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Abstract. All solutions of the congruence

g(An + B) ≡ Cf(n) + D (mod n)

are given for integer-valued completely multiplicative functions f and g
with some integers A > 0, B > 0, C and D �= 0. We prove that,

except for some special cases, there exist a non-negative integer α and

a real-valued Dirichlet character χA (mod A) such that n|f(n) and

g(m) = mαχA(m) are satisfied for all n, m ∈ N, (m, A) = 1. In

the case when C = 0, we also determine all multiplicative functions g of

the above congruence.

1. Introduction

Let k be a positive integer and let Nk denote the set of the natural numbers
coprime to k. An arithmetical function g(n) �≡ 0 is said to be multiplicative
function on the set Nk if n, m ∈ Nk, (n, m) = 1 implies

g(nm) = g(n)g(m)
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and it is called completely multiplicative on the set Nk if this equation holds
for all pairs of positive integers n ∈ Nk and m ∈ Nk. In the following let Mk

(M∗
k) be the set of integer-valued multiplicative (completely multiplicative)

functions on the set Nk. In the case k = 1, we use the following notations:

N := N1, M := M1 and M∗ := M∗
1.

In 1966 M.V. Subbarao [8] proved the following assertion: If g ∈ M
satisfies

(1) g(n + m) ≡ g(m) (mod n) for all n,m ∈ N,

then there is a non-negative integer α such that

(2) g(n) = nα for all n ∈ N.

A. Iványi [2] extended this result proving that if g ∈ M∗ and (1) holds for
a fixed m ∈ N and for all n ∈ N, then g(n) has also the same form (2). In
the joint paper with J. Fehér, we improved in [6] the results of Subbarao and
Iványi mentioned above by proving that if M ∈ N, g ∈ M satisfy the conditions
g(M) �= 0 and

g(n + M) ≡ g(M) (mod n) for all n ∈ N,

then (2) holds.

An another characterization of nα by using congruence property was found
by A. Iványi [3], namely he proved that if g ∈ M satisfies the relation

(3) g(n + m) ≡ g(n) + g(m) (mod n) for all n, m ∈ N,

then g(n) is a power of n with positive integer exponent. In [6] we determined
all solutions g ∈ M∗ of (3) under the condition that the congruence (3) holds
for a fixed m ∈ N and for all n ∈ N. Later, in the papers [3, 4, 5, 7] we obtained
some generalizations of this result, namely we proved the following theorems:

Theorem A. ([3]) If the integers A > 0, B > 0, C �= 0, N >
> 0 with (A, B) = 1 and g ∈ M satisfy the relation

g(An + B) ≡ C (mod n) for all n ≥ N,

then g(B) = C and there are a non-negative integer α, a real-valued Dirichlet
character χA (mod A) such that

g(n) = χA(n)nα for all n ∈ NA.
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Theorem B. ([5]) Let A > 0, B, a > 0, b, N > 0 and D �= 0 be fixed
positive integers. If a function g ∈ M∗ satisfies the congruence

g
[
A(an + b) + B

]
≡ D (mod an + b) for all n ∈ N, n > N,

then there are a non-negative integer α, a real-valued Dirichlet character χaA

(mod aA) such that
g(n) = χaA(n)nα

holds for all n ∈ NaA.

Theorem C. [7] Assume that A > 0, B > 0, C, D �= 0 are fixed integers
with (A, B) = 1 and a function g ∈ M∗ satisfies the congruence

g(An + B) ≡ Cg(n) + D (mod n) for all n ∈ N.

Then the following assertions hold:

(A) If g(p) = 0 for some prime p with (p, A) = 1, then

p = 2, −C = D = 1, (2, AB) = 1 and g(n) = χ2(n) for all n ∈ N2,

(B) If g(n) �= 0 for all n ∈ NA, then either

C + D = 1 and g(n) = 1 for all n ∈ N,

or there are a non-negative integer α, a real-valued Dirichlet character χaA

(mod aA) such that
g(n) = χaA(n)nα

holds for all n ∈ NaA.

In [4] we completely solved the equation

g(An + B) ≡ g(An) + D (mod n)

for a multiplicative function g under conditions A,B ∈ N, D ∈ Z \ {0} and
(A, B) = 1,(A, 2) = 1.

The main purpose of this paper is to extend the result of Theorem A and
prove a result similar to Theorem C for two completely multiplicative functions.
We prove
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Theorem 1. Assume that the integers A > 0, B > 0, N > 0, D �= 0, E �=
0 and g ∈ M satisfy the relation

Eg(An + B) ≡ D (mod n) for all n ∈ N, n > N.

