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Abstract. In this paper, the authors prove mean-value theorems for

multiplicative functions in general additive arithmetical semigroups.

1. Introduction

Let (G, ∂) be an additive arithmetical semigroup. By definition G is a
free commutative semigroup with identity element 1, generated by a countable
subset P of primes and admitting an integer valued degree mapping ∂ : G →
→ N ∪ {0} which satisfies

(i) ∂(1) = 0 and ∂(p) > 0 for all p ∈ P ,

(ii) ∂(ab) = ∂(a) + ∂(b) for all a, b ∈ G,

(iii) the total number G(n) of elements a ∈ G of degree ∂(a) = n is
finite for each n ≥ 0.

Obviously G(0) = 1 and G is countable. Putting

π(n) := #{p ∈ P : ∂(p) = n}
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we obtain the identity

∞∑
n=0

G(n)tn =
∞∏

n=1

(1 − tn)−π(n).

In a monograph [10], Knopfmacher, motivated by earlier work of Fogels [3]
on polynomial rings and algebraic function fields, developed the concept of an
additive arithmetical semigroup satisfying the following axiom.

AXIOM A#. There exist constants A > 0, q > 1, and ν with 0 ≤ ν < 1
(all depending on G), such that

G(n) = Aqn + O(qνn), as n → ∞.

If G satisfies Axiom A#, then the generating function

(1) Z̃(z) :=
∞∑

n=0

G(n)zn

is holomorphic in the disc |z| < q−ν up to a simple pole at z = q−1. This
means, that we have the representation

(2) Z̃(z) =
H̃(z)
1 − qz

,

where H̃ is holomorphic for |z| < q−ν and takes the form

H̃(z) = A + (1 − qz)
∞∑

n=0

(G(n) − Aqn)zn.

Obviously H̃(0) = 1 and H̃(q−1) = A.

Z̃ can be considered as the zeta-function associated with the semigroup
(G, ∂), and it has an Euler-product representation (cf. [10], Chapter 2)

Z̃(z) =
∞∏

n=1

(1 − zn)−π(n) (|z| < q−1).

The logarithmic derivative of Z̃ is given by

(3)
Z̃ ′(z)
Z̃(z)

=
∞∑

n=1

⎛⎝∑
d|n

dπ(d)

⎞⎠ zn−1 =:
∞∑

n=1

λ(n)zn−1,
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where the von Mangoldt’s coefficients λ(n) and the prime element coefficients
π(n) are related by

λ(n) =
∑
d|n

dπ(d)

and, because of the Möbius inversion formula

nπ(n) =
∑
d|n

λ(d)μ
(n

d

)
.

Defining the von Mangoldt function Λ : G → R by

Λ(b) =

⎧⎨⎩ ∂(p) if b is a prime power pr �= 1,

0 otherwise,

we see
λ(n) =

∑
b∈G

∂(b)=n

Λ(b)

and
∂(a) =

∑
bd=a

Λ(b).

Chapter 8 of [10] deals with a theorem called the abstract prime number
theorem: If the additive arithmetical semigroup G satisfies Axiom A#, then

π(n) =
qn

n
+ O

(
qn

nα

)
(n → ∞),

or equivalently,

(4) λ(n) = qn + O

(
qn

nα−1

)
(n → ∞),

is true for any α > 1.
But this result is only valid if Z̃(−q−1) �= 0. In [8], Indlekofer et al.

gave (in a more general setting) much sharper results valid also in the case
Z̃(−q−1) = 0. For instance, if Z̃(−q−1) = 0, then Axiom A# yields (ε > 0)

(5)
λ(n)
qn

= 1 − (−1)n + Oε

(
qn(ν+ε−1)

)
.
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In both cases, the Chebyshev inequality

(6) λ(n) � qn

holds, respectively.

