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THE DUAL SPACES OF CERTAIN HARDY SPACES
ON R+ AND ON N
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Dedicated to Professor Ferenc Schipp on his 70th and
Professor Péter Simon on his 60th birthdays

Abstract. In connection with the problem of integrability of trigonometric

series several sufficient conditions have been given. One of the most famous

and efficient is the one due to Telyakovskĭı [9]. In the paper [3] of the second

author it was shown that the transform that corresponds to Telyakovskĭı’s

condition generates an atomic Hardy type space HN on N. The continuous

version HR+ of this Hardy space is defined on the half line. In this paper

we characterize the dual spaces of HR+ and HN.

1. Introduction

Let a = (ak) be a null sequence of real numbers and let us take the

corresponding cosine series
∞∑

k=0

ak cos kx. Then the following estimate holds
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concerning the integrability of the cosine series

(1)

π∫
0

∣∣∣ ∞∑
k=0

ak cos kx
∣∣∣dx ≤ C

( ∞∑
k=0

|Δak| +
∞∑

n=2

∣∣∣ [n/2]∑
k=1

Δan−k − Δan+k

k

∣∣∣),

where Δak = ak−1 − ak (k ≥ 1), and Δa0 = 0. (Throughout the paper C
will always denote an absolute positive constant not necessarily the same in
different occurrences.) This integrability conditions for cosine series was proved
by Telyakovskĭı in [9]. Introducing the so called discrete Telyakovskĭı transform

(TNa)n =
[n/2]∑
k=1

an−k − an+k

k
(n ≥ 2)

with (TNa)0 = (TNa)1 = 0 we have that the right side of (1) is nothing but
‖Δa‖�1 + ‖(TNΔa)‖�1 .

Let us take the continuous version TR+ of TN, which is called called
Telyakovskĭı transform. To this order let f : R+ �→ R be a locally integrable
function. Then

(2)

TR+f(x) =

x/2∫
0

f(x − t) − f(x + t)
t

dt =

= lim
δ→0+

x/2∫
δ

f(x − t) − f(x + t)
t

dt,

or equivalently

TR+f(x) =

3x/2∫
x/2

f(t)
x − t

dt = lim
δ→0+

∫
δ≤|x−t|≤x/2

f(t)
x − t

dt.

Recall that the Hilbert transform H is defined as

Hf(x) = lim
δ→0+

∫
δ≤|x−t|

f(t)
x − t

dt =

= lim
δ→0+

∞∫
δ

f(x − t) − f(x + t)
t

dt (f ∈ L1(R)).
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For technical reasons we omitted the usual 1/π factor in the definition of
H.

The classical real Hardy space on R generated by the Hilbert transform
will be denoted by HR. It is the space of integrable functions for which also
Hf is integrable and the norm is defined as ‖f‖HR

= ‖f‖1 + ‖Hf‖1. If the
Telyakovskĭı transform is taken instead of the Hilbert transform then another
Hardy type space is obtained. It will be denoted by HR+ .

Liflyand in [5], and [6] recognized that HR+ is isomorphic to the closed
subspace of odd function in HR. In [3] we showed that HR+ is an atomic
sequence Hardy space, and identified its atoms. Namely, two types of HR+-
atoms will be distinguished. f will be called an HR+-atom of first type if
f = δ−1χ[0,δ] with some δ > 0. An f ∈ L∞(R+) will be said to be an HR+-atom
of second type if there exists a finite interval I ⊂ R+ such that

(i) supp f ⊂ I,

(ii)
∫
I

f = 0,

(iii) ‖f‖L∞(R+) ≤ |I|−1,

where |I| stands for the length of I. The collection of HR+ -atoms will be denoted
by AR+ . Then (see [3]) f ∈ HR+ if and only if f can be decomposed as f =

=
∞∑

k=0

αkfk, where fk ∈ AR+ , and αk ∈ R (k ∈ N) with (αk) ∈ �1. (The

convergence in the decomposition is a.e. and in L1(R+) norm.) Moreover

‖f‖H
R+ ≈ inf

∞∑
k=0

|αk|,

where the infimum is taken over all decompositions of f.