Let (A, B) = d and A = da. Then there are a non-negative integer α and a
real-valued Dirichlet character χa (mod a) such that

g(dn) = g(d)χa(n)nα for all n ∈ Na.

We note that Theorem A is a special case of Theorem 1 when E = 1 and
(A,B) = 1.

Theorem 2. Assume that the integers A > 0, B > 0, (A, B) = 1, C �=
�= 0, D �= 0, E �= 0 and f, g ∈ M∗ satisfy the relation

Eg(An + B) ≡ Cf(n) + D (mod n) for all n ∈ N.

Then the following assertions hold:

(I) If f(π) = 0 for some prime π, then

(I. a) there are a non-negative integer α and a real-valued Dirichlet
character χA (mod A) such that

n|f(n) and g(m) = χA(m)mα (n ∈ N, m ∈ NA).

(I. b) If π|A and (π, B) = 1, then C = −2D and all further solutions
(f, g) have the form

π = 2, f(n) = χ2(n) and g(m) = χ2A(m)mα (n ∈ N, m ∈ NA),

where α is a non-negative integer and χ2A is a real-valued Dirichlet character
(mod 2A) with the condition χ2A(A + B) = −χ2A(B).

(I. c) If (π, AB) = 1, then C = −D and all further solutions (f, g) have
the form

π = 2, f(n) = χ2(n), g(2) = 0 and g(m) = χ2A(m)mα (n ∈ N, m ∈ NA),

where α is a non-negative integer and χ2A is a real-valued Dirichlet character
(mod 2A).
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(II) If g(AN + B) = 0 for some N ∈ N and f(n) �= 0 for all n ∈ N, then

f(n) = 1 for all n ∈ N,

and either
g(An + B) = 0 for all n ∈ N if C + D = 0,

or there are a non-negative integer α and a real-valued Dirichlet character χA

such that
g(n) = χA(n)nα for all n ∈ NA if C + D �= 0.

(III) If g(An + B)f(n) �= 0 for all n ∈ N, then there are a non-negative α
and a real-valued Dirichlet character χA (mod A) such that

g(n) = χA(n)nα for all n ∈ NA,

furthermore either

C + D = Eg(B) and f(n) = 1 for all n ∈ N

or n | f(n) for all n ∈ N.

2. Proof of Theorem 1

Assume that the conditions of Theorem 1 are satisfied, i.e.

Eg(An + B) ≡ D (mod n) for all n ∈ N, n > N,

where g ∈ M, A, B, N ∈ N and D �= 0 is a nonzero integer.
Let d = (A, B), A = da, B = db, (a, b) = 1. Then we have

(4) Eg
[
d(an + b)

]
≡ D (mod n) for all n ∈ N, n > N.

First we prove that

g(d) �= 0, G ∈ M∗
a and Eg(B) = D,

where

G(n) :=
g(dn)
g(d)

for all n ∈ N.



106 Bui Minh Phong

Since (a, b) = 1, there are infinitely many n ∈ N such that n > N and
(an + b, d) = 1. For these n, the relation (4) gives

Eg(d)g(an + b) ≡ D (mod n),

which with D �= 0 shows that g(d) �= 0.
Assume that k and l are fixed positive integers, for which (kl, a) = 1. Let

q be a prime for which

q > max{k, l, N, |B|, |D|, |E|, |Eg(kB)g(dl) − Dg(dkl)|}.

Since (kl, qa) = 1, (a, b) = 1 and q > |B|, one can deduce from the
Chinese Remainder Theorem that there are positive integers x, u, y and v
such that

kx = aqy + 1, (x, klbd) = 1

and
lu = aqv + b, (u, kldx) = 1.

Then by (4), we have
klxu = aqT + b,

where T := by + v + aqyv. These with (4) and the multiplicativity of g imply
that

Eg(kB)g(x) = Eg(kBx) = Eg
(
d(aqby + b)

)
≡ D (mod q),

Eg(dl)g(u) = Eg(dlu) = Eg
(
d(aqv + b)

)
≡ D (mod q)

and

Eg(dkl)g(x)g(u) = Eg
(
d(klxu)

)
= Eg

(
d(aqT + b)

)
≡ D (mod q).

Hence q > |D| implies that g(x)g(u) �≡ 0 (mod q), consequently

Eg(kB)g(dl) ≡ Dg(dkl) (mod q).

