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NECESSARY AND SUFFICIENT CONDITIONS
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FUNCTION SERIES ALMOST EVERYWHERE
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Abstract. In this paper we find necessary and sufficient conditions for

bounded T -summability of a double functional series almost everywhere.

An essential role which plays a part in the proof is due to the generalization

(with a few different and simpler proofs) of some results of Nikishin [18]

to double series. As an application, the influence of Lebesgue functions

on the summability of double function series is considered. In addition,

considerable improvements of known results are obtained.

1. Introduction

We shall denote by Q a d-dimensional interval, let μ be a positive measure
of sets E ⊆ Rd with μ(E) < ∞, and let f := {fmn} be a system of functions,
which are μ-integrable on Q, in short f ⊆ L1

μ(Q).

This research was partially supported by the Gelbart Research Institute
for Mathematical Sciences of Bar-Ilan University and the Minerva Foundation
of Germany through the Emmy Noether Research Institute of Mathematics of
Bar-Ilan University.

Mathematics Subject Classification (2000): 28A20, 40G05, 42C15, 46A04,
46B45, 46E30



74 S. Baron and H. Türnpu

We consider the double function series

(1.1)
∑
m,n

cmn fmn(x),

where the double sequence c := (cmn) belongs to the Banach space �2 and
x := (x1, . . . , xd) belongs to Q.

In the sequel, unless otherwise indicated, the free indices always run
through all values 0, 1, 2,..., and summation is likewise over all 0, 1, 2,...

We assume that the measure μ is absolutely continuous with respect to
the Lebesgue measure. We still prefer to retain it in order that the sets of
μ-measure zero should at the same time be sets of measure zero also in the
sense of Lebesgue (cf. [1], p. 2, and [5], p. 223). We note that μ fulfills this
assumptions when, for example, μ(x) = μ1(x1), · · · , μd(xd) for every x ∈ E,
where μ1, · · · , μd are positive, bounded and monotone increasing functions in
their domains of definition (see [5], p. 224) and the derivatives of μ1, · · · , μd

equals zero only in sets with Lebesgue measure zero (see [1], p. 2).
Let T be a triangular summability method with the τmnkl being the entries

of the double series to double sequence transformation matrix.
We say that the double sequence (amn) is bounded convergent or b-

convergent to a and write b-lim
m,n

amn = a, if amn = O(1) &∃ lim
m,n

amn = a (where

m,n → ∞). We say that the double series (1.1) is bounded T -summable or
Tb-summable μ-a.e. (i.e. μ-almost everywhere) on Q for c ∈ �2 if the double
limit

(1.2) b−lim
m,n

m,n∑
k,l=0

τmnkl ckl fkl(x)

exists μ-a.e. on Q.

In this work we find necessary and sufficient conditions in order that the
double series (1.1) be Tb-summable μ-a.e. on Q for each c ∈ �2.

2. Lemmas on μ-measurable functions and summability μ-a.e.

Lemma 2.1. Let the function g be μ-measurable on Q. Then g is finite
μ-a.e. on Q if and only if for every δ > 0, a μ-measurable subset Qδ ⊂ Q exists
with μQδ > μQ − δ such that

(2.1)
∫

Qδ

| g(x)| dμ(x) < ∞.
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Proof (cf. [7], pp. 10-11, [21], p. 142).

Lemma 2.2. Let l ≥ 2 be an integer, and let η > 0 be a real number.
If the μ-measurable sets Ei ⊂ Q and Φi ⊂ Q for each i = 1, . . . , l3 satisfy the
conditions

(2.2) Ei ⊂ Φi,

(2.3) μΦi ≤ η,

and for all k = 2, . . . , l3 satisfy the condition

(2.4) Ek

⋂ k−1⋃
j=1

Φj = ∅,

then an l-tuple [i1, . . . , il] of positive integers with

(2.5) i1 < i2 < . . . < il

exists, such that

(2.6) μ

[(
l⋃

κ=1

Eiκ

)⋂ l⋃
k=1

(Φik
\ Eik

)

]
≤ η/l.

Proof (cf. [7], pp. 11-13). The one-dimensional case (with Q = [0, 1]) of
the lemma is due to Nikischin ([18], p. 137, Lemma 1).

A double function sequence (amn) is called convergent in measure on the
set Q to the limit function a, if for any ε > 0

lim
m,n

μ{x ∈ Q : |amn(x) − a(x)| ≥ ε} = 0.

A double function series
∑
m,n

amn is called convergent in measure on Q to the

sum a, if the double sequence of its partial sums converges in measure on Q to
the value a.

We denote the partial sums of the double series (1.1) by Smnc, that is,

(2.7) Smnc :=
m,n∑

k,l=0

ckl fkl.
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Lemma 2.3. Let (Tmn) be a double sequence of continuous linear maps
from the B-space X to the F -space Y . In order that

b−lim
m,n

(Tmnc)(x)

exists μ-a.e. on Q for all c ∈ X, it is necessary and sufficient that

1◦ ∃ sup
m,n

|(Tmnc)(x)| < ∞ μ−a.e. on Q, ∀c ∈ X

and
2◦ b−lim

M,N
sup

m,κ≥M ; n,λ≥N
|(Tmnd)(x) − (Tκλd)(x)| = 0

exists μ-a.e. on Q for all d ∈ X̃, where X̃ ⊂ X is a fundamental set in X.

Proof. See [8], pp. 332-334, Theorem 3.