Comparing the atomic decomposition in HR and HR+ we find that the
atoms in HR are analogous to the second type atoms in HR+ but there are
no atoms corresponding to the first type atoms in AR+ . Indeed, a function
g ∈ L∞(R) is called an HR atom, in notation g ∈ AR, if there exists a finite
interval I ⊂ R such that

(i) supp g ⊂ I,

(ii)
∫
I

g = 0,

(iii) ‖g‖L∞(R) ≤ |I|−1.

Let us now turn back to the original Telyakovskĭı transform, and let us
define the Hardy type sequence space HN as the collection of sequences a for
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which TNa ∈ �1. The norm is defined by ‖a‖HN
= ‖a‖�1 + ‖TNa‖�1 . Since HN is

defined by TN, the discrete analogue of TR+ we may consider HN as the discrete
space that corresponds to HR+ . Indeed, it is the natural discretization of HR+

from other aspects as well. Namely, let Pa denote the step function associated
to the real sequence a by

(Pa)(x) = a[x] (x ∈ R+),

where [x] stands for the integer part of x. Then (see [3]) a ∈ HN if and only if
Pa ∈ HR+ , and ‖a‖HN

≈ ‖Pa‖H+
R

. On the other hand HN is an atomic Hardy

space (see [3]) where the atoms can be given by means of P. By definition the
real sequence a be called an N-atom if Pa is an R+-atom. If the collection of
N-atoms is denoted by AN then a ∈ AN if and only if

aj =

⎧⎨⎩ 1/n, if j = 0, . . . , n − 1;

0, if j ≥ n

with some n ∈ N, or there exist k, n ∈ N such that

(i) aj = 0 if j < n or j > n + k,

(ii)
n+k∑
j=n

aj = 0,

(iii) maxn≤j≤n+k |aj | ≤ 1/(k + 1),

where the atoms are defined as follows. As we showed in [3] a sequence a

belongs to HN if and only if it can be decomposed as a =
∞∑

k=0

αka(k), where

a(k) ∈ AN, and αk ∈ R (k ∈ N) with (αk) ∈ �1. (The convergence in the
decomposition is taken in �1 norm.) Moreover

‖a‖HN
≈ inf

∞∑
k=0

|αk|,

where the infimum is taken over all decompositions of a.
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2. Results

It was proved by Feffermann [2] that the dual space of HR is BMOR. For
the definition of BMOR let f be a locally integrable function on R. The BMOR

seminorm is defined by

‖f‖BMOR
= sup

I

1
|I|

∫
I

∣∣∣f − 1
|I|

∫
I

f
∣∣∣.

Here, I denotes any finite subinterval of R. Since ‖f − g‖BMOR
= 0 if and

only if f − g is constant we can introduce equivalence classes. Then BMOR is
the collection of those equivalence classes whose members have finite BMOR

seminorm. Moreover, the norm of an equivalence class is defined by the
seminorm of its members. Similarly to the case of Lp spaces we will call the
elements of BMOR functions. Based on the relation between HR and HR+ we
can identify the space dual to HR+ . Namely, let BMOR+ denote the collection
of locally integrable functions for which

(3) sup
δ>0

1
δ

δ∫
0

∣∣∣f ∣∣∣ + sup
I

1
|I|

∫
I

∣∣∣f − 1
|I|

∫
I

f
∣∣∣ < ∞,

where the supremum is taken over all finite intervals I ⊂ R+. Define the norm
in BMOR+ by the quantity on the left side of (3).

Theorem 1. The space dual to HR+ is BMOR+ .

