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Abstract. In this paper we find necessary and sufficient conditions for
bounded T-summability of a double functional series almost everywhere.
An essential role which plays a part in the proof is due to the generalization
(with a few different and simpler proofs) of some results of Nikishin [18]
to double series. As an application, the influence of Lebesgue functions
on the summability of double function series is considered. In addition,
considerable improvements of known results are obtained.

1. Introduction

We shall denote by @ a d-dimensional interval, let u be a positive measure
of sets E C R? with pu(E) < oo, and let f := {f,,,} be a system of functions,
which are p-integrable on @, in short f C L}L(Q).

This research was partially supported by the Gelbart Research Institute
for Mathematical Sciences of Bar-Ilan University and the Minerva Foundation
of Germany through the Emmy Noether Research Institute of Mathematics of
Bar-Ilan University.

Mathematics Subject Classification (2000): 28A20, 40G05, 42C15, 46A04,
46B45, 46E30



74 S. Baron and H. Tiirnpu

We consider the double function series

(1-1) chm fmn(x)v

where the double sequence ¢ := (¢,,) belongs to the Banach space ¢? and
x = (x1,...,24) belongs to Q.

In the sequel, unless otherwise indicated, the free indices always run
through all values 0, 1, 2,..., and summation is likewise over all 0, 1, 2....

We assume that the measure p is absolutely continuous with respect to
the Lebesgue measure. We still prefer to retain it in order that the sets of
p-measure zero should at the same time be sets of measure zero also in the
sense of Lebesgue (cf. [1], p. 2, and [5], p. 223). We note that p fulfills this
assumptions when, for example, p(x) = pi(x1), -, pa(xq) for every x € E,
where 1, -+, g are positive, bounded and monotone increasing functions in
their domains of definition (see [5], p. 224) and the derivatives of py,- -, fiq
equals zero only in sets with Lebesgue measure zero (see [1], p. 2).

Let T be a triangular summability method with the 7,,,; being the entries
of the double series to double sequence transformation matrix.

We say that the double sequence (an,,) is bounded convergent or b-
convergent to a and write b-lim a,,, = a, if @y, = O(1) & Ilim a4y, = a (where
m,n

m,n — o0). We say that the double series (1.1) is bounded T-summable or
Ty-summable p-a.e. (i.e. p-almost everywhere) on @ for ¢ € ¢2 if the double
limit

(1.2) b-lim > Tkt et fra ()
i k,1=0

exists p-a.e. on Q.

In this work we find necessary and sufficient conditions in order that the
double series (1.1) be Ty-summable p-a.e. on @ for each ¢ € £2.

2. Lemmas on py-measurable functions and summability p-a.e.

Lemma 2.1. Let the function g be u-measurable on Q. Then g is finite
p-a.e. on @ if and only if for every 6 > 0, a p-measurable subset Qs C Q exists
with pQs > pn@Q — 0 such that

(2.1) / | g(@)| du(z) < oo.
Qs
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Proof (cf. [7], pp. 10-11, [21], p. 142).

Lemma 2.2. Letl > 2 be an integer, and let n > 0 be a real number.
If the u-measurable sets E; C Q and ®; C Q for each i = 1,...,13 satisfy the
conditions

(2.3) p®; <,

and for all k = 2,...,13 satisfy the condition

k—1
(2.4) B ® =0,
j=1

then an l-tuple [i1, ..., 4] of positive integers with
(2.5) h <ig <...<1

exists, such that

<n/l.

(2.6) [(U E) N U ix \ By

Proof (cf. [7], pp. 11-13). The one-dimensional case (with @ = [0,1]) of
the lemma is due to Nikischin ([18], p. 137, Lemma 1).

A double function sequence (an,,) is called convergent in measure on the
set @) to the limit function a, if for any € > 0

lim ufz € Q ¢ |an(x) — alz)| > £} = 0.

A double function series Y am,, is called convergent in measure on @ to the
m,n

sum a, if the double sequence of its partial sums converges in measure on @ to
the value a.

We denote the partial sums of the double series (1.1) by S,,nc, that is,

m,n

(27) SmnC = Z Ckl fkl~

k,i=0
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Lemma 2.3. Let (T,,,) be a double sequence of continuous linear maps
from the B-space X to the F-space Y. In order that

b-lim (Thne)(x)

exists p-a.e. on Q for all c € X, it is necessary and sufficient that

1° Fsup |(Tne)(z)| < 00 p—a.e. on @, Vee X

and

2° b-lim sup (Trnd)(x) — (Tad)(z)] =0
M,N 1y k>M;n A\>N

exists p-a.e. on Q for all d € X, where X C X is a fundamental set in X.
Proof. See [8], pp. 332-334, Theorem 3.