Lemma 2.4. Let (σmn) be a double sequence of functions μ-integrable on
the set Q. In order that

sup
m,n

|σmn(x)| < ∞

μ-a.e. on Q, it is necessary and sufficient that for every ε > 0 there exists a
μ-measurable subset Qε ⊂ Q and a constant Mε > 0 with μQε > μQ − ε such
that ∣∣∣∣∣∣

∫
Qε

K∑
m,n=0

χK
mn(x)σmn(x)dμ(x)

∣∣∣∣∣∣ ≤ Mε

for each subdivision M, where

M := {MK
mn : m,n = 0, 1, · · · ,K},

MK
mn ∩ MK

κλ = ∅, if (m,n) �= (κ, λ) and

K
∪

m,n=0
MK

mn ⊂ Q,

where χK
mn is the characteristic function of MK

mn.

Proof. By analogy with the proof of Lemma 3 from [21], pp. 142-144.

Having taken in Lemma 2.3

(Tmnc)(x) :=
m,n∑

k,l=0

τmnkl ckl fkl(x),
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we obtain necessary and sufficient conditions for Tb-summability μ-a. on Q of
the series (1.1) for any c ∈ �2. The condition 2◦ of Lemma 2.3 is simple to check.
To verify condition 1◦ of Lemma 2.3 we use Lemma 2.4, because this condition
1◦ is fulfilled iff for each ε > 0 and any c ∈ �2 there exists a μ-measurable set
Qεc ⊂ Q with μQεc > μQ − ε and a constant Mεc > 0 so that uniformly for
the μ-measurable subdivisions M of Q, the inequality

(2.8)

∣∣∣∣∣∣
∫

Qεc

K∑
m,n=0

χK
mn(x) (Tmnc)(x) dμ(x)

∣∣∣∣∣∣ ≤ Mεc

is true. The last condition is not linear in the space �2 and to verify this is
complicated. Further we proved some results with the aim to replace condition
(2.8) by a linear condition. Our results generalize some lemmas of Nikishin
[18], p. 154, the proof of Lemma 6, using ideas of [24], p. 46, the proof of
Lemma 5.

Lemma 2.5. Let the double series (1.1) be Tb-summable μ-a.e. on the set
Q for any c ∈ �2. Then for every ε > 0 there exists a real number Rε > 0 such
that

(2.9) μ{x ∈ Q : |(Sc)(x)| ≥ Rε} ≤ ε

holds on the unit ball {c : ‖c‖ ≤ 1} ⊂ �2, where

(2.10) (Sc)(x) := sup
m,n

|(Tmnc)(x)|.

Proof. We consider the F -space M := M(Q), which consists of all μ-a.e.
finite μ-measurable functions f on the set Q with the quasi-norm (cf. [8], p.
102 and 104, [25], p. 38, [20], p, 269)

‖f‖M := inf
α>0

{α + μ{x ∈ Q : |f(x)| ≥ α} }.

Hence for any sequence (fn) ⊂ M the convergence fn → f means that

‖fn − f‖M = inf
α>0

{α + μ{x ∈ Q : |fn(x) − f(x)| ≥ α} } → 0.

Therefore, (fn) converges to f in M if and only if fn → f in measure on Q
(see [8], p. 104, Lemma 7, or [25], p. 38), that is, for every ε > 0

lim
n

μ{x ∈ Q : |fn(x) − f(x)| ≥ ε} = 0.
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Denoting
(Sic)(x) := max

m,n≤i
|(Tmnc)(x)|,

we obtain, that Si are continuous sublinear (cf. [25], p. 23, or [19], p. 24)
operators from �2 to M, and, therefore,

lim
i→∞

Sic = Sc,

in the space M, where the operator S is defined by (2.10), and this means that
for each ε > 0 there exists an iε > 0 so that i > iε implies

‖Sic − Sc‖M < ε/2.

Denote by θ the zero in �2. By the principle of equi-continuity (see [8], pp.
52–53)

lim
c→θ

Sic = 0

in the space M uniformly in i ∈ N, i.e. for any ε > 0 there exists a δε > 0 so
that ‖c‖ < δε implies

‖Sic‖M < ε/2.

Therefore, if ‖c‖ < δε and i > iε, then

‖Sc‖M ≤ ‖Sc − Sic‖M + ‖Sic‖M < ε.

Hence

(2.11) lim
c→θ

Sc = 0.

Therefore, for each ε > 0 exists a δε > 0 such that ‖c‖ < δε implies ‖Sc‖M < ε.

Denote the unit ball in �2 by U, that is,

U := {c ∈ �2 : ‖c‖ ≤ 1}.

Let c ∈ U and β → 0, then βc → θ uniformly on U and by (2.11)

lim
β→0

‖β Sc‖M = 0,

(cf. [24], p. 45–46), that is,

lim
β→0

inf
α>0

{α + μ{x ∈ Q : |β(Sc)(x)| ≥ α} } = 0.
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Therefore, for any ε > 0 a βε > 0 exists such that

γε := inf
α>0

{α + μ{x ∈ Q : |βε(Sc)(x)| ≥ α} < ε/2.

By the definition of the infimum, an αε > 0 exists such that

μ{x ∈ Q : |βε(Sc)(x)| ≥ αε} − ε/2 < γε < ε/2,

uniformly on U or

μ{x ∈ Q : |(Sc)(x)| ≥ αε/βε} < ε

uniformly on U, and, putting Rε = αε/βε, we obtain (2.9) uniformly on U.

3. The main lemma

Lemma 3.1. Let l > 3 be a positive integer and ε,Rε, A,Dl and Cl be
positive real numbers, where A ≥ 1. Let the double series (1.1) be Tb-summable
μ-a.e. on Q for all c ∈ �2. If for a μ-measurable subset Q1 ⊂ Q the estimate

(3.1) μ{x ∈ Q1 : |(Sc)(x)|2 ≥ DlRε} ≤ Cl ε

holds uniformly on the unit ball of �2, then there exists a μ-measurable subset
e ⊂ Q1 with the μ-measure

(3.2) μe ≤ l3 Cl ε

so that

(3.3) μ{x ∈ Q1 \ e : |(Sc)(x)|2 ≥ lADlRε} ≤ 3Cl ε/l

uniformly on the unit ball of �2.