Moving to the investigation of the mean-value properties of complex valued
multiplicative functions f satisfying |f(a)| ≤ 1 for all a ∈ G, in [6] Indlekofer
and Manstavičius proved analogues of the results of Delange, Wirsing and
Halász. Here, as in the classical case, f is called multiplicative if f(1) = 1 and
f(ab) = f(a)f(b) whenever a, b ∈ G are coprime, and the general aim is to
characterize the asymptotic behaviour of the summatory function

(7) M(n, f) := q−n
∑
a∈G

∂(a)=n

f(a) as n → ∞.

The main results (Analogue of Halász’s Theorem (see [6])) are

Proposition 1. Suppose that G is an additive arithmetical semigroup
satisfying Axiom A� and let f : G → C be a multiplicative function, |f(a)| ≤ 1.
Then there exist a real constant τ0 ∈ (−π, π] and a complex constant D such
that

(8) M(n, f) = D exp

⎧⎨⎩iτ0n + i
n∑

k=1

Im(q−k
∑

∂(p)=k

f(p)e−iτ0k)

⎫⎬⎭+ o(1)

as n → ∞.

Proposition 2. Suppose that G is an additive arithmetical semigroup
satisfying Axiom A#. In order that M(n, f) = o(1) as n → ∞, it is both
necessary and sufficient that one of the following conditions is satisfied:
(i) for each τ ∈ (−π, π] the series

(9)
∑
p∈P

q−∂(p)
(
1 − Re(f(p)e−iτ∂(p))

)
diverges;

(ii) there exists a unique τ = τ0 ∈ (−π, π] such that the series (9) converges
for τ = τ0 and

(10)
∏

∂(p)≤c

(1 + f(p)(q−1e−iτ0)∂(p) + f(p2)(q−1e−iτ0)2∂(p) + . . .) = 0.
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The fundamental question arises: what conditions ensure such alternative
asymptotic estimates (5), (6) and (10)? Can these assertions be established
under rather loose conditions and hence, hold in principle for a much larger
variety of additive arithmetical semigroups? One aim of the book [11] of
Knopfmacher and Zhang is to give answers to these questions, and the authors
proved, for instance, Chebyshev upper estimates, abstract prime number
theorems and mean-value theorems for multiplicative functions. Zhang [13]
showed assuming

(11)
∞∑

n=1

sup
n≤m

|G(m)q−m − A| < ∞,

that the Chebyshev-type upper estimate (6) and the assertions of Propositions
1 and 2 hold.

Different kind of assumptions have been used by Indlekofer [5]. Assuming
some mild conditions on the boundary behaviour of the function H̃ in (2)
Chebyshev inequality and the prime number theorem could be proved.

In a similar way we formulate in this paper conditions on H̃ which lead
to a proof of Propositions 1 and 2 (see Theorem 2). These conditions imply
essentially the estimate

(12)
∑
n≤N

(
λ(n)q−n

)2 = O(N) as N → ∞

which is much weaker than the Chebyshev inequality (6). Further we show
that Theorem 2 superceeds all the corresponding results by Zhang (cf. § 2).

Putting z = q−1y in (2) we define Z(y) := Z̃(q−1y) and H(y) := H̃(q−1y)
and obtain

(13) Z(y) =
H(y)
1 − y

for |y| < 1,

and shall assume that H(y) is bounded in the disc |y| < 1 satisfying

(14) lim
y→1−

H(y) = A > 0.

To ease notational difficulties we restrict ourselves to completely multiplicative
functions f : G → C under the condition |f | ≤ 1. Then the generating function
F̂ of f is given by

(15) F̂ (y) :=
∞∑

n=0

∑
a∈G

∂(a)=n

f(a)q−nyn = exp

( ∞∑
n=1

λf (n)
nqn

yn

)
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for |y| < 1, where

(16) λf (n) =
∑

p∈P,k∈N

∂(pk)=n

(f(p))k∂(p).

We investigate the behaviour of M(n, f) as n tends to infinity, and deal with
two alternating cases: the series (9) converges for some unique τ ∈ (−π, π] or
diverges for all τ ∈ (−π, π]. The proof follows the same lines as in [7] and [11]
and is adapted to the given assumptions.

2. Results

Put H(y) =
∞∑

n=0

h(n)yn. Then the following holds.