Lemma 2.4. Let (0,,5) be a double sequence of functions p-integrable on
the set Q. In order that

sup |omn ()| < 0o
m,n

p-a.e. on Q, it is necessary and sufficient that for every € > 0 there exists a
u-measurable subset Q. C Q and a constant M. > 0 with uQ. > p@Q — & such
that

K

0. m,n=0
for each subdivision I, where
m:: {thn :m7n:0717"'7K}7

sz,in ﬂDﬁHK)\ =0, if (m,n) # (k,\) and

K K
m &LJ:O mmn - Q’

K

where XX is the characteristic function of IME .

Proof. By analogy with the proof of Lemma 3 from [21], pp. 142-144.

Having taken in Lemma 2.3

m,n

(Tmnc)(x) = Z Tmnkl Ckl fkl(x)a

k,1=0
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we obtain necessary and sufficient conditions for Tp-summability p-a. on @ of
the series (1.1) for any ¢ € ¢2. The condition 2° of Lemma 2.3 is simple to check.
To verify condition 1° of Lemma 2.3 we use Lemma 2.4, because this condition
1° is fulfilled iff for each € > 0 and any c € ¢? there exists a p-measurable set
Qec C Q with puQ.. > u@ — ¢ and a constant M., > 0 so that uniformly for
the p-measurable subdivisions 90t of ), the inequality

K
(2.8) / S X (@) (Toun) (&) dis()| < Mo
Qoo ™=0

is true. The last condition is not linear in the space ¢? and to verify this is
complicated. Further we proved some results with the aim to replace condition
(2.8) by a linear condition. Our results generalize some lemmas of Nikishin
[18], p. 154, the proof of Lemma 6, using ideas of [24], p. 46, the proof of
Lemma 5.

Lemma 2.5. Let the double series (1.1) be Ty-summable p-a.e. on the set
Q for any c € (2. Then for every ¢ > 0 there exists a real number R. > 0 such
that
(2.9) ple € Q: |(SO(@)] = Ry <

holds on the unit ball {c: ||c| < 1} C ¢2, where

(2.10) (Se)(x) := sup |(Trmnc)(x)].

m,n

Proof. We consider the F-space M := M (Q), which consists of all u-a.e.
finite p-measurable functions f on the set () with the quasi-norm (cf. [8], p.
102 and 104, [25], p. 38, [20], p, 269)

7l = inf (a4 pfz € Q: 1£(2)] > 0} ).
Hence for any sequence (f,) C M the convergence f, — f means that
17— fllar = inf {a+ pufe € Q: |fula) — f(2)] > a} } — 0.

Therefore, (f,) converges to f in M if and only if f,, — f in measure on @
(see [8], p. 104, Lemma 7, or [25], p. 38), that is, for every € > 0

limp{z € Q: |fu(z) = f(2)] 2 €} = 0.
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Denoting
(Sic)(x) := max |(Trnc)(z)],

m,n<i

we obtain, that S; are continuous sublinear (cf. [25], p. 23, or [19], p. 24)
operators from ¢2 to M, and, therefore,

lim S;c = Sk,

71— 00

in the space M, where the operator S is defined by (2.10), and this means that
for each € > 0 there exists an i > 0 so that ¢ > ¢. implies

||Sic — Se|lp < g/2.
Denote by 6 the zero in ¢2. By the principle of equi-continuity (see [8], pp.
52-53)
lim SiC =0
c—0
in the space M uniformly in ¢ € N, i.e. for any € > 0 there exists a §. > 0 so

that ||c|| < d. implies
||SiC||]\/[ < 6/2.

Therefore, if ||c|| < d. and i > i., then
|Sellar < ||Se — Sicllm + ||Sicl|m < €.
Hence

(2.11) lim Se = 0.

c—0

Therefore, for each € > 0 exists a §. > 0 such that ||c|| < . implies || Sc|[ar < €.
Denote the unit ball in ¢2 by U, that is,