Proof. (Cf. [18], pp. 141-145). We find c1 ∈ U such that

(3.4) μ{x ∈ Q1 : |(Sc1)(x)|2 ≥ lADlRε} > 3 Cl ε/l.

If no such c1 exists, then (3.3) is true for e = ∅ and Lemma 3.1 is proved. If
(3.4) holds, then we denote

E1 = {x ∈ Q1 : |(Sc1)(x)|2 ≥ lA Dl Rε},
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Φ1 = {x ∈ Q1 : |(Sc1)(x)|2 ≥ Dl Rε}.

From (3.4) and (3.1) it follows that

E1 ⊂ Φ1, μE1 > 3Cl ε/l, μΦ1 ≤ Cl ε.

We will seek c2 ∈ U such that

(3.5) μ{x ∈ Q1 \ Φ1 : |(Sc2)(x)|2 ≥ lADl Rε} > 3 Cl ε/l.

If no such c2 exists, then (3.3) is true for e = Φ1 and Lemma 3.1 is proved.
But if inequality (3.5) is valid, then we denote

E2 = {x ∈ Q1 \ Φ1 : |(Sc2)(x)|2 ≥ l ADl Rε},

Φ2 = {x ∈ Q1 : |(Sc2)(x)|2 ≥ Dl Rε}.

From (3.5) and (3.1) we obtain

E2 ⊂ Φ2, E2 ∩ Φ1 = ∅, μE2 > 3 Cl ε/l, μΦ2 ≤ Cl ε.

Continuing this process until step s we obtain the sets

(3.6) Ei =

⎧⎨⎩x ∈ Q1 \
i−1⋃
j=1

Φj : |(Sci)(x)|2 ≥ l A Dl Rε

⎫⎬⎭ ,

(3.7) Φi = {x ∈ Q1 : |(Sci)(x)|2 ≥ Dl Rε},

for every i = 1, ..., s; moreover in every step we have two possibilities – either
the required point ci ∈ l2 exists or the Lemma was proved. If the Lemma was
not proved, we obtain sets Ei and Φi, satisfying conditions (2.2), (2.4) and

(3.8) μΦi ≤ Cl ε,

(3.9) μEi > 3 Cl ε/l

for each i = 1, ..., s and k = 2, ..., s, and points ci ∈ U. If we show that in case
s = l3 the inequality (3.1) leads to a contradiction, then Lemma 3.1 is proved,
because the process described above terminates before s = l3.
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For the construction of the contradiction we use Lemma 2.2, having taken
there η = Clε. We consider the set (cf. [18], p. 142)

P =

(
l⋃

κ=1

Eiκ

)
\ Ψl,

where

Ψl :=

(
l⋃

κ=1

Eiκ

)⋂ l⋃
k=1

(Φik
\ Eik

).

Further, by Lemma 2.2 we will now find an l-tuple [i1, . . . , il] of positive integers
satisfying (2.5) such that

(3.10) μΨl ≤ Cl ε/l,

and also
Ei ∩ Ej = ∅ (∀i �= j)

is satisfied. In view of (3.9) and (3.10)

μP = μ

(
l⋃

κ=1

Eiκ

)
− μΨl ≥ 3 Cl ε − Cl ε/l > 2 Cl ε.

If x ∈ P, then x ∈ Eim for some m, but x /∈ Φin for n �= m by (2.4). Therefore,
on the set P, in view of (3.6) and (3.7),

(3.11) |(Scim)(x)|2 ≥ l A Dl Rε

and for n �= m

(3.12) |(Scin
)(x)|2 < Dl Rε,

because x /∈ Φin
. Now we consider the double sequence Iβ := (Iκλβ), with

Iκλβ := (2l)−1/2
l∑

m=1

rm(β) cim

κλ,

where rm are the Rademacher functions (see [1], p. 51, [10], p. 42, or [12], p.
19) with 0 ≤ β ≤ 1 and cim

:= (cim

κλ), We show below that a β0 ∈ [0, 1] exists,
such that

(3.13)
∑
κ, λ

|Iκλβ0|2 ≤ 1
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and a set P1 ⊂ P exists, such that μP1 > Cl ε and

(3.14) μ{x ∈ P1 : |(SIβ0)(x)|2 ≥ Dl Rε} > Cl ε,

which is in a contradiction with inequality (3.1), in view of P1 ⊂ Q1. Since
natural numbers M(im, x) and N(im, x) exist (cf. [18], pp. 135-136) such that

(TM(im,x),N(im,x)c)(x) :=
M(im,x),N(im,x)∑

k,l=0

τM(im,x),N(im,x),k,l ckl fkl(x),

and by (2.10)

(Scim
)(x) := sup

κ,λ
|(Tκλcim

)(x)| = |(TM(im,x),N(im,x) cim
)(x)|.

For each element cim
∈ �2 we define a linear operator tim

: �2 → M by the
relation

(tim
c)(x) = [ sgn (TM(im,x),N(im,x) cim

)(x)] (TM(im,x),N(im,x)c) (x).

By the definition of the operators tim
we obtain

(Scim)(x) = (timcim)(x)

and
(Sc)(x) ≥ |(timc)(x)|.

Therefore, for any m = 1, 2, · · · , l, we have μ-a.e. on the set Q

(3.15) (SIβ)(x) ≥ (2l)−1/2

∣∣∣∣∣
l∑

k=1

rk(β) (tim
cik

)(x)

∣∣∣∣∣ .
Denoting

Zβ(x) :=

⎧⎨⎩ rm(β)(tim
cim

)(x), if x ∈ P ∩ Eim
,

0, if x /∈ P

and for k �= m

αk(x) :=

⎧⎨⎩ (tim
cik

)(x), if x ∈ Eim
,

0, if x ∈ Eik
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from the inequalities (3.11) and (3.12), we obtain

(3.16) |Zβ(x)|2 ≥ l A Dl Rε,

(3.17) |αk(x)|2 < Dl Rε,

but inequality (3.15) yields

(3.18) |(SIβ)(x)|2 ≥ |(2l)−1/2|Zβ(x)| − (2l)−1/2|Yβ(x)| |2,

where

Yβ(x) :=
l∑

κ=1

rκ(β) ακ(x).