This relation and the fact q > |Dg(dkl) − Eg(dkB)g(l)| imply that

Dg(dkl) = Eg(kB)g(dl)

holds for all k, l ∈ N, (kl, a) = 1.
By applying this relation with l = 1, we have Eg(kB)g(d) = Dg(dk) for

all k ∈ N, (k, a) = 1, therefore we obtain

Eg(B) = D and g(dkl) =
Eg(kB)g(dl)

D
=

Dg(dk)g(dl)
Dg(d)

=
g(dk)g(dl)

g(d)
.
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Consequently

G(kl) =
g(dkl)
g(d)

=
g(dk)
g(d)

g(dl)
g(d)

= G(k)G(l), G ∈ M∗
a.

Hence we infer from (4) and the fact (a, b) = 1 that

Eg
[
d (an + b)

]
= Eg(d)G (an + b) ≡ D (mod n) for all n ∈ N, n > N

which, using the fact G ∈ M∗
a, Eg(d)G(b) = Eg(db) = Eg(B) = D, gives

(5) Eg(B)G (an + 1) = DG(An + 1) ≡ D (mod n) for all n ∈ N, n > N.

If G(aM + 1) = 0 for some M ∈ N, then we get from (5) that

0 = DG
(
(aM + 1)t

)
≡ D

(
mod

(aM + 1)t − 1
a

)
for all t ∈ N. This is impossible because

(aM + 1)t − 1
a

→ ∞ as t → ∞.

Consequently
G(an + 1) �= 0 for all n ∈ N.

On the other hand, if G(a� + 1) = −1 for some � ∈ N, then from (5) we
have

−D = DG
[
(a� + 1)2t+1

]
≡ D

(
mod

(a� + 1)2t+1 − 1
a

)
,

which is impossible. If G(an + 1) = 1 for all n ∈ N, then G(n) = χa(n) for
all n ∈ Na and so g(dn) = g(d)G(n) = g(d)χa(n). Theorem 1 is proved in this
case with α = 0.

In the following we assume that G(an+1) �∈ {0, −1, 1} for all n ∈ N. Let
M = am + 1 ∈ N, N = an + 1 ∈ N. Then we infer from (5) that

DG(N)G(M)2t = DG
(
NM2t

)
≡ D

(
mod

NM2t − 1
a

)
,

and so (
NM2t − 1

) ∣∣∣ aD
(
G(N)G(M)2t − 1

)
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hold for all t ∈ N.
To complete the proof of Theorem 1, we shall use the following result of

[5] (see Lemma in [5])

Lemma 1. Let U ≥ 1, V, u ≥ 1, v, β > 1, γ > 1, k ≥ 1, l and F �= 0
be fixed integers. If

(
Uγkn+l + V

) ∣∣∣ F
(
uβkn+l + v

)
for all n ∈ N, then there is a positive integer e such that

β = γe and u(−V )e + vUe = 0.

Since G(M)2 > 1, therefore Lemma 1 shows that there is a non-negative
integer α such that

G(M)2 = M2α

and
G(N) − Nα = G(an + 1) − (an + 1)α = 0.

Let

G(n) :=
G(n)
nα

, G(n) = nαG(n) (n ∈ N).

Then we have
G(an + 1) = 1 for all n ∈ N,

which gives that G(n) = χa(n) for all n ∈ Na, where χa is a real-valued Dirichlet
character (mod a). Therefore

g(dn) = g(d)G(n) = nαg(d)G(n) = nαg(d)χa(n) for all n ∈ Na.

The proof of Theorem 1 is finished.

3. Proof of (I) of Theorem 2

First we prove the following

Lemma 2. Assume that a, b ∈ N, c, d ∈ Z, c �= 0 and H ∈ M∗ satisfy
the condition

(6) cH(an + b) + d ≡ 0 (mod an + b) for all n ∈ N.



On the pair of multiplicative functions satisfying a congruence property 109

Then we have:

If d �= 0, then H(n) = χa(n) for all n ∈ Na.

If d = 0, then either H(an + b) = 0 for all n ∈ N or H(n) ≡ 0 (mod n)
for all n ∈ Na.

Proof. Assume that (6) holds for all n ∈ N.
First we consider the case when d �= 0. In this case, by (6) we have

H(b) �= 0 and cH(b)H(an + 1) ≡ −d (mod an + 1).

Then, for each N ∈ N we have

−dH(aN + 1) = cH(b)H(aN + 1)H(an + 1) =

= cH(b)H
[
(aN + 1)(an + 1)

]
≡ −d (mod an + 1),

consequently
−dH(aN + 1) = −d, H(aN + 1) = 1

hold for each N ∈ N. This shows that H(n) = χa(n) for all n ∈ Na.
Assume now that d = 0. In this case, by (6) we have

cH(an + b) ≡ 0 (mod an + b) for all n ∈ N.