U:={cel*: | <1}.
Let ¢ € U and 8 — 0, then 8¢ — 6 uniformly on U and by (2.11)

lim |3 el s = 0,

(cf. [24], p. 45-46), that is,

lim inf {a+ ufo € Q: |3(Se)(a)| = a}} = 0.
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Therefore, for any € > 0 a 5. > 0 exists such that
% 5= il fa e € @ 3.(S0))| > a} < /2.
By the definition of the infimum, an a. > 0 exists such that
p{z € Q : [B(Sc)(2)| = e}t —€/2 <. <e/2,
uniformly on U or

e @: [(Se)(x)] = ac/B:} <e

uniformly on U, and, putting R. = a. /8., we obtain (2.9) uniformly on U.
3. The main lemma

Lemma 3.1. Let [ > 3 be a positive integer and ¢, R., A, D; and C; be
positive real numbers, where A > 1. Let the double series (1.1) be Tp-summable
p-a.e. on Q for all ¢ € ¢2. If for a u-measurable subset Q1 C Q the estimate

(3.1) p{r € Q1 : |(Sc)(z)|*> > DiR.} < Cye

holds uniformly on the unit ball of £?, then there exists a p-measurable subset
e C Q1 with the pu-measure

(3.2) pe < IPCye
so that
(3.3) p{r € Qi \e: |(Sc)(x)? > IADR.} <3C¢/l

uniformly on the unit ball of 2.

Proof. (Cf. [18], pp. 141-145). We find ¢; € U such that
(3.4) p{r € Qq :|(Ser)(x)|? > IAD|R.} > 3Cy ¢/l

If no such c; exists, then (3.3) is true for e = () and Lemma 3.1 is proved. If
(3.4) holds, then we denote

Ei={xe€Q:: |(Scl)(a;)|2 >1AD;R.},
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®;={x€Q: |(Sc1)(x)]* > Dy R.}.
From (3.4) and (3.1) it follows that

E, C®y, pE>3Cce/l, ud <Ce.
We will seek ¢y € U such that
(3.5) p{r € Q1 \ @1 : |(Se2)(x)]? >IAD R} > 3C¢/l.

If no such co exists, then (3.3) is true for e = ®; and Lemma 3.1 is proved.
But if inequality (3.5) is valid, then we denote

= {$ S Ql \(I)l : ‘(SCQ)(.T)P >1AD, Rg}’

P, = {.’E € Ql : ‘(SCQ)(.’,C)|2 > D RE}
From (3.5) and (3.1) we obtain

EyC®y, E;N® =0, ,U,E2>3018/l, uds < Cje.

Continuing this process until step s we obtain the sets

i—1
(3.6) Ei=queQi\(J®: |(Se)(@)* > 1ADR: 5,
j=1

(3.7) ®; ={recQ: |(Sc)(x)]* > DR},
for every ¢ = 1, ..., s; moreover in every step we have two possibilities — either
the required point ¢; € [? exists or the Lemma was proved. If the Lemma was

not proved, we obtain sets E; and ®,, satisfying conditions (2.2), (2.4) and

(3.8) u®; < Cle,

(39) /J,Ei > 3C; E/Z

foreach i =1,...,s and k = 2, ..., s, and points ¢; € U. If we show that in case
s = [3 the inequality (3.1) leads to a contradiction, then Lemma 3.1 is proved,
because the process described above terminates before s = (3.
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For the construction of the contradiction we use Lemma 2.2, having taken
there n = Cje. We consider the set (cf. [18], p. 142)

l
P= (U E) \ ¥,

where
l l
U, = (U E) N U@ \E,).
r=1 k=1

Further, by Lemma 2.2 we will now find an I-tuple [i1, . .., 4] of positive integers
satisfying (2.5) such that

(3.10) w¥; < Cre/l,

and also
E,NE; =0 (Vi#}j)

is satisfied. In view of (3.9) and (3.10)

l
/,LPZM(U Ei,.;) —p¥; >3Ce—Cie/l >2Ce.

k=1

If z € P, then z € E;, for some m, but « ¢ ®; for n # m by (2.4). Therefore,
on the set P, in view of (3.6) and (3.7),

(3.11) |(Scqi, )(x)|* > 1 AD; R.
and for n #m
(3.12) |(Sei, ) (z)|* < Dy R.,

because x ¢ ®;,. Now we consider the double sequence Ig := (I13), with

l
LB = 2DV ) rn(B) 63,
m=1

where r,, are the Rademacher functions (see [1], p. 51, [10], p. 42, or [12], p.
19) with 0 < 8 < 1 and ¢;,, := (c'7), We show below that a 3, € [0, 1] exists,
such that

(3.13) D 1 Labol* <1

Ky A
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and a set P; C P exists, such that uP; > C;e and
(3.14) p{z € Py : |(SIg,)(x)* > DiR.} > Cie,

which is in a contradiction with inequality (3.1), in view of P; C (1. Since
natural numbers M (iy,, z) and N (i, x) exist (cf. [18], pp. 135-136) such that