Remark 1. We note that, even though the definitions of BMOR and
BMOR+ are similar, the latter one is significantly different from the first one.
This is because of the the additional term

sup
δ>0

1
δ

δ∫
0

|f |,

which in fact can be relaxed to sup
δ>0

1
δ

∣∣∣ δ∫
0

f
∣∣∣. This follows from

1
δ

δ∫
0

|f | ≤ 1
δ

δ∫
0

∣∣∣f − 1
δ

δ∫
0

f
∣∣∣ +

1
δ

∣∣∣ δ∫
0

f
∣∣∣ (δ > 0) .
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Remark 2. It will turn out from the proof of Theorem 1 that BMOR+ is
isomorphic to the subspace of odd functions, i.e. the equivalence classes that
have odd members, of BMOR. Let this space be denoted by BMO−

R
.

Let BMON, the discrete version of BMOR+ , be the collection of sequences
a for which

(4) sup
�∈N

1
�

�−1∑
j=0

|aj | + sup
n,k∈N

1
k

k−1∑
j=0

∣∣∣an+j −
1
k

k−1∑
�=0

an+�

∣∣∣ < ∞,

and the norm of a is defined by the quantity on the left side of (4). The
following theorem shows the connection between BMON and BMOR+ , and
the duality relation that we expect.

Theorem 2. (i) The space dual to HN is BMON.

(ii) A sequence a ∈ BMON if and only if Pa ∈ BMOR+ , and ‖a‖BMON
≈

≈ ‖Pa‖BMO
R+ .

For any locally integrable function f on R+ let Ef be the step function
defined as

Ef(x) =

[x]+1∫
[x]

f (x ∈ R+).

Remark 3. Let BMO•
R+ denote the closed subspace of those elements in

BMOR+ that take on constant values on each interval [n, n + 1) (n ∈ N), i.e.

BMO•
R+ = {f ∈ BMOR+ : Ef = f}.

Then (ii) of Theorem 2 means that BMON and BMO•
R+ are isomorphic. This is

another reason why BMON can be considered as the discretization of BMOR+ .

It was shown by Coifman and Weiss [1] that HR is a dual space itself.
Namely, let V MOR, a closed subspace of BMOR, be defined as the collection
of functions f in BMOR for which

lim
|I|→0

1
|I|

∫
I

∣∣∣f − 1
|I|

∫
I

f
∣∣∣ = 0.

Then HR is the dual of V MOR. We note that a similar result for dyadic Hardy
and V MO spaces was proved by Schipp [7]. In view of the relation between the
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Hardy spaces HR and HR+ , and Theorem 1 on the corresponding BMO spaces
it is logical to define V MOR+ as the set of functions in BMOR+ for which

lim
δ→0

1
δ

δ∫
0

|f | + lim
|I|→0

1
|I|

∫
I

∣∣∣f − 1
|I|

∫
I

f
∣∣∣ = 0.

Following a similar logic we obtain that BMON is its own V MO type space.
Then the classical duality result, the relationship between HR+ , HN, BMOR+ ,
BMON and their classical counterparts along with Theorems 1 and 2 imply
the following duality results.

Theorem 3. (i) The dual of V MOR+ is HR+ .

(ii) The dual of BMON is HN.

3. Proofs

Proof of Theorem 1. Our result will follow from the duality relation
between HR and BMOR which was proved by Fefferman [2]. This says that if
h ∈ BMOR then

(5) L(g) =
∫
R

gh (g ∈ HR)

defines a bounded linear functional on HR. Here the integral should be suitable
defined for it does not converge for general g ∈ HR and h ∈ BMOR. Therefore,
initially (5) is defined on a dense linear subspace of HR. This can be for example
the subspace of finite linear combinations of R-atoms. Then (5) has a unique
extension to HR. For details see for example [10] or [1]. Moreover, any bounded
linear functional L on HR is of this form, and ‖L‖ ≈ ‖h‖BMOR

.