We have two possibilities: either H(an+ b) = 0 for all n ∈ N or H(aN + b) �= 0
for some N ∈ N. Assume that H(aN + b) �= 0. Then

cH(aN + b)H(an + 1) = cH
[
(aN + b)(an + 1)

]
≡ 0 (mod an + 1)

for all n ∈ N. Thus, for each prime p, (p, a) = 1, we have

cH(aN +b)H(p)ϕ(a)t = cH(aN +b)H(pϕ(a)t) ≡ 0 (mod pϕ(a)t) for all t ∈ N.

This with cH(aN + b) �= 0 shows that p | H(p). Lemma 2 is proved.

Now assume that the integers A > 0, B > 0, (A,B) = 1, C �= 0, D �=
�= 0, E �= 0 and f, g ∈ M∗ satisfy the relation

(7) Eg(An + B) ≡ Cf(n) + D (mod n) for all n ∈ N.

We shall prove the following lemma.
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Lemma 3. Assume that there is a prime π such that f(π) = 0. Then
Eg(B) = D and the following assertions hold:

(a) There are a non-negative integer α and a character χA (mod A) such
that

n|f(n) and g(m) = χA(m)mα (n ∈ N, m ∈ NA).

(b) If π|A and (π, B) = 1, then C = −2D and all further solutions (f, g)
of (7) have the form

π = 2, f(n) = χ2(n) and g(m) = χ2A(m)mα (n ∈ N, m ∈ NA),

where α is a non-negative integer and χ2A is a character (mod 2A) with the
condition χ2A(A + B) = −χ2A(B).

(c) If (π, AB) = 1, then C = −D and all further solutions (f, g) of (7)
have the form

π = 2, f(n) = χ2(n), g(2) = 0 and g(m) = χ2A(m)mα, (n ∈ N, m ∈ NA),

where α is a non-negative integer and χ2A is a character (mod 2A).

Proof. Assume that there is a prime π such that f(π) = 0. Then, by
writing nπ in the place of n in (7), we have

Eg(Aπn + B) ≡ Cf(πn) + D = Cf(π)f(n) + D = D (mod n)

for all n ∈ N. This, by using Theorem 1, implies that there are a non-negative
integer α and a real-valued Dirichlet character χπA (mod πA) such that

g(n) = χπA(n)nα holds for all n ∈ NπA.

In the following let

G(n) :=
g(n)
nα

for all n ∈ N.

Then

(8) g(n) = nαG(n) and G(m) = χπA(m) for all n ∈ N, m ∈ NπA,

and we infer from (7) that

EBαG(An + B) ≡ E(An + B)αG(An + B) = Eg(An + B) ≡
≡ Cf(n) + D (mod n).
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This gives

(9) EBαG(An + B) ≡ Cf(n) + D (mod n) for all n ∈ N.

Next we prove that

(10) Eg(B) = D.

Indeed, by applying (9) with n = Bπm, we obtain from (8)

Eg(B) ≡ Eg(B)G(Aπm + 1) = EBαG(B)G(Aπm + 1) =
= EBαG(ABπm + B) ≡ Cf(Bπm) + D = D (mod m),

which proves (10).

We shall use the notation ϕα(n) := nα, α ∈ N. Furthermore let D ∈ M∗

such that n|D(n) for all n ∈ N. It is obvious that D(n) = nD1(n) and D1 ∈ M∗.
We shall prove that the solution (f, g) of (7) is (D, χAϕα) in the following

cases:

(i) f(p) = 0 for some prime p, p �= π,

(ii) f(B) = 0.

Case (i): Assume that there is a prime p, p �= π for which f(p) = 0.
Then, as we have seen in the proof of (8), we have

g(n) = nαG(n) and G(m) = χpA(m) for all n ∈ N, m ∈ NpA,

which imply that G(n) = χA(n) for all n ∈ NA. In this case we infer from (7)
and (10) that

Cf(n) ≡ Eg(An + B) − D = E(An + B)αG(An + B) − D ≡
≡ EBαG(B) − D = Eg(B) − D = 0 (mod n),

which by using Lemma 2 gives n|f(n) for all n ∈ N. Thus the solution (f, g)
of (7) is (D, χAϕα) in the case (i).

In the following we assume that

(11) f(n) �= 0 if and only if (n, π) = 1.