M (im @), N (i )
(TN (i), N (i) €) (T) = Z TM (i), N (i ) el Chel S22 (2)
k,i=0

and by (2.10)

(Sci,, ) (@) = sup [(Tanci, ) (@) = [(Tas(ipy.2) N(im.2) Cim)(@)]-

Ky

For each element ¢;,, € ¢? we define a linear operator t; : > — M by the
relation

(ti,, ) (@) = [580 (T (i1,0),N (i) Cimn)(E)] (T (i1 ,2) N (i) €) ()
By the definition of the operators ¢; , we obtain

(Sei, ) (@) = (ti,,ci,) (2)

and
(Se)(x) = |(ti,, ) (x)]-
Therefore, for any m =1,2,---,1, we have u-a.e. on the set @
1
(3.15) (STg)(x) = (20721 rk(B) (b, i) (@)] -
k=1

Denoting

Tm(ﬂ)(timcim)(x)a ifze PN Eima

Zg(x) ==

0, ife ¢ P

and for k #m
(timcik)(x)7 ifz e Eim;
() ==

0, ifx e Ezk
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from the inequalities (3.11) and (3.12), we obtain

(3.16) |Zs(2)|* > 1 AD; R,

(3.17) lag(2)|? < Dy R,
but inequality (3.15) yields
(3.18) |(S15)(@)* > [(20)7"/%| Z(x)| — (20) 72V ()| %,

where
l

Ya(@) = 3 r(B) (o).

k=1

In order to estimate Yz(z) we consider the function Y, putting
Y(9) 1= () [ [Va(a) Pdu(a).
P

Since

0/1 (@ = )" [ dute) [ Va8,

P

by the Holder inequality, and the orthonormality of Rademacher’s system, we
obtain

; l
[x®as<en [ a@ii)
0 P k=1
Therefore, by (3.17)
; l
/T(ﬁ)dﬁ < (2l)‘1/ZDlREdM(x) —
0 P k=1

= (21)"'DyR. 1 P,

hence

(3.19) / Y(8)dB < (1/2) Dy R. pP.



84 S. Baron and H. Tiirnpu

Denoting
Q:={8:5€]0,1] & Y(B) < D; R. uP},

we obtain uf) > 1/2, since otherwise inequality (3.19) is contradicted. Indeed,
if uQ < 1/2, then

1
p{B:Y(B) > DiR. uP}>1/2 & /T(ﬁ)dﬁ > DR, uP-1/2.
0

Now we prove that inequality (3.13) holds. We will start with the equality

2
dp <

E C,{)\Tm

m=1

/ S hodfas = a3 /

KA O

1 1 2
<! / > dnrm(B)| ds <
KA m=1
l
< (@2t (cm)? < 1/2,
m=1 k,\
that is,
(3.20) [ laspas <2
Ky

Since uf2 > 1/2, it follows that there exists a number Gy € Q such that
inequality (3.13) holds, because otherwise we have a contradiction to inequality
(3.20).

Thus inequality (3.13) is proved. Now we show that inequality (3.14) also
holds. Let By € Q be such that (3.13) holds. Then from the definition of
Y(6o) < Dy R pP,

that is,

(3.21) @) [ Vi @)du(e) < Di R P
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Now we define the set

Pri={z € P: (207 |Vs, () < 2D R.}.
Let us prove that (3.21) implies
(3.22) wPy > uP /2.

In fact, if
uh < /¢LP/27

then the p-measure of the complement of this set
p{r € P: (20)7 Vs, ()| > 2D, R.} > P /2,
and, therefore,
) [ Wi o) duo)
P
> 2D Re p{x € P: (21) YYp,(z)* > 2D, R.} >
> 2D, R. uP /2= D;R. uP.

This contradicts inequality (3.21). Since, as we calculated above, uP > 2Cj e,
by (3.22) we obtain

(3.23) uPy > Cle.

If z € P;, then because of (3.16) and (3.18), in view of the definition of Py, we
have
|(STg,) (@) > |(2D)"2(LADy Ro)'/? — (2D Ro)'V? | =

= Dy R. (VA2 - V2).

Now we choose the number A as follows:
A:=4(1+V2)?2>1,
and hence for any z € P; we have
|(SIg,)(2)|* = D1 R:[V2(1 +V2) —V2]? =

=4DR. > D R..

