (C,1)-summation. If we use the function

(46) θ(x) =

⎧⎨⎩ 1 − x if x ∈ [0, 1),

0 if x ∈ [1,∞),
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then the θ-summation results in the 2nth subsequence of the (C,1)-sums. The
function θ is of course in L1[0,∞). It follows from Lemma 1 that θ◦ is in
L1[0,∞), so the conditions of Theorem 1 are satisfied.

On the other hand θ is absolutely continuous with compact support and its
derivative is in L2[0, 1), so by Corollary 1, θ◦, θ• ∈ L1[0,∞) and the conditions
of Theorem 1 are fulfilled in the arithmetic and in the logical case, too.

3. De La Vallée-Poussin summation. If we use the function

(47) θ(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if x ∈ [0, 1/2),

2(1 − x) if x ∈ [1/2, 1),

0 if x ∈ [1,∞),

then the θ-summation results in the 2nth subsequence of the De La Vallée-
Poussin-sums. The function θ is of course in L1[0,∞). It follows from Lemma
1 that θ◦ is in L1[0,∞), so the conditions of Theorem 1 are fulfilled.

Furthermore θ is absolutely continuous function with compact support
and its derivative is in L2[0, 1), so by Corollary 1, θ◦, θ• ∈ L1[0,∞) and the
conditions of Theorem 1 are satisfied in the arithmetic and in the logical case,
too.

4. The Riesz-summation. If we use the function

(48) θ(x) =

⎧⎨⎩ (1 − xγ)α if x ∈ [0, 1),

0 if x ∈ [1,∞),

where 1 ≤ α < ∞ and 0 < γ < ∞, then the θ-summation results in the 2nth
subsequence of the Riesz-sums. The function θ is of course in L1[0,∞). Since
α · γ ≥ 1, so θ′′ ∈ L1[0, 1) and so Lemma 1 holds.

Furthermore θ is absolutely continuous with compact support and its
derivative is in L2[0, 1) if γ > 1/2, so by Corollary 1, θ◦, θ• ∈ L1[0,∞) and the
conditions of Theorem 1 are met in the arithmetic and in the logical case, too,
if γ > 1/2.

5. Weierstrass summation. If we use the function

θ(x) = e−xγ

(0 ≤ x < ∞, γ > 0),

then the θ-summation results in the 2nth subsequence of the Weierstrass-sums.
The function θ is of course in L1[0,∞). In this case we get by Lemma 2 and
Lemma 1 that

‖θ◦‖L1 ≤
∞∑

�=0

N(�) ≤
∞∑

�=0

(
K · e−�γ

+ e−�γ

+
γ�γ−1

e�γ

)
< ∞,
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where K is a constant, which depends only on γ.

6. Abel summation. If we use the function

θ(x) = e−κx (0 ≤ x < ∞, κ > 0)

then the limit of σθ
n is equal to the Weierstrass-sum. The function θ is of course

in L1[0,∞). In this case we get by Lemma 2 and Lemma 1 that

‖θ◦‖L1 ≤
∞∑

�=0

N(�) ≤
∞∑

�=0

(
1
κ

+ 1 + κ

)
e−�·κ < ∞.

7. Norm-depending θ functions. Assume that θ (x) = θ (‖x‖) (x ∈
∈ R+). Then its L1-norm is

(49) ‖θ‖1 =

∞∫
0

|θ(t)| dt =
∞∑

k=−∞

∣∣θ(2k)
∣∣ · 2k.

Its Walsh-Fourier transform is

(50)

θ0(x) =

∞∫
0

θ(t)wx(t)dt =

1∫
0

θ(t)wx(t)dt +
∞∑

k=0

2k+1∫
2k

θ(t)wx(t)dt =

=

1∫
0

θ(t)wx(t)dt +
∞∑

k=0

θ(2k)

2k+1∫
2k

wx(t)dt =

=

1∫
0

θ(t)w[x](t)w[t](x)dt +
∞∑

k=0

θ(2k)
2k−1∑
�=0

2k+�+1∫
2k+�

w[x](t)w[t](x)dt =

=

1∫
0

θ(t)w[x](t)dt +
∞∑

k=0

θ(2k)
2k−1∑
�=0

w2k+�(x)

2k+�+1∫
2k+�

w[x](t)dt

for all x ∈ R+. The integral of the Walsh-functions are zero over every interval
with length 1 except the w0, so

(51)

θ◦(x) =

⎧⎨⎩
θ0([x]) if x > 1,

θ0([x]) +
∞∑

k=0

θ(2k)
2k−1∑
�=0

w2k+�(x) if x ∈ [0, 1),

=

⎧⎨⎩
θ◦([x]) if x > 1,

θ◦(0) +
∞∑

k=0

θ(2k)rk(x)D2k(x) if x ∈ [0, 1).
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From this expression we can estimate the L1-norm of θ◦:

‖θ◦‖1 =

∞∫
0

|θ◦(t)| dt =

=

1∫
0

∣∣∣∣∣θ◦(0) +
∞∑

k=0

θ(2k)rk(x)D2k(x)

∣∣∣∣∣ dx +

∞∫
1

|θ◦([x])| dx ≤

≤ |θ◦(0)| +
∞∑

k=0

2k|θ(2k)| +
∞∑

k=1

|θ◦(k)| =
∞∑

k=0

2k|θ(2k)| +
∞∑

k=0

|θ◦(k)| ≤

≤ ‖θ‖1 +
∞∑

k=0

|θ◦(k)|.