Case (ii): Assume that f(B) = 0. Then by writing Bn in the place of n
in (9), we have

Eg(B)G(An + 1) = EBαG(B)G(An + 1) =
= EBαG(ABn + B) ≡ Cf(B)f(n) + D ≡ D (mod n)
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for all n ∈ N. This relation with Theorem 1 implies that G(n) = χA(n) for all
n ∈ NA. Thus we get from (10) that EBαG(An+B) = EBαG(B) = Eg(B) =
= D, consequently from (9) that Cf(n) ≡ 0 (mod n) for all n ∈ N. Hence
Lemma 2 gives n | f(n) for all n ∈ N and so the solution of (7) is (D, χAϕα)
for the case (ii).

In the following we assume that

(12) f(B) �= 0 and (π, B) = 1.

For each � ≥ 0 let

H� := { n ∈ N | π�‖An + B }.

We note that

N =

⎧⎪⎨⎪⎩
H0 if π|A,

∞⋃
�=0

H� if (π, A) = 1.

Let n� ∈ H� and An� + B = π�N�. It is clear to see from (Aπ, B) = 1
that (n�, Aπ) = (N�, Aπ) = 1. By writing π�+1m + n� in place of n in (10),
we infer from (8) that

EBαG(An� + B) = EBαG(π�)G(N�) = EBαG(π�)G(Aπm + N�) =

= EBαG
(
A
(
π�+1m + n�

)
+ B

)
≡

≡ Cf
(
π�+1m + n�

)
+ D (mod π�+1m + n�)

and

(13) Cf
(
π�+1m + n�

)
≡ EBαG(An� + B) − D := K� (mod π�+1m + n�)

hold for all m ∈ N.

We shall consider (13) in two cases, according to K� = 0 or K� �= 0.

Case I. K� = 0 for some � ∈ N, 0 ≤ � < π.

In this case, we infer from (11) and the fact (n�, π) = 1 that
f
(
π�+1m + n�

)
�= 0, consequently we obtain from Lemma 2 that n | f(n)

for all n ∈ Nπ. Hence by using the fact f(π) = 0, we get from (7) that

n | f(n) and Eg(An + B) ≡ Cf(n) + D ≡ D (mod n) for all n ∈ N,
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which gives that g(n) = nαχA(n) for all (n ∈ NA), where α ∈ N and χA is a
real-valued Dirichlet character (mod A).

Case II. K� �= 0 for � = 0, 1, . . . , π − 1.

In this case, by applying (13) for � = 0, Lemma 2 gives

f(n) = χπ(n) for all n ∈ Nπ.

Since f(π) = 0, we have

(14) f(n) = χπ(n) for all n ∈ N.

Thus, from (13) and (14) we get

EBαG(An� + B) ≡ Cf
(
π�+1m + n�

)
+ D = Cf (n�) + D (mod π�+1m + n�)

and so
EBαG(An� + B) = Cf(n�) + D

hold for all m ∈ N, � ∈ {0, 1, . . . , π − 1} and n� ∈ H�. Consequently, we have
have

(15) EBαG(An + B) = Cf(n) + D for all n ∈ N.

From (10) we have EBαG(B) = Eg(B) = D, and so we get from (15) that

(16) DG(An + 1) = Cf(B)f(n) + D for all n ∈ N.

We shall deduce from (16) that

(17) π = 2.

Assume that π ≥ 3. Then there is a ν ∈ N such that (Aν +1, Aπ) = (ν, π) = 1.
By (8) and (14) we have f(ν) = ±1 and G(Aν + 1) = ±1, consequently we
infer from (16) that

D2 =
[
DG(Aν + 1)

]2 = (Cf(B)f(ν) + D)2 =

= C2f(B)2f(ν)2 + 2CDf(B)f(ν) + D2 =

= C2f(B)2 + 2Cf(B)Df(ν) + D2,

which implies 2Df(ν) + Cf(B) = 0.
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Therefore from (16) we have

(18) G(An + 1) = −2f(ν)f(n) + 1 for all n ∈ N.

If f(ν) = −1, then (18) gives that G(An + 1) = 2f(n) + 1 for all n ∈ N.
Hence we have G(A+1) = 2f(1)+1 = 3 and 9 = G(A+1)2 = G

[
A(A+2)+1

]
=

= 2f(A + 2) + 1, which imply f(A + 2) = χπ(A + 2) = 4. This is impossible.
Thus, we have f(ν) = 1 and so

G(An + 1) = −2f(n) + 1 for all n ∈ N.

Since

G(An + 1)2 = G
[
An(An + 2) + 1

]
= −2f(n)f(An + 2) + 1

and
G(An + 1)2 =

[
−2f(n) + 1

]2 = 4f(n)2 − 4f(n) + 1,

we have
f(n)

[
f(An + 2) + 2f(n) − 2

]
= 0 for all n ∈ N.