Thus the left side of (3.14) is equal to pP, and by (3.23) inequality (3.14)
holds.
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4. A relation between the T-means of a double function series and
its coefficients

Theorem 4.1. Let the double series (1.1) be Ty-summable p-a.e. on Q
for each ¢ € (2. Then for every o € [1,2) and every n > 0, there exists a -
measurable subset E, , with uE, , > pQ —n, and a constant Ky, > 0 such
that

o 1/@
AN
/ sup Z TrakiCrl fri(x)|  dp(x) <
K,A<m,n k=0
Eqn ’
1/2
m,n
(41) S KQW Z |Ckl|2

K,A=0

Proof (Cf. Nikishin [18], p. 159). From Lemma 2.5 it follows, that for
some number R, > 0 by (2.9), the inequality

ple € Q:|(So)(@) = R} <e
holds uniformly on the unit ball U C 2. Put R. = R?. In this case
{r€Q:[(Sc)(@)]” 2 Re} = {z € Q : [(So)(2)| = R:},
so for any € > 0, there exists R, > 0 such that on U we have
(4.2) ez eQ: [(Sc)(x)]” > R} <e.
Later we use Lemma 3.1, taking @1 = @ and D; = C; = 1. Then condition
(3.1) of Lemma 3.1 is our condition (4.2). With this, by Lemma 3.1, one can
find a p-measurable set e; C @, with pe; < [3¢ such that
(4.3) p{r e Q\er: |(Sc)(x)|? >1AR.} < 3¢/l
uniformly on U. Using Lemma 3.1 a second time, taking Q1 = @ \ e; with

D; = 1A and C; = 3/I, condition (3.1) becomes (4.3). Therefore, by Lemma
3.1 there exists a y-measurable set es € Q1 such that pes < 313¢/1 and

e € Qi\es: |(Se)(@)? > (14)°R.} < (3/1)%
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uniformly on U. Continuing the above process unlimitedly, we obtain a sequence
of y-measurable disjoint sets (ex) with ey < 12(3/1)*~1e and the inequality

(4.4) QN H = [(So)(@)]* = (1A) R} < (3/D)"e

holds uniformly on U for all k = 1,2, ..., where (cf. [18], p. 140, [7], p. 21)

o0
H := U €k,
k=1

and since [ > 3, its measure
pH < 1% (3/)F1 < dle.
k=1
We now choose a number ¢ > R.. There exists a natural number j such

that ‘ ‘
R.(IA) <& < R, (1A)7T1,

Using inequality (4.4) we obtain
(4.5) WQ\H = |(Se)(@)* = €} < (3/1)"F1(1/3)e.
Since £/R. < (IA)7+! and [A > 1, it follows that
In(¢/Re) < (j+1)In(lA),
whence (3/1)7F1 < ¢, where (cf. [18], p. 140)
¢ = (3/l)ln(£/RE)/ln(lA).

This implies that
¢ = ehOIn(R/8) — Rg(l) ehb,

where
h(l) := (Inl —1In3)/(Inl +1n A).

We now fix the numbers n > 0 and § > 0. Since h(l) — 1 as | — oo, there
exists ls such that h(l) > 1 — ¢, for I > ls. We now find € > 0 such that

pH <4Pe<mn, (1/3)e< 1.
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Since H = H(l, €), the numbers | = [(0) and € = ¢(I, ), it follows that
H = Hi(5, n). Denoting Es, := Q \ H, we have pEs, > p@ — n and the
inequality (4.5) in the form

(4.6) p{x € Esy 2 [(So)(@)]” > €} < RED ¢,
Since g < 2, then 2/p > 1 and
p{w € Bgy + |(S¢)(2)|? 2 €} = pfz € By : [(Se)(w)* 2 €72}
Applying this to (4.6) we obtain that
(4.7) plw € Esy : |(Se)w)|® > ¢} < RV ¢ e,
We now find a § = d(g) such that
20-8)/o:=14+a, a>0.