Now we will show that BMOR+ is isomorphic to the closed subspace
BMO−

R
consisting of the odd functions of BMOR. More precisely, we will

show that if f is a function defined on R+ and fO is its odd extension onto R
then f ∈ BMOR+ if and only if fO ∈ BMOR, and ‖f‖BMO

R+ ≈ ‖fO‖BMOR
.

Indeed, let us take the interval I = [a, b] (a, b ∈ R) and consider

1
|I|

∫
I

∣∣∣fO − 1
|I|

∫
I

fO

∣∣∣.
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If a > 0 or b < 0 then

(6)
1
|I|

∫
I

∣∣∣fO − 1
|I|

∫
I

fO

∣∣∣ =
1
|I ′|

∫
I′

∣∣∣f − 1
|I ′|

∫
I′

f
∣∣∣,

where I ′ = [min{|a|, |b|}, max{|a|, |b|}] ⊂ R+.

If a < 0 < b then

1
|I|

∫
I

∣∣∣fO − 1
|I|

∫
I

fO

∣∣∣ ≤ 2
1
|I|

∫
I

|fO| =

(7)

= 2

⎛⎜⎝ |a|
b − a

⎛⎜⎝ 1
|a|

|a|∫
0

|f |

⎞⎟⎠ +
b

b − a

⎛⎝1
b

b∫
0

|f |

⎞⎠
⎞⎟⎠ ≤

≤ 2 sup
δ>0

1
δ

δ∫
0

|f |.

In particular, if I = [−a, a] (a > 0) then

(8)
1
|I|

∫
I

∣∣∣fO − 1
|I|

∫
I

fO

∣∣∣ =
1
a

a∫
0

|f |.

By (6) and (8) we have that ‖fO‖BMOR
≥ 1

2‖f‖BMO
R+ . On the other hand

it follows from (6) and (7) that ‖fO‖BMOR
≤ 2‖f‖BMO

R+ . The isomorphism
is proved. Consequently, any f ∈ BMOR+ defines a bounded linear functional
on HR by

L(g) =
∫
R

gfO (g ∈ HR),

and ‖L‖ ≈ ‖fO‖BMOR
≈ ‖f‖BMO

R+ . Let g+ and g− denote the even and odd
parts of g respectively. Obviously L(g) = L(g−) (g ∈ HR). Recall that HR+ is
isomorphic to H−

R
the subspace of odd functions of HR. Hence

F (h) =
1
2

∫
R

hOfO (h ∈ HR+)
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is a bounded linear functional on HR+ . Moreover,

‖F‖ = ‖L‖ ≈ ‖f‖BMO
R+ ,

and F can be written in the form

F (h) =
∫

R+

hf (h ∈ HR+).

Suppose now that F is a bounded linear functional on HR+ . Then one can
define a bounded linear functional L on H−

R
by L(g) = 2F (f) (g ∈ H−

R
), where

f ∈ HR+ for which fO = g. Then ‖L‖ = ‖F‖. Let us take the norm preserving
extension of L onto HR be defined as

L(g) = L(g−) (g ∈ HR).

We note that if g ∈ HR then g+, g− ∈ HR, and ‖g−‖HR
≤ ‖g‖HR

. The same
applies to BMOR.

By (5) there exists a unique h ∈ BMOR such that

L(g) =
∫
R

gh, and ‖L‖ ≈ ‖h‖BMOR
.

Since

L(g) =
∫
R

g−h− +
∫
R

g+h+ = L(g−) + L(g+)

we have by the definition of L that
∫
R

g+h+ = L(g+) = 0. Consequently, we

may suppose that h ∈ BMO−
R

. Let f ∈ BMOR+ for which fO = h. Then
‖f‖BMO

R+ ≈ ‖h‖BMOR
. Using f, the functional F can be written in the

following form.

F (g) =
1
2
L(gO) =

1
2

∫
R

gOh− =
∫

R+

gf (g ∈ HR+),

and ‖f‖BMO
R+ ≈ ‖F‖.