In order to estimate Yβ(x) we consider the function Υ, putting

Υ(β) := (2l)−1

∫
P

|Yβ(x)|2dμ(x).

Since
1∫

0

Υ(β)dβ = (2l)−1

∫
P

dμ(x)
∫ 1

0

|Yβ(x)|2dβ,

by the Hölder inequality, and the orthonormality of Rademacher’s system, we
obtain

1∫
0

Υ(β)dβ ≤ (2l)−1

∫
P

l∑
κ=1

α2
κ(x)dμ(x).

Therefore, by (3.17)

1∫
0

Υ(β)dβ ≤ (2l)−1

∫
P

l∑
κ=1

DlRεdμ(x) =

= (2l)−1DlRε l μP,

hence

(3.19)

1∫
0

Υ(β)dβ ≤ (1/2)Dl Rε μP.
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Denoting
Ω := {β : β ∈ [0, 1] & Υ(β) ≤ Dl Rε μP},

we obtain μΩ > 1/2, since otherwise inequality (3.19) is contradicted. Indeed,
if μΩ ≤ 1/2, then

μ{β : Υ(β) > Dl Rε μP} > 1/2 &

1∫
0

Υ(β)dβ > Dl Rε μP · 1/2.

Now we prove that inequality (3.13) holds. We will start with the equality

∫
Ω

∑
κ,λ

|Iκλβ|2dβ = (2l)−1
∑
κ,λ

∫
Ω

∣∣∣∣∣
l∑

m=1

cim

κλ rm(β)

∣∣∣∣∣
2

dβ ≤

≤ (2l)−1
∑
κ,λ

1∫
0

∣∣∣∣∣
l∑

m=1

cim

κλ rm(β)

∣∣∣∣∣
2

dβ ≤

≤ (2l)−1
l∑

m=1

∑
κ,λ

(cim

κλ)2 ≤ 1/2,

that is,

(3.20)
∫
Ω

∑
κ,λ

|Iκλβ|2dβ ≤ 1/2.

Since μΩ > 1/2, it follows that there exists a number β0 ∈ Ω such that
inequality (3.13) holds, because otherwise we have a contradiction to inequality
(3.20).

Thus inequality (3.13) is proved. Now we show that inequality (3.14) also
holds. Let β0 ∈ Ω be such that (3.13) holds. Then from the definition of Ω

Υ(β0) ≤ Dl Rε μP,

that is,

(3.21) (2l)−1

∫
P

|Yβ0(x)|2dμ(x) ≤ Dl Rε μP.
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Now we define the set

P1 := {x ∈ P : (2l)−1|Yβ0(x)|2 ≤ 2Dl Rε}.

Let us prove that (3.21) implies

(3.22) μP1 ≥ μP /2.

In fact, if
μP1 < μP /2,

then the μ-measure of the complement of this set

μ{x ∈ P : (2l)−1|Yβ0(x)|2 > 2 Dl Rε} ≥ μP /2,

and, therefore,

(2l)−1

∫
P

|Yβ0(x)|2dμ(x) ≥

≥ 2Dl Rε μ{x ∈ P : (2l)−1|Yβ0(x)|2 > 2Dl Rε} >

> 2Dl Rε μP /2 = Dl Rε μP.

This contradicts inequality (3.21). Since, as we calculated above, μP > 2 Cl ε,
by (3.22) we obtain

(3.23) μP1 > Cl ε.

If x ∈ P1, then because of (3.16) and (3.18), in view of the definition of P1, we
have

|(SIβ0)(x)|2 ≥ |(2l)−1/2(l ADl Rε)1/2 − (2Dl Rε)1/2|2 =

= Dl Rε (
√

A/2 −
√

2)2.

Now we choose the number A as follows:

A := 4 (1 +
√

2)2 > 1,

and hence for any x ∈ P1 we have

|(SIβ0)(x)|2 ≥ Dl Rε[
√

2(1 +
√

2) −
√

2]2 =

= 4DlRε > Dl Rε.

Thus the left side of (3.14) is equal to μP1, and by (3.23) inequality (3.14)
holds.
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4. A relation between the T -means of a double function series and
its coefficients

Theorem 4.1. Let the double series (1.1) be Tb-summable μ-a.e. on Q
for each c ∈ �2. Then for every � ∈ [1, 2) and every η > 0, there exists a μ-
measurable subset Eη,� with μEη,� > μQ − η, and a constant K� η > 0 such
that ⎡⎢⎣ ∫

E�η

sup
κ,λ≤m,n

∣∣∣∣∣∣
κ,λ∑

k,l=0

τκλklckl fkl(x)

∣∣∣∣∣∣
�

dμ(x)

⎤⎥⎦
1/�

≤

(4.1) ≤ K� η

⎡⎣ m,n∑
κ,λ=0

|ckl|2
⎤⎦1/2

.

Proof (Cf. Nikishin [18], p. 159). From Lemma 2.5 it follows, that for
some number R̄ε > 0 by (2.9), the inequality

μ{x ∈ Q : |(Sc)(x)| ≥ R̄ε} ≤ ε

holds uniformly on the unit ball U ⊂ �2. Put Rε = R̄2
ε. In this case

{x ∈ Q : |(Sc)(x)|2 ≥ Rε} = {x ∈ Q : |(Sc)(x)| ≥ R̄ε},

so for any ε > 0, there exists Rε > 0 such that on U we have

(4.2) μ{x ∈ Q : |(Sc)(x)|2 ≥ Rε} ≤ ε.