As a result, the numbers [ = I(p), and h(l) = h,, the set Es, = E, , and by
inequality (4.7) uniformly on the unit ball U

(4.8) ,U{x ST |(SC)(1:)|Q > 5} < R?Q 57(1+Q),
uniformly on the unit ball U for £ > max{1, R.}. Denoting for k € N

Ey,o(k) i=A{z € Ep o : |(S¢)(2)[® = K}

and
Gy olk) ={zeE, ,: k<|(Sc)(z)® <k+1},
we have
GU’Q(k) = E777Q(k) \E%Q(k + 1)
and
Eyp o= Gn.olk)-
k=0

Denoting further,
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by partial summation (see [10], the first formula on p. 1, or [1], p. 71), for
some natural k > max{2, R.} by (4.8) we have

n

Z(k—l— 1) (vg —vk41) = kv — (n+ 1) vpyr + Z v, <
k=k k=k

§RZ‘—’[/@7 (n+1)” +Zk10‘_
SRZ‘-’ K™%+ (n4+1)" "+ a (k- 1)79],

from which

e o]

(4.9) Z(k‘—l—l) (g —vpt1) < (1 +a H)(k —1)7* Rle.
k=k

If (Sc)(z) = O(1), then vy = 0 after some k. Now, by (4.9) we obtain

/|5c ) 2du(s <Z/ |(8€) (@) 2du() <

G, o(K)

< Z(k"‘ 1) Gy, o(k) =
k
= Z (k‘ + 1)(1}]€ — ’Uk+1) =

<>+ <

k<k k>k
< K(k+1) uQ+
+ (1 +a h(k—1)"*Rhe.

Therefore, a constant K,, > 0 exists, such that

(410) [ ()@ duta) < K,

Now we denote L¢ := L¢(E, ,). This is a Banach space, because ¢ > 1.
In view of (4.10) we proved that for the sublinear operator S : [? — L2, the
inequality
[Secllre < Koy
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holds uniformly on U, that is, it is bounded and its norm
151/ = sup{[|Seflze : ¢ € U} < Kqy,

whence (cf. [19], p. 44)

(4.11) 1Sellze < Konliel-

Replacing ¢ in (4.11) with its section, yields (4.1).
From Theorem 4.1, assuming ¢ = 1, we deduce:
Corollary 4.2. Let the double series (1.1) be Ty-summable on Q. Then

for every § > 0 there exists a p-measurable subset Qs C Q with uQs > p@Q — 6
and a constant Ks > 0 such that for all c € £?

1/2

Ky m,n
(4.12) / sup Z TrakiCrl fri(x)| du(z) < K Z |exi|?

35 BASMN | E T k,1=0

The method T is called b-regular, if T transforms every b-convergent double
series in a b-convergent double sequence. From a result of Nigam (see [17], p.
265, Theorems 11 and 13, and [11], formula (2.4), cf. Hamilton [9], Theorem 20)
it follows that for b-regularity of T are necessary the conditions 3limy, », Trmnki =
= 1 and sup |Tmnk| < 0o, that is the condition

m,n

(413) Jb-lim Tmnkl = 1.

5. Necessary and sufficient condition for T;,-summability p-a.e.

We denote ey := (04x dx;) and we prove that the set {ey;} is a fundamental

set in the space 2. In fact, for each ¢ € £2 we have ¢ = > ¢ e, and if
kL

m,n

Cimn = E Chl €kl

k,1=0
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then

oo

o0 o0
c—Chpn = Z + Z + Z Ckl €kl

k,l=m+1,n+1 k,l=0,n+1 k,l=m+1,0

and hence, using twice the triangle inequality, we obtain

e = Cmnll <
1/2 1/2 1/2
oo oo o0
2 2 2
< E Cht + E Chi + E Chi —0
k,l=m+1n+1 k,=0,n+1 k,l=m+1,0

as m,n — oo.

In order that the double series (1.1) be Tp-summable p-a.e. on @ for any
¢ € £? by condition 2° of Lemma 2.3 it is necessary that

blim (Trpner) () = bHm Ty fron ()

exists p-a. e. on Q. By (4.13) and |f.x(z)| < oo hold p-a.e. on @ for any k, A €
€ N, then this is satisfied. Therefore, in view of (2.10) for the Tp-summability
p-a.e. on Q of (1.1) for any ¢ € £? by Lemma 2.3, it is necessary and sufficient
that p-a.e. on @ is

(Sc)(x) := sup Z Tmnkt Crl fri(x)| < 0o

MM 1=0

for any ¢ € ¢2. By Lemma 2.1 for the last it is necessary and sufficient that
for every ¢ € ¢2 and § > 0 there exists a u-measurable subset Q.s C Q with
1Qcs > pQ — 6 such that

(5.1) /(Sc)(x) du(x) < oo.