This relation with the fact f(n) = χπ(n) implies that

f(n) = 1 and f(An + 2) = 0 for all n ∈ Nπ,

from which we obtain that

π|An + 2 for all n ∈ Nπ.

Since 1 ∈ Nπ and π − 1 ∈ Nπ, we get from the last relation that π|A +
+2, π|A(π − 1) + 2 = Aπ − (A − 2). These imply π = 2.

Thus (17) is proved.

Now we prove that G(A + B) = −G(B) in the case 2|A.
Since f(n) = χπ(n) = χ2(n) for all n ∈ N2 and (B, 2) = 1, we get

from (16) that DG(A + 1) = Cf(B) + D = C + D. It follows from 2|A that
(A + 1, 2A) = 1, which implies from (8) that G(A + 1) = −1 and C = −2D.
Therefore (10) and (15) imply that

EBαG(A + B) = C + D = −2D + D = −D = −Eg(B) = −EBαG(B),

consequently
G(A + B) = −G(B).

The part (b) of Lemma 3 is proved.
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Assume that (2, AB) = 1. Then for every ν ≥ 1 there are nν ∈ N and
Nν ∈ N such that Anν + 1 = 2νNν , (Nν , 2) = 1. It is obvious that

(nν , 2) = (Nν , 2A) = 1, f(nν) = χ2(nν) = 1 and G(Nν) = χ2A(Nν) = ±1.

We infer from (16) that

DG(Anν + 1) = DG(2ν)G(Nν) = Cf(B)f(nν) + D = C + D

holds for all ν ≥ 1, from which we obtain that

G(2)νG(Nν) = G(2)G(N1) = C + D for all ν ∈ N, ν ≥ 1.

This shows that G(2) ∈ {0, 1, −1}. We shall prove that G(2) = 0. Assume that
G(2) = ±1. Then G(An+1) = ±1, and so we get from (16) that DG(A+1) =
= Cf(B)f(1) + D = C + D. Consequently G(A + 1) = −1 and

D = DG(A + 1)2 = DG
[
A(A + 2) + 1

]
= Cf(B)f(A + 2) + D = C + D,

which is impossible. Thus we have proved that G(2) = 0. Hence g(2) =
nαG(2) = 0 and 0 = EBαG(A + B) = Cf(B) + D = C + D, i.e. C = −D.

Lemma 3 and the part (I) of Theorem 2 are proved.

4. Proof of (II) of Theorem 2

We shall prove the part (II) of Theorem 2 by showing

Lemma 4. Assume that all conditions of Theorem 2 are satisfied and
f(n) �= 0 for all n ∈ N, g(AN + B) = 0 for some N ∈ N. Then

f(n) = 1 for all n ∈ N,

and either
g(An + B) = 0 for all n ∈ N if C + D = 0,

or there are a non-negative integer α and a real-valued character χA such that

g(n) = χA(n)nα for all n ∈ NA if C + D �= 0.

Proof. We infer from g(AN + B) = 0 that there is a prime p such that
p|AN +B, g(p) = 0 and (p,A) = 1. By writing n = pm+N in the place of n in
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(7), we have p|An+B = Apm+AN+B, g(An+B) = 0 and Cf(pm+N)+D ≡
≡ 0 (mod pm + N). This with Lemma 2 implies that

(19) f(n) = χp(n) for all n ∈ Np.

We shall prove that

(20) f(n) = 1 for all n ∈ N

By writing nB in the place of n in (7), we have

(21) Eg(B)g(An + 1) ≡ Cf(B)f(n) + D (mod n) for all n ∈ N.

It is obvious that if g(B) = 0, then (21) gives Cf(B)f(n) + D ≡ 0 (mod n),
and so we get from Lemma 2 that f(n) = 1 for all n ∈ N. Thus (20) is true in
the case g(B) = 0.

In the following we assume that

(22) g(B) �= 0, (p,B) = 1.

For every M ∈ N, we have

Eg(AMn + B)g(An + 1) = Eg
[
An

(
AMn + B + M

)
+ B

]
≡

≡ Cf(AMn + B + M)f(n) + D (mod n)

and (
Cf(M)f(n) + D

)(
Cf(B)f(n) + D

)
=

= C2f(B)f(M)f(n)2 + CD
(
f(B) + f(M)

)
f(n) + D2,

therefore we get from (7) and (21) that

(23) CEg(B)f(AMn + B + M)f(n) ≡

≡ C2f(B)f(M)f(n)2 + CD
(
f(B) + f(M)

)
f(n) + D2 − DEg(B) (mod n).