Proof of Theorem 2. Let us start with the proof of (ii). Recall,
see Remark 2, that the statement of (ii) is equivalent to the isomorphism of
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BMO•
R+ and BMON. By definition if f ∈ BMO•

R+ then there exists a unique
sequence a for which Pa = f. Moreover

‖a‖BMON
= sup

�∈N

1
�

�∫
0

|f | + sup
k,n∈N

1
k

n+k∫
n

∣∣∣f − 1
k

n+k∫
n

f
∣∣∣ ≤ ‖f‖BMO

R+ .

Let us now suppose that a ∈ BMON, and consider ‖Pa‖BMO
R+ . For any finite

interval I ⊂ R+ and f ∈ L1(I) define σIf as

σIf =
1
|I|

∫
I

f.

Since Pa is constant on the intervals [n, n + 1) (n ∈ N) we have that σ[x,c)Pa,

and σ[c,x)Pa (c, x ∈ R+) are monotonic in x on any such interval. Therefore,

(9) sup
δ>0

1
δ

δ∫
0

|Pa| = sup
�∈N

1
�

�−1∑
j=0

|aj |.

Let us consider
1
|I|

∫
I

∣∣∣Pa − 1
|I|

∫
I

Pa
∣∣∣,

where I ⊂ R+ is a finite interval. Then, with proper n, k ∈ N and 0 ≤ δi < 1
(i = 1, 2), I can be written in the form I = [n−δ1, n+k+δ2]. We may suppose
that k is at least 1. Indeed, if I = [n − δ1, n + δ2] then define I ′ by

I ′ =

⎧⎨⎩
[
n − 1, n + δ2

δ1

]
if δ1 ≥ δ2,[

n − δ1
δ2

, n + 1
]

if δ1 < δ2.

Then a simple calculation shows that

1
|I|

∫
I

∣∣∣Pa − 1
|I|

∫
I

Pa
∣∣∣ =

1
|I ′|

∫
I′

∣∣∣Pa − 1
|I ′|

∫
I′

Pa
∣∣∣.
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Let I = [n − δ1, n + k + δ2] with k ≥ 1. Then

1
|I|

∫
I

∣∣∣Pa − 1
|I|

∫
I

Pa
∣∣∣ =

=
1

k + δ1 + δ2

n+k+δ2∫
n−δ1

∣∣∣Pa − σ[n−δ1,n+k+δ2]Pa| ≤

≤ 1
k + δ1 + δ2

n+k+δ2∫
n−δ1

∣∣∣Pa − σ[n−1,n+k+1]Pa|+

+
(∣∣∣σ[n−1,n+k+1]Pa − σ[n−1,n+k+δ2]Pa

∣∣∣+
+
∣∣∣σ[n−1,n+k+δ2]Pa − σ[n−δ1,n+k+δ2]Pa

∣∣∣) =

=J1 + J2.

For J1 we have

I1 ≤ 2
k + 1

n+k+1∫
n−1

∣∣Pa − σ[n−1,n+k+1]Pa
∣∣ =

=
2

k + 1

k∑
j=0

∣∣∣∣∣an−1+j −
1

k + 1

k∑
�=0

an−1+�

∣∣∣∣∣ ≤
≤ 2‖a‖BMON

.

In order to get a similar estimate for I2 we need to replace the non-integer
intervals in σ by integer intervals. Therefore, we use the monotonicity of σ[c,x],
and σ[x,c] to obtain∣∣σ[n−1,n+k+1]Pa − σ[n−1,n+k+δ2]Pa