Qes

But by Corollary 4.2 for each § > 0 there exists a y-measurable subset Qs C @
so that p@Qs > pu@ — § and a constant Ks > 0 such that for every ¢ € £2
condition (4.12) is true and hence

(5.2) / (5¢)(@)du(z) < Ksllc]

Qs



92 S. Baron and H. Tiirnpu

holds. Since (5.2) implies (5.1), then according to Lemma 2.4 we can replace
condition (5.2) by the following necessary and sufficient condition for the T-
summability p-a.e. on Q of the double series (1.1) for every c € £%:

For each § > 0 there exists a p-measurable subset Q5 C Q with puQs >
> u@ — § and a constant K5 > 0 such that for every ¢ € 2 that the inequality

K m,n
(5.3) / Z Xhon (@) Z Tk €kt fri(x) du(z)| < Ksllc||
Os m,n=0 k,l=0

holds uniformly with respect to all g-measurable subdivisions 9t = {9MX 1 of
p-measurable disjoint parts of Qs, where xX  is the characteristic function of
IME . But the left side of (5.3) is equal to

K

K5
E cr ©1° |,

k,1=0

where

Ok —/fkl Xﬁn(fﬂ)Tmnkl dp(z).

Since the left side of the inequality (5.3) is a linear functional in the space (2
(in contrast with (2.8), that is not linear), then (5.3) is fulfilled iff (see [25], p
43, [19], p. 44)

K
> (089’ < K3
k,1=0

Replacing here the square of the integral over the set Qs by an integral
over the set Q2 =: Q5 X Qs, we obtain

K
D> (8 =
k,l1=0
K K
/ S ) ) S @) it 3 A1) () ()
k,l=0 m,n=k,l p,q=k,l

Now replace here the order of summation according to the scheme
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k,l=0m,n=k,l p,q=k,

3
3
Il

=]
=
Il

=)
]
=]

Il

>

1

K m,n K
DI
m,n=0 k,l=0 p=m+

Replacing once more the order of summation in (5.4), denoting

m,n=0 k,l=0 p=kg=n+1

M := min{m, p}, N :=min{n, ¢},

and
Ky

(5.5) Ppr(z,y) Z Trnkl Tpgkt fr1(®) fra(y),
k,1=0

we obtain

Thus the following main result is proved:

Theorem 5.1. Let the method T satisfy (4.13). In order that the double

series (1.1) be Ty-summable p-a.e. on the set Q for any c € £2, it is necessary

and sufficient that for each § > 0 there exists a p-measurable subset Qs C Q

with pQs > p@Q — 4§, and a constant Ks > 0 so that uniformly relatively to each
p-measurable disjoint subdivisions 9 = {ME Y} of Qs, the following inequality

s true:

K

(5.7) / > X Z Xog ) ®arn (2, y) du(@) duly)| < K3,

m,n=0 0
Qg ) p,q=
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where XX is the characteristic function of MK
Theorem 5.1 is a generalization of Theorem 1 from [23] to double series.
We conclude some corollaries from Theorem 5.1.

Denote by K,,, the T-kernels of the function system f, i.e.

m,n
mn 7) y Z T’mnklfkl fkl( )
k,1=0
and by Ly, L}, and LI its Lebesgue functions, i.e.

Lonn() = / Ko (22, )] i),

L) = [ Ko, o), L / tmax [Kpn )] (),

The Lebesgue functions play a very important role in the investigation of
the convergence and summability of the double series (1.1) (see Méricz [14-16]).

We show that from Theorem 5.1 it follows:

Corollary 5.2. Let the method T satisfy (4.13). Let for (5.5) exist &; > 0
so that

M,N

(5.8) v (a,y) = 0(1) Y &ij | Kij(,y)|
,§=0

forz,y € Q and there exist & = &(M), & =&/ (N) >0 such that
M,N

(5.9) Ei=00)¢ ¢, Y &-¢=0Q).
i,j=0

Suppose, further, that

(5.10) Lo (@) = 02(1), Ly, (2) = 02(1)

are fulfilled p-a.e. on Q. Then the series (1.1) is Ty-summable p-a.e. on Q
for any c € (2.
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Proof. In order to prove (5.7), we divide @/ on 4 parts relatively to
the values of M, N, according to (5.6). In fact, by (5.8) and (5.9) the condition

implies

K
A= / S @) 3 A ) [y )] i) d(s) —

5 m,n=0 p,q=0
K

K K D,q
D[S0 ) Y ) 3 &l )| duto) duly) =

Q2 m,n=0 p,q=0 2,7=0

K K K

1) / S K@) S Koy S 1K ) dulz) duty) =
Q2 mmn=0 i,j=0 P,q=1,J
)
K K
—0(1) / SO XS @) S €L (@) du(s) =
Qs m,n=0 4,7=0

K
=0() [swpLyx) 3 xiu(@)dute) = O(1) [ sup Liy(a)dute).