By applying M = pm, (m ∈ N) in (23), using (19), we get

f(Apmn + B + pm) = χp(Apmn + B + pm) = χp(B) = f(B)

and

(24) CEg(B)f(B)f(n) ≡
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≡ C2f(B)f(pm)f(n)2 + CD
(
f(B) + f(pm)

)
f(n) + D2 −DEg(B) (mod n).

Now, let us write n(pt+1) in the place of n in (24), for every t. From (19)
we get f(pt + 1) = 1 and that

CEg(B)f(B)f(n) ≡

≡ C2f(B)f(pm)f(n)2+CD
(
f(B)+f(pm)

)
f(n)+D2−DEg(B) (mod pt+1)

hold for all n, m, t ∈ N, which gives that

(25) C
[
Eg(B)f(B) − D(f(B) + f(pm))

]
f(n) =

= C2f(B)f(pm)f(n)2 + D2 − DEg(B)

hold for all n, m ∈ N.
If there is an m ∈ N such that Eg(B)f(B) − D(f(B) + f(pm)) �= 0, then

we apply (25) for the case n ∈ Np, we have f(n)2 = 1 and

f(n) =
C2f(B)f(pm) + D2 − DEg(B)

CEg(B)f(B) − CD
(
f(B) + f(pm)

) ,

consequently f(n) = 1 for all n ∈ Np. We apply (25) again for the case when
n = pν , n ∈ N. We have f(p) = ±1 and

f(p)ν =
C2f(B)f(pm) + D2 − DEg(B)

CEg(B)f(B) − CD(f(B) + f(pm))
.

This shows that f(p) = 1. Thus (20) is proved in this case.
If Eg(B)f(B) = D(f(B) + f(pm)) for all m ∈ N, then

f(m) =
Eg(B)f(B) − Df(B)

Df(p)
for all m ∈ N,

which implies f(m) = 1 for all m ∈ N.
Finally, we infer from (7) and (20) that

Eg(An + B) ≡ Cf(n) + D = C + D (mod n).

If C + D �= 0, then Theorem 1 implies that there are a non-negative integer α
and a real-valued Dirichlet character χA such that

g(n) = χA(n)nα for all n ∈ NA.
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If C +D = 0, then Eg(An+B) ≡ 0 (mod n). Assume that g(A�+B) �= 0 for
some � ∈ N. Let q ∈ P, (q,A) = 1. Then (A� + B)qϕ(A)t ≡ B (mod A) and

g
(
(A� + B)qϕ(A)t

)
= g(A� + B)g(q)ϕ(A)t ≡ 0

(
mod

(A� + B)qϕ(A)t − B

A

)
for all t ∈ N. This implies that P (t) |g(A� + B)g(q), where

P (t) = the greatest prime factor of
(A� + B)qϕ(A)t − B

A
.

This is impossible, because well-known that P (t) cannot be bounded.
Lemma 4 and the part (II) of Theorem 2 is proved.

5. Proof of (III) of Theorem 2

Assume that all conditions of Theorem 2 are satisfied and

(26) g(An + B)f(n) �= 0 for all n ∈ N.

From (7) we have

Eg(B)g(An + 1) ≡ Cf(B)f(n) + D (mod n) for all n ∈ N,

and so

(27) Eg(An + 1) ≡ Cf(n) + D (mod n) for all n ∈ N,

where E := Eg(B) �= 0, C := Cf(B) �= 0.
First we infer from (27) that

E2g(ANn + 1)g(AMn + 1) ≡ (Cf(N)f(n) + D)(Cf(M)f(n) + D) (mod n)

and

E2g(ANn + 1)g(AMn + 1) = E2g
[
An

(
ANMn + N + M

)
+ 1

]
≡

≡ CEf(ANMn + N + M)f(n) + DE (mod n)
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are satisfied for all n, N, M ∈ N. Consequently

CEf(ANMn + N + M)f(n) ≡

≡ C2f(N)f(M)f(n)2 + CD
(
f(N) + f(M)

)
f(n) + D2 − DE (mod n)

holds for all n, N, M ∈ N. By writing n(N +M) in the place of n in the above
congruence, we have

(28) a(N, M)f(ANMn + 1)f(n) ≡

≡ b(N, M)f(n)2 + c(N,M)f(n) + d (mod n),

where

a(N, M) := CEf(N + M)2, b(N, M) := C2f(N)f(M)f(N + M)2,

and
c(N,M) := CD

(
f(N) + f(M)

)
f(N + M), d := D2 − DE .