Later we use Lemma 3.1, taking Q1 = Q and Dl = Cl = 1. Then condition
(3.1) of Lemma 3.1 is our condition (4.2). With this, by Lemma 3.1, one can
find a μ-measurable set e1 ⊂ Q, with μe1 ≤ l3ε such that

(4.3) μ{x ∈ Q \ e1 : |(Sc)(x)|2 ≥ lARε} ≤ 3ε/l

uniformly on U. Using Lemma 3.1 a second time, taking Q1 = Q \ e1 with
Dl = lA and Cl = 3/l, condition (3.1) becomes (4.3). Therefore, by Lemma
3.1 there exists a μ-measurable set e2 ∈ Q1 such that μe2 ≤ 3l3ε/l and

μ{x ∈ Q1 \ e2 : |(Sc)(x)|2 ≥ (lA)2Rε} ≤ (3/l)2ε
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uniformly on U. Continuing the above process unlimitedly, we obtain a sequence
of μ-measurable disjoint sets (ek) with μek ≤ l3(3/l)k−1ε and the inequality

(4.4) μ{Q \ H : |(Sc)(x)|2 ≥ (lA)kRε} ≤ (3/l)kε

holds uniformly on U for all k = 1, 2, ..., where (cf. [18], p. 140, [7], p. 21)

H :=
∞⋃

k=1

ek,

and since l > 3, its measure

μH ≤ l3ε
∞∑

k=1

(3/l)k−1 ≤ 4l3ε.

We now choose a number ξ > Rε. There exists a natural number j such
that

Rε(lA)j ≤ ξ < Rε (lA)j+1.

Using inequality (4.4) we obtain

(4.5) μ{Q \ H : |(Sc)(x)|2 ≥ ξ} ≤ (3/l)j+1(l/3)ε.

Since ξ/Rε < (lA)j+1 and lA > 1, it follows that

ln(ξ/Rε) < (j + 1) ln(lA),

whence (3/l)j+1 ≤ ζ, where (cf. [18], p. 140)

ζ := (3/l)ln(ξ/Rε)/ln(lA).

This implies that
ζ = eh(l) ln(Rε/ξ) = Rh(l)

ε ξ−h(l),

where
h(l) := (ln l − ln 3)/(ln l + ln A).

We now fix the numbers η > 0 and δ > 0. Since h(l) → 1 as l → ∞, there
exists lδ such that h(l) > 1 − δ, for l ≥ lδ. We now find ε > 0 such that

μH ≤ 4 l3 ε < η, (l/3)ε ≤ 1.
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Since H = H(l, ε), the numbers l = l(δ) and ε = ε(l, η), it follows that
H = H1(δ, η). Denoting Eδη := Q \ H, we have μEδη > μQ − η and the
inequality (4.5) in the form

(4.6) μ{x ∈ Eδη : |(Sc)(x)|2 ≥ ξ} ≤ Rh(l)
ε ξ−h(l).

Since � < 2, then 2/� > 1 and

μ{x ∈ Eδη : |(Sc)(x)|� ≥ ξ} = μ{x ∈ Eδη : |(Sc)(x)|2 ≥ ξ2/�}.

Applying this to (4.6) we obtain that

(4.7) μ{x ∈ Eδη : |(Sc)x)|� ≥ ξ} ≤ Rh(l)
ε ξ−2h(l)/�.

We now find a δ = δ(�) such that

2(1 − δ)/� := 1 + α, α > 0.

As a result, the numbers l = l(�), and h(l) = h�, the set Eδη = Eη, � and by
inequality (4.7) uniformly on the unit ball U

(4.8) μ{x ∈ Eη, � : |(Sc)(x)|� ≥ ξ} ≤ Rh�
ε ξ−(1+α),

uniformly on the unit ball U for ξ > max{1, Rε}. Denoting for k ∈ N

Eη, �(k) := {x ∈ Eη, � : |(Sc)(x)|� ≥ k}

and
Gη, �(k) := {x ∈ Eη, � : k ≤ |(Sc)(x)|� < k + 1},

we have
Gη, �(k) = Eη, �(k) \ Eη, �(k + 1)

and

Eη, � =
∞⋃

k=0

Gη, �(k).

Denoting further,
vk := μEη, �(k),
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by partial summation (see [10], the first formula on p. 1, or [1], p. 71), for
some natural κ > max{2, Rε} by (4.8) we have

n∑
k=κ

(k + 1) (vk − vk+1) = κ vκ − (n + 1) vn+1 +
n∑

k=κ

vk ≤

≤ Rh�
ε [κ−α + (n + 1)−α +

n∑
k=κ

k−1−α] ≤

≤ Rh�
ε [κ−α + (n + 1)−α + α−1(κ − 1)−α],

from which

(4.9)
∞∑

k=κ

(k + 1) (vk − vk+1) ≤ (1 + α−1)(κ − 1)−α Rh�
ε .

If (Sc)(x) = O(1), then vk = 0 after some k. Now, by (4.9) we obtain∫
Eη, �

|(Sc)(x)|�dμ(x) ≤
∑

k

∫
Gη, �(k)

|(Sc)(x)|�dμ(x) ≤

≤
∑

k

(k + 1) μGη, �(k) =

=
∑

k

(k + 1)(vk − vk+1) =

≤
∑
k<κ

+
∑
k≥κ

<

< κ(κ + 1) μQ+

+ (1 + α−1)(κ − 1)−αRh�
ε .

Therefore, a constant K� η > 0 exists, such that

(4.10)
∫

Eη, �

|(Sc)(x)|�dμ(x) ≤ K�
� η.

Now we denote L� := L�
μ(Eη, �). This is a Banach space, because � ≥ 1.