J —
Qs m,n=0 Qs

since in view of the disjoint subdivisions of @5, we have

K K
k<1l & D xh (@) <1

p,q=0 m,n=0

Analogously, by (5.8) and (5.9) from condition (5.11) implies the estimate of

K K
Bim [ 30 @) Y 50 1@ 0)] duta) diy)
Q§ m,n=0 p,g=m,n

(it is more suitable to replace m + 1 and n + 1 by m and n, respectively).
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Further, by (5.8) the first of the conditions (5.10) and condition (5.9)
imply, using (5.6),

K K,n
Cim [ 3 @) Y ) Bl )l du(e) duly) =
Q§ m,n=0 p,q=m,0
K K,n m,q
D [3 e 3 ) Y 6l (el due) duy) -
Q? m,n=0 p,q=m,0 i,7=0
K m
—o0) [ 3 @ /maxuc” (2, 9)|x
o m,n=0 =0
Kn q
XY X W) Y& duly) dp(z) =
P,g=m,j j=0

K m
D[ 3 e 3¢ Lia@)dute) = 00) [ sup Liy (o) duto).

— - in
Qs m,n=0 =0 Qs

Analogously, by the second of the conditions (5.10) with condition (5.9),
we estimate

K m,K

D= / > (@) D X @) [@pn () du(e) dia(y).

Q2 m,n=0 p,q=0,n
S

Now, if we denote

g(x) := 2 sup Lij(x) + sup L, (x) + sup Ly, ; (),
,] 2,1 m,J

then by Lemma 2.1 for every § > 0 a p-measurable subset Qs C Q exists (we
do not change the notation @Qs) with Qs > p@ — ¢ and a constant Ks > 0

such that [ g(z)du(z) < Ks. Thus,
Qs

A+B+C+D<Kj.

Since each of conditions (5.10) implies (5.11), we obtain what was to be proved.
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Corollary 5.2 is an improvement of the main results of the papers [4-6] (see
[5], Theorem 1, [6], Theorem 4, and cf. Moricz [15, 16] ). For single series,
Corollary 5.2 is due to Mdricz (see [13], pp. 292-293, and cf. [22], Theorem 1,
[2], pp. 202 and 297, [3], p. 267).

We can considerably sharpen Corollary 5.2. Namely, one of the conditions
(5.10) is sufficient instead of two. In fact, by changing the order of summation
and taking into account that ®,,(z,y) = ®p,(y, z), we obtain

K K,q
= [ 5w Y @) [@nl0) du(o) du(y) =
Q? p,q=0 m,n=p,0

Thus we have proved

Corollary 5.3. Let the method T satisfy (4.13) and for (5.5) exist £ > 0
such that conditions (5.8) and (5.9) hold. Let for T one of conditions (5.10) be
fulfilled p-a.e. on Q, then the series (1.1) is Tp-summable p-a.e. on Q for any
ce?

If T is the factorable Riesz weighted means method (M,,), where p = (px)
and ¢ = (q;) are sequences of complex numbers, then in (1.2)

Tmnkl = (1 - Pk—l/Pm) (1 - Ql—l/Qn)v

where P, =p1+---+ppy — o0 and Q,, = ¢1 + - - - + g, — 00. Hence for (M,,)
condition (4.13) is satisfied. Let

(5.12) Z I il = O(Prn @n),

k,1=0

then condition (5.8) holds with & = |Pa |~ (|pi| + |pit1]) f 0 < i < M —1
and & = |Qn| 7 (g + |gj+1]) i 0 < j < N — 1, but & = & = 1 (see [4],
Lemma 2). Hence also condition (5.9) holds. Consequently, from Corollary 5.3
it follows

Corollary 5.4. If (M,,) satisfies (5.12) and for (M,,) one of conditions
(5.10) s fulfilled p-a.e. on Q, then the series (1.1) is (Mpq)p-summable p-a.e.
on Q for any c € (2.

If T is the convergence method E, then 7,5 = 1 in (1.2) and

Kmn(xvy) D 33 y Z fkl fkl

k,1=0
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Choosing &k = 0mrdni, we obtain that the conditions (5.8) and (5.9) are
satisfied. Therefore, from Corollary 5.3 it follows:

Corollary 5.5. If for E one of conditions (5.10) is fulfilled p-a.e. on Q,

then the series (1.1) boundedly converges ji-a.e. on Q for any c € (2.
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