From this follows that, if θ is integrable (θ ∈ L1), and its Walsh-Fourier series
is absolutely convergent, then it Walsh-Fourier transform is in L1, too.

If θ (x) = θ (‖x‖) (x ∈ R+), then θ has the form

(52) θ (x) =
∞∑

n=0

αn
2 · D2n(x) − D2n+1(x)

2n+1
(x ∈ (0, 1)),

on (0, 1), where the (αn, n ∈ N) is a real sequence. If lim
x→0+

θ(x) = θ(0) = 1,

then the sequence (αn, n ∈ N) is convergent, and its limit is 1 ( lim
n→∞αn = 1).

Let us count the Fourier-coefficients of θ.

(53)

θ(x) =
∞∑

n=0

αn

2n+1

⎛⎝2
2n−1∑
k=0

wk(x) −
2n+1−1∑

k=0

wk(x)

⎞⎠ =

=
∞∑

n=0

αn

2n+1

⎛⎝2n−1∑
k=0

wk(x) −
2n+1−1∑
k=2n

wk(x)

⎞⎠ =

=
∞∑

n=0

αn

2n+1

⎛⎝2n+1−1∑
k=0

wk(x)s̃gn(2n − k)

⎞⎠ ,

where

s̃gn(t) =

{ 1, if t > 0,

−1, if t ≤ 0.
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If we replace the order of the summation, we get for all x ∈ [0, 1) that
(54)

θ(x) =
∞∑

k=0

wk(x)
∑

n≥log2(k+1)−1, n∈N

αn

2n+1
· s̃gn(2n − k) =

= w0(x)
∞∑

n=0

αn

2n+1
+

+
∞∑

j=0

2j−1∑
�=0

w2j+�(x)
∑

n≥log2(2
j+�+1)−1, n∈N

αn

2n+1
· s̃gn(2n − 2j − �) =

= w0(x)
∞∑

n=0

αn

2n+1
+

∞∑
j=0

2j−1∑
�=0

w2j+�(x)

⎛⎝ ∞∑
n=j+1

αn

2n+1
− αj

2j+1

⎞⎠ .

If αn → 1 (n → ∞), then γn := 1 − αn → 0 (n → ∞), and so

(55) 2j
∞∑

n=j+1

αn

2n+1
− αj

2j+1
= 2j

∞∑
n=j+1

γn

2n+1
− γj

2j+1
.

The condition of the absolute convergence is
(56)

∞∑
k=0

|θ◦(k)| =
∞∑

n=0

|αn|
2n+1

+
∞∑

j=0

2j−1∑
�=0

∣∣∣∣∣∣
∞∑

n=j+1

αn

2n+1
− αj

2j+1

∣∣∣∣∣∣ =

=
∞∑

n=0

|αn|
2n+1

+
∞∑

j=0

2j

∣∣∣∣∣∣
∞∑

n=j+1

γn

2n+1
− γj

2j+1

∣∣∣∣∣∣ ≤
≤

∞∑
n=0

|αn|
2n+1

+
∞∑

j=0

2j
∞∑

n=j

|γn|
2n+1

=
∞∑

n=0

|αn|
2n+1

+
∞∑

n=0

|γn|
2n+1

n∑
j=0

2j ≤

≤
∞∑

n=0

|αn|
2n+1

+
∞∑

n=0

|γn| < ∞.

That means, if
∞∑

n=0
|γn| < ∞, then θ◦ ∈ L1[0, +∞).
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[2] Schipp, F., Wade, W.R., Simon, P. and Pál, J., An introduction to
dyadic harmonic analysis, Adam Hilger Ltd., Bristol and New York, 1974.

[3] �uk V.V. i Natanson G.I., Trigonometriqeskie r�dy Fur�e i �le-
menty teorii approksimacii, Izd. LGU, Leningrad, 1983. (Zhuk,
V.V. and Natanson, G.I., Trigonometric Fourier series and approximation
theory, LGU, Leningrad, 1983. (in Russian))

[4] Schipp, F. and Bokor, J., L∞ system approximation algorithms gener-
ated by ϕ summations, Automatica, 33 (1997), 2019-2024.

[5] Weisz, F., θ-summability of Fourier series, Acta Math. Hungarica, 103
(2004), 139-176.

[6] Zygmund, A., Trigonometric series, Cambridge University Press, New
York, N.Y., 1959.

T. Eisner
Institute of Mathematics and Informatics
University of Pécs
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