In view of (4.10) we proved that for the sublinear operator S : l2 → L�, the
inequality

‖Sc‖L� ≤ K� η
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holds uniformly on U, that is, it is bounded and its norm

‖S‖ = sup{‖Sc‖L� : c ∈ U} ≤ K� η,

whence (cf. [19], p. 44)

(4.11) ‖Sc‖L� ≤ K� η‖c‖.

Replacing c in (4.11) with its section, yields (4.1).

From Theorem 4.1, assuming � = 1, we deduce:

Corollary 4.2. Let the double series (1.1) be Tb-summable on Q. Then
for every δ > 0 there exists a μ-measurable subset Qδ ⊂ Q with μQδ > μQ − δ
and a constant Kδ > 0 such that for all c ∈ �2

(4.12)
∫

Qδ

sup
κ,λ≤m,n

∣∣∣∣∣∣
κ,λ∑

k,l=0

τκλklckl fkl(x)

∣∣∣∣∣∣ dμ(x) ≤ Kδ

⎛⎝ m,n∑
k,l=0

|ckl|2
⎞⎠1/2

.

The method T is called b-regular, if T transforms every b-convergent double
series in a b-convergent double sequence. From a result of Nigam (see [17], p.
265, Theorems 11 and 13, and [11], formula (2.4), cf. Hamilton [9], Theorem 20)
it follows that for b-regularity of T are necessary the conditions ∃ limm,n τmnkl =
= 1 and sup

m,n
|τmnkl| < ∞, that is the condition

(4.13) ∃b−lim
m,n

τmnkl = 1.

5. Necessary and sufficient condition for Tb-summability μ-a.e.

We denote ekl := (δκk δλl) and we prove that the set {ekl} is a fundamental
set in the space �2. In fact, for each c ∈ �2 we have c =

∑
k,l

ckl ekl, and if

Cmn =
m,n∑

k,l=0

ckl ekl,
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then

c − Cmn =

⎛⎝ ∞∑
k,l=m+1,n+1

+
∞∑

k,l=0,n+1

+
∞∑

k,l=m+1,0

⎞⎠ ckl ekl,

and hence, using twice the triangle inequality, we obtain

‖c − Cmn‖ ≤

≤

⎛⎝ ∞∑
k,l=m+1,n+1

c2
kl

⎞⎠1/2

+

⎛⎝ ∞∑
k,l=0,n+1

c2
kl

⎞⎠1/2

+

⎛⎝ ∞∑
k,l=m+1,0

c2
kl

⎞⎠1/2

→ 0

as m,n → ∞.

In order that the double series (1.1) be Tb-summable μ-a.e. on Q for any
c ∈ �2 by condition 2◦ of Lemma 2.3 it is necessary that

b−lim
m,n

(Tmnekl)(x) = b−lim
m,n

τmnκλfκλ(x)

exists μ-a. e. on Q. By (4.13) and |fκλ(x)| < ∞ hold μ-a.e. on Q for any κ, λ ∈
∈ N, then this is satisfied. Therefore, in view of (2.10) for the Tb-summability
μ-a.e. on Q of (1.1) for any c ∈ �2 by Lemma 2.3, it is necessary and sufficient
that μ-a.e. on Q is

(Sc)(x) := sup
m,n

∣∣∣∣∣∣
m,n∑

k,l=0

τmnkl ckl fkl(x)

∣∣∣∣∣∣ < ∞

for any c ∈ �2. By Lemma 2.1 for the last it is necessary and sufficient that
for every c ∈ �2 and δ > 0 there exists a μ-measurable subset Qcδ ⊂ Q with
μQcδ > μQ − δ such that

(5.1)
∫

Qcδ

(Sc)(x) dμ(x) < ∞.

But by Corollary 4.2 for each δ > 0 there exists a μ-measurable subset Qδ ⊂ Q
so that μQδ > μQ − δ and a constant Kδ > 0 such that for every c ∈ �2

condition (4.12) is true and hence

(5.2)
∫

Qδ

(Sc)(x)dμ(x) ≤ Kδ‖c‖
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holds. Since (5.2) implies (5.1), then according to Lemma 2.4 we can replace
condition (5.2) by the following necessary and sufficient condition for the Tb-
summability μ-a.e. on Q of the double series (1.1) for every c ∈ �2 :

For each δ > 0 there exists a μ-measurable subset Qδ ⊂ Q with μQδ >
> μQ− δ and a constant Kδ > 0 such that for every c ∈ �2 that the inequality

(5.3)

∣∣∣∣∣∣
∫

Qδ

K∑
m,n=0

χK
mn(x)

m,n∑
k,l=0

τmnkl ckl fkl(x) dμ(x)

∣∣∣∣∣∣ ≤ Kδ‖c‖

holds uniformly with respect to all μ-measurable subdivisions M = {MK
mn} of

μ-measurable disjoint parts of Qδ, where χK
mn is the characteristic function of

MK
mn. But the left side of (5.3) is equal to∣∣∣∣∣∣

K∑
k,l=0

ckl ΘKδ
kl

∣∣∣∣∣∣ ,
where

ΘKδ
kl =

∫
Qδ

fkl(x)
K∑

m,n≥k,l

χK
mn(x) τmnkl dμ(x).

Since the left side of the inequality (5.3) is a linear functional in the space l2

(in contrast with (2.8), that is not linear), then (5.3) is fulfilled iff (see [25], p.
43, [19], p. 44)

K∑
k,l=0

(ΘKδ
kl )2 ≤ K2

δ .

Replacing here the square of the integral over the set Qδ by an integral
over the set Q2

δ =: Qδ × Qδ, we obtain

K∑
k,l=0

(ΘKδ
kl )2 =

=
∫

Q2
δ

K∑
k,l=0

fkl(x) fkl(y)
K∑

m,n=k,l

χK
mn(x) τmnkl

K∑
p,q=k,l

χK
pq(y) τpqkldμ(x) dμ(y).