By applying (28) with N = M = 1, we have

a(1, 1)f(An + 1)f(n) ≡ b(1, 1)f(n)2 + c(1, 1)f(n) + d (mod n),

and if we substitute n by NMn, then

a(1, 1)f(NM)f(ANMn + 1)f(n) ≡

≡ b(1, 1)f(NM)2f(n)2 + c(1, 1)f(NM)f(n) + d (mod n).

Hence, this congruence with (28) implies

(29) f(2)2f(NM)
[
b(N, M)f(n)2 + c(N, M)f(n) + d

]
≡

≡ f(N + M)2
[
b(1, 1)f(NM)2f(n)2 + c(1, 1)f(NM)f(n) + d

]
(mod n).

Let

λ(N, M) := f(2)2f(NM)c(N,M) − f(N + M)2c(1, 1)f(NM) =

= CDf(N + M)f(2)f(NM)
[
f(2)

(
f(N) + f(M)

)
− 2f(N + M)

]
and

d(N,M) := d
[
f(2)2f(NM) − f(N + M)2

]
=



120 Bui Minh Phong

= (D2 − DE)
[
f(2)2f(NM) − f(N + M)2

]
.

Since
f(2)2f(NM)b(N, M) − f(N + M)2b(1, 1)f(NM)2 = 0

hold for all N, M ∈ N, we infer from (29) that

(30) λ(N,M)f(n) + d(N, M) ≡ 0 (mod n).

Next we prove that (30) with (26) implies that

(31) either f(n) = 1 or n|f(n) for all n ∈ N.

We separate the cases λ(N,M) = 0 for every N, M , and λ(N,M) �= 0 for some
N, N ∈ N.

Case A. λ(N, M) = 0 for all N,M ∈ N

In this case (26) and (30) imply that

(32) f(2)
(
f(N) + f(M)

)
− 2f(N + M) = 0

and

(33) d(N,M) = (D2 − DE)
[
f(2)2f(NM) − f(N + M)2

]
= 0

for all N,M ∈ N.

By (26) we have f(2) �= 0. Then by using (32), we have 2f(3) = 2f(2+1) =
= f(2)2 +f(2) and 2f(2)2 = 2f(3+1) = f(2)f(3)+f(2). These with f(2) �= 0
imply that either f(2) = 1 or f(2) = 2. We apply (32) for the case when N = 1
and M = m, m ∈ N. We have

2f(m + 1) = f(2)f(m) + f(2) for all m ∈ N,

from which we obtain that f(n) = 1 in the case f(2) = 1 and f(n) = n in the
case f(2) = 2.

Case B. λ(N,M) �= 0 for some N, M ∈ N

In this case, if d(N,M) �= 0, then we get from Lemma 2 that f(n) = 1 for
all n ∈ N. But this is impossible, because

d(N, M) = (D2 − DE)
[
f(2)2f(NM) − f(N + M)2

]
�= 0.
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Thus, in this case we have d(N,M) = 0, which by using (26) and Lemma 2
gives that n|f(n) for all n ∈ N. Consequently we proved (31) for all cases.

In the following we assume that (7), (26) and (31) hold.

First we assume that f(n) = 1 for all n ∈ N. Then we infer from (7) that

(34) Eg(An + B) ≡ Cf(n) + D = C + D (mod n) for all n ∈ N.

We prove that in this case C+D = E = Eg(B) and g(n) = nαχA(n) is satisfied
for all n ∈ NA.

Suppose that C + D = 0. Then Eg(An + B) ≡ 0 (mod n) for all n. By
(26) we have g(AN +B) �= 0 is true for all N ∈ N. Then (AN +B)ϕ(A)t+1 ≡ B
(mod A) and

Eg(AN + B)ϕ(A)t+1 =

= Eg
[
(AN + B)ϕ(A)t+1

]
≡ 0

(
mod

(AN + B)ϕ(A)t+1 − B

A

)
hold for all t ∈ N. This is impossible, because well-known that P (t) cannot be
bounded, where

P (t) := the largest prime divisor of
(AN + B)ϕ(A)t+1 − B

A
.

Thus, we proved that in the case f(n) = 1 for all n, we have C + D �= 0.
This with (34) shows that g(n) = nαχA(n) for all n ∈ NA, where α ≥ 0 is an
integer. Finally we infer from (34) that

C + D ≡ Eg(An + B) = E(An + B)αχA(An + B) ≡

≡ EBαχA(B) = Eg(B) (mod n),

and so C + D = Eg(B).
Now assume that n|f(n) for all n ∈ N. In this case we get from (7), (33)

and Theorem 1 that D = E = Eg(B) and g(n) = nαχA(n) (n ∈ NA) with some
a non-negative integer α.

The proof of the part (III) is completed and Theorem 2 is proved.
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