∣∣ ≤ ∣∣σ[n−1,n+k+1]Pa − σ[n−1,n+k]Pa
∣∣,

and ∣∣σ[n−1,n+k+δ2]Pa − σ[n−δ1,n+k+δ2]Pa
∣∣ ≤

≤
∣∣σ[n−1,n+k+δ2]Pa − σ[n,n+k+δ2]Pa

∣∣ ≤
≤ max

i,j=0 or 1

∣∣σ[n−1,n+k+i]Pa − σ[n,n+k+j]Pa
∣∣ ≤

≤ max
i,j=0 or 1

(∣∣σ[n−1,n+k+i]Pa − σ[n−1,n+k+j]Pa
∣∣+

+
∣∣σ[n−1,n+k+j]Pa − σ[n,n+k+j]Pa

∣∣).
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Observe that every term is of the form∣∣σ[N−1,M ]Pa − σ[N,M ]Pa
∣∣ or

∣∣σ[N,M−1]Pa − σ[N,M ]Pa
∣∣

(N,M ∈ N, N < M).

It follows from the definition of σ, P and the BMON norm that

∣∣σ[N−1,M ]Pa − σ[N,M ]Pa
∣∣ =

∣∣∣∣∣∣ 1
M − N

M∑
j=N+1

aj − σ[N−1,M ]Pa

∣∣∣∣∣∣ ≤
≤ 1

M − N

M∑
j=N+1

∣∣∣∣∣aj −
1

M − N + 1

M∑
�=N

a�

∣∣∣∣∣ ≤
≤ 2

1
M − N + 1

M∑
j=N

∣∣∣∣∣aj −
1

M − N + 1

M∑
�=N

a�

∣∣∣∣∣ ≤
≤ 2‖a‖BMON

.

Obviously, the same estimate holds for
∣∣σ[N,M−1]Pa − σ[N,M ]Pa

∣∣. Then
we have

J2 ≤ 6‖a‖BMON
.

Consequently,
‖Pa‖BMO

R+ ≤ 8‖a‖BMON
,

and (ii) of Theorem 2 is proved.

The proof of (i) will be based on the fact that P is an isomorphism between
BMON and BMO•

R+ , and between HN and H•
R+ . H•

R+ is defined similarly to
BMO•

R+ . Namely it is the subspace of HN formed by those elements that are
constant on intervals [n, n + 1) (n ∈ N). For the isomorphism between HN and
H•

R+ we refer to [3].
Let L be a bounded linear functional on HN. Then by the isomorphism

between HN and H•
R+ we have that

N(Pa) = La (a ∈ HN)

defines a bounded linear functional N on H•
R+ , and ‖L‖ ≈ ‖N‖. A norm

preserving extension M of N onto HR+ can be given by

Mf = N(Ef) (f ∈ HR+).
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It was shown in [3] that there exists a unique g ∈ BMOR+ such that

Mf =
∫

R+

fg, and ‖M‖ ≈ ‖g‖BMO
R+ .

By the definitions of M and E we have

Mf = M(Ef) =
∫

R+

(Ef)g =
∫

R+

fEg (f ∈ HR+).

Hence, g = Eg, i.e. g ∈ BMO•
R+ . Then g = Pb holds with a proper

sequence b. It follows from (ii) that b ∈ BMON, and ‖g‖BMO
R+ ≈ ‖b‖BMON

.
Consequently,

La = N(Pa) =
∫

R+

Pag =
∫

R+

PaPb =
∞∑

k=0

akbk (a ∈ HN),

and ‖L‖ ≈ ‖b‖BMON
.

If, on the other hand, b ∈ BMON then Pb ∈ BMO•
R+ ⊂ BMOR+ .

Hence by Theorem 1 we have that Nf =
∫

R+

fPb (f ∈ HR+) is a bounded

linear functional on HR+ . Moreover, ‖N‖ ≈ ‖Pb‖BMO
R+ ≈ ‖b‖BMON

. Since∥∥∥N∣∣
H•

R+

∥∥∥ = ‖N‖ we have by (ii) that

La = N(Pa) =
∫

R+

PaPb =
∞∑

k=0

akbk (a ∈ HN)

is a bounded linear functional on HN, and ‖L‖ ≈ ‖b‖BMON
.
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Eötvös Loránd University
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