Now replace here the order of summation according to the scheme
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K∑
k,l=0

K∑
m,n=k,l

K∑
p,q=k,l

=
K∑

m,n=0

m,n∑
k,l=0

K∑
p,q=k,l

=

(5.4) =
K∑

m,n=0

m,n∑
k,l=0

m,n∑
p,q=k,l

+
K∑

m,n=0

m,n∑
k,l=0

K∑
p,q=m+1, n+1

+

+
K∑

m,n=0

m,n∑
k,l=0

K∑
p=m+1

n∑
q=l

+
K∑

m,n=0

m,n∑
k,l=0

m∑
p=k

K∑
q=n+1

.

Replacing once more the order of summation in (5.4), denoting

M := min{m, p}, N := min{n, q},

and

(5.5) Φκλ(x, y) :=
κ,λ∑

k,l=0

τmnkl τpqkl fkl(x) fkl(y),

we obtain

K∑
k,l=0

K∑
m,n=k,l

K∑
p,q=k,l

=
K∑

m,n=0

m,n∑
p,q=0

p,q∑
k,l=0

+
K∑

m,n=0

K∑
p,q=m+1,n+1

m,n∑
k,l=0

+

(5.6) +
K∑

m,n=0

K∑
p=m+1

n∑
q=0

m,q∑
k,l=0

+
K∑

m,n=0

m∑
p=0

K∑
q=n+1

p,n∑
k,l=0

=
K∑

m,n=0

K∑
p,q=0

M,N∑
k,l=0

.

Thus the following main result is proved:

Theorem 5.1. Let the method T satisfy (4.13). In order that the double
series (1.1) be Tb-summable μ-a.e. on the set Q for any c ∈ �2, it is necessary
and sufficient that for each δ > 0 there exists a μ-measurable subset Qδ ⊂ Q
with μQδ > μQ− δ, and a constant Kδ > 0 so that uniformly relatively to each
μ-measurable disjoint subdivisions M = {MK

mn} of Qδ, the following inequality
is true:

(5.7)

∣∣∣∣∣∣∣
∫

Q2
δ

K∑
m,n=0

χK
mn(x)

K∑
p,q=0

χK
pq(y) ΦMN (x, y) dμ(x) dμ(y)

∣∣∣∣∣∣∣ ≤ K2
δ ,
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where χK
mn is the characteristic function of MK

mn.

Theorem 5.1 is a generalization of Theorem 1 from [23] to double series.

We conclude some corollaries from Theorem 5.1.

Denote by Kmn the T -kernels of the function system f , i.e.

Kmn(x, y) :=
m,n∑

k,l=0

τmnklfkl(x)fkl(y),

and by Lmn, L′
mn and L′′

mn its Lebesgue functions, i.e.

Lmn(x) :=
∫
Q

|Kmn(x, y)| dμ(y),

L′
mn(x) :=

∫
Q

max
q≤n

|Kmq(x, y)| dμ(y), L′′
mn(x) :=

∫
Q

max
p≤m

|Kpn(x, y)| dμ(y),

The Lebesgue functions play a very important role in the investigation of
the convergence and summability of the double series (1.1) (see Móricz [14-16]).

We show that from Theorem 5.1 it follows:

Corollary 5.2. Let the method T satisfy (4.13). Let for (5.5) exist ξij ≥ 0
so that

(5.8) ΦMN (x, y) = O(1)
M,N∑
i,j=0

ξij |Kij(x, y)|

for x, y ∈ Q and there exist ξ′i = ξ′i(M), ξ′′j = ξ′′j (N) ≥ 0 such that

(5.9) ξij = O(1) ξ′i · ξ′′j ,

M,N∑
i,j=0

ξ′i · ξ′′j = O(1).

Suppose, further, that

(5.10) L′
mn(x) = Ox(1), L′′

mn(x) = Ox(1)

are fulfilled μ-a.e. on Q. Then the series (1.1) is Tb-summable μ-a.e. on Q
for any c ∈ �2.
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Proof. In order to prove (5.7), we divide ΦMN on 4 parts relatively to
the values of M, N, according to (5.6). In fact, by (5.8) and (5.9) the condition

(5.11) Lmn(x) = Ox(1)

implies

A :=
∫

Q2
δ

K∑
m,n=0

χK
mn(x)

K∑
p,q=0

χK
pq(y) |Φpq(x, y)| dμ(x) dμ(y) =

= O(1)
∫

Q2
δ

K∑
m,n=0

χK
mn(x)

K∑
p,q=0

χK
pq(y)

p,q∑
i,j=0

ξij |Kij(x, y)| dμ(x) dμ(y) =

= O(1)
∫

Q2
δ

K∑
m,n=0

χK
mn(x)

K∑
i,j=0

ξij |Kij(x, y)|
K∑

p,q=i,j

χK
pq(y) dμ(x) dμ(y) =

= O(1)
∫

Qδ

K∑
m,n=0

χK
mn(x)

K∑
i,j=0

ξijLij(x) dμ(x) =

= O(1)
∫

Qδ

sup
i,j

Lij(x)
K∑

m,n=0

χK
mn(x) dμ(x) = O(1)

∫
Qδ

sup
i,j

Lij(x) dμ(x),

since in view of the disjoint subdivisions of Qδ, we have

K∑
p,q=0

χK
pq(y) ≤ 1 &

K∑
m,n=0

χK
mn(x) ≤ 1.

Analogously, by (5.8) and (5.9) from condition (5.11) implies the estimate of

B :=
∫

Q2
δ

K∑
m,n=0

χK
mn(x)

K∑
p,q=m,n

χK
pq(y) |Φmn(x, y)| dμ(x) dμ(y)

(it is more suitable to replace m + 1 and n + 1 by m and n, respectively).
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Further, by (5.8) the first of the conditions (5.10) and condition (5.9)
imply, using (5.6),

C :=
∫

Q2
δ

K∑
m,n=0

χK
mn(x)

K,n∑
p,q=m,0

χK
pq(y) |Φmq(x, y)| dμ(x) dμ(y) =

= O(1)
∫

Q2
δ

K∑
m,n=0

χK
mn(x)

K,n∑
p,q=m,0

χK
pq(y)

m,q∑
i,j=0

ξij |Kij(x, y)| dμ(x) dμ(y) =

= O(1)
∫

Qδ

K∑
m,n=0

χK
mn(x)

m∑
i=0

ξ′i

∫
Q

max
j≤n

|Kij(x, y)|×

×
K,n∑

p,q=m,j

χK
pq(y)

q∑
j=0

ξ′′j dμ(y) dμ(x) =

= O(1)
∫

Qδ

K∑
m,n=0

χK
mn(x)

m∑
i=0

ξ′i L′
in(x) dμ(x) = O(1)

∫
Qδ

sup
i,n

L′
in(x) dμ(x).

Analogously, by the second of the conditions (5.10) with condition (5.9),
we estimate

D :=
∫

Q2
δ

K∑
m,n=0

χK
mn(x)

m,K∑
p,q=0,n

χK
pq(y) |Φpn(x, y)| dμ(x) dμ(y).

Now, if we denote

g(x) := 2 sup
i,j

Lij(x) + sup
i,n

L′
in(x) + sup

m,j
L′′

mj(x),

then by Lemma 2.1 for every δ > 0 a μ-measurable subset Qδ ⊂ Q exists (we
do not change the notation Qδ) with μQδ > μQ − δ and a constant Kδ > 0
such that

∫
Qδ

g(x) dμ(x) ≤ Kδ. Thus,

A + B + C + D ≤ K2
δ .

Since each of conditions (5.10) implies (5.11), we obtain what was to be proved.
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Corollary 5.2 is an improvement of the main results of the papers [4-6] (see
[5], Theorem 1, [6], Theorem 4, and cf. Móricz [15, 16] ). For single series,
Corollary 5.2 is due to Móricz (see [13], pp. 292–293, and cf. [22], Theorem 1,
[2], pp. 202 and 297, [3], p. 267).

We can considerably sharpen Corollary 5.2. Namely, one of the conditions
(5.10) is sufficient instead of two. In fact, by changing the order of summation
and taking into account that Φpn(x, y) = Φpn(y, x), we obtain

D =
∫

Q2
δ

K∑
p,q=0

χK
pq(y)

K,q∑
m,n=p,0

χK
mn(x) |Φpn(y, x)| dμ(x) dμ(y) = C.

Thus we have proved

Corollary 5.3. Let the method T satisfy (4.13) and for (5.5) exist ξkl ≥ 0
such that conditions (5.8) and (5.9) hold. Let for T one of conditions (5.10) be
fulfilled μ-a.e. on Q, then the series (1.1) is Tb-summable μ-a.e. on Q for any
c ∈ �2.

If T is the factorable Riesz weighted means method (Mpq), where p = (pk)
and q = (ql) are sequences of complex numbers, then in (1.2)

τmnkl = (1 − Pk−1/Pm) (1 − Ql−1/Qn),

where Pm = p1 + · · ·+ pm → ∞ and Qn = q1 + · · ·+ qn → ∞. Hence for (Mpq)
condition (4.13) is satisfied. Let

(5.12)
m,n∑

k,l=0

|pk ql| = O(Pm Qn),

then condition (5.8) holds with ξ′i = |PM |−1(|pi| + |pi+1|) if 0 ≤ i ≤ M − 1
and ξ′′j = |QN |−1(|qj | + |qj+1|) if 0 ≤ j ≤ N − 1, but ξ′M = ξ′′N = 1 (see [4],
Lemma 2). Hence also condition (5.9) holds. Consequently, from Corollary 5.3
it follows

Corollary 5.4. If (Mpq) satisfies (5.12) and for (Mpq) one of conditions
(5.10) is fulfilled μ-a.e. on Q, then the series (1.1) is (Mpq)b-summable μ-a.e.
on Q for any c ∈ �2.

If T is the convergence method E, then τmnkl = 1 in (1.2) and

Kmn(x, y) = Φmn(x, y) =
m,n∑

k,l=0

fkl(x) fkl(y).
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Choosing ξkl = δmkδnl, we obtain that the conditions (5.8) and (5.9) are
satisfied. Therefore, from Corollary 5.3 it follows:

Corollary 5.5. If for E one of conditions (5.10) is fulfilled μ-a.e. on Q,
then the series (1.1) boundedly converges μ-a.e. on Q for any c ∈ �2.
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Toimetised, 73 (1959), 3-49. (Kangro, G. and Baron, S., Multipliers
of summability for Cèsaro-summable and Cèsaro-bounded double series,
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[16] Móricz, F., On the regular summability of multiple function series and
Lebesgue functions, Anal. Math., 9 (1983), 57-67.

[17] Nigam, T.P., Summability of multiple series, Proc. London Math. Soc.,
46 (1940), 249-269.

[18] Nikixin E.M., Rezonansnye teoremy i nadline�inye operatory,
Uspehi mat. nauk, 25 (6) (1970), 129-191. (Nikishin, E.M., Resonance
theorems and overlinear operators, Uspekhi math. nauk, 25 (6) (1970),
129-191. (in Russian))

[19] Rudin, W., Functional analysis, McGraw-Hill Company, New York, 1973.
[20] Taylor, A.E., General theory of functions and integration, Dover Publ.,

New York, 1985.
[21] T�rnpu H., O shodimosti funkcional�nyh r�dov poqti vs�du,
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