Theorem 1. Let H(y) be continuous for |y| ≤ 1 and satisfy (14). If

(17)
∞∑

n=1

n2h2(n)r2n = O

(
1

1 − r

)
as 0 < r < 1, r → 1,

then ∑
n≤N

(
λ(n)q−n

)2 = O(N)

as N → ∞.

For example, assume that
∞∑

n=1

nh2(n) < ∞. Put Sn =
n∑

m=1

mh2(m). Then

∞∑
n=1

n2h2(n)r2n =
∞∑

n=1

n(Sn − Sn−1)r2n =

= (1 − r2)
∞∑

n=1

(n + 1)Snr2n −
∞∑

n=1

Snr2n �

� (1 − r2)
∞∑

n=1

(n + 1)r2n �

� 1 − r2

(1 − r2)2
�

� 1
1 − r

,
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and (17) holds in this case.

Now, as an obvious consequence of Theorem 1 we formulate

Corollary 1. Let H(y) be continuous for |y| ≤ 1 and satisfy (14). If

(i) h(n) = O(n−1) for all n ∈ N,
or

(ii) H ′(y) = O
(
|1 − y|−1

)
as |y| → 1,

or

(iii)
∞∑

n=1

nh2(n) < ∞,

then ∑
n≤N

(
λ(n)q−n

)2 = O(N)

as N → ∞.

Theorem 2. Let G be an additive arithmetical semigroup satisfying∑
n≤N

(
λ(n)q−n

)2 = O(N)

and let H ∈ H∞ (i.e. H is bounded in |y| < 1) satisfy (14). Further, let f be a
completely multiplicative function, |f | ≤ 1. Then the following two assertions
hold.
(i) If the series (9) diverges for each τ ∈ (−π, π], then

M(n, f) = o(1)

as n → ∞.
(ii) If the series (9) converges for some τ = τ0 ∈ (−π, π], then

M(n, f) = cL(n) + o(1)

as n → ∞, where c is an appropriate real constant, and L(y) is a slowly
oscillating function.

Theorem 2 superceeds all the corresponding results of Zhang (cf. [11]).
His assumption

(18)
∞∑

n=0

∣∣G(n)q−n − A
∣∣ < ∞
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(for example [11], Theorem 6.2.2, p.243) implies, since h(n) = G(n)q−n−G(n−
−1)q−n+1 the absolute convergence

∞∑
n=0

|h(n)| < ∞,

and thus H is continuous on the closed disc D̄ = {y : |y| ≤ 1}. In the same
way the assumption (loc. cit.)

∞∑
n=1

n
(
G(n)q−n − A

)2
< ∞

leads to ∞∑
n=1

n|h(n)|2 < ∞.

Similarly, the condition (see for example [11])

∞∑
n=0

sup
n≤m

|G(m)q−m − A| < ∞

yields
∞∑

n=0

|h(n)| < ∞ and h(n) = o(n−1).

This can easily be seen in the following way. Put g(n) = G(n)q−n −A and

ḡ(n) := max
m≥n

|g(m)|. Then ḡ(n) is monotonically decreasing and
∞∑

n=1

|ḡ(n)| < ∞.

Thus
nḡ(2n) ≤ ḡ(n + 1) + ḡ(n + 2) + . . . + ḡ(2n) =

= o(1)

and, since g(n) = −
∑
m>n

h(m),

∞∑
n=0

|h(n)| < ∞,

∑
m≥n

h(m) = o

(
1
n

)
,
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h(n) = o

(
1
n

)
as n → ∞.

Further, the assumption of the Chebyshev inequality λ(n)q−n = O(1)
together with (18) (cf. [11], Theorem 6.3.1) is much stronger than the condition∑
n≤N

(
λ(n)q−n

)2
= O(N) together with (14). This may also be illustrated by

the following

Example 1. Let the function ω : N → N0 be such that

(19)
∞∑

n=1

ω2(n)
n

< ∞,

and let q ≥ 2 be an integer. Then∑
n≤N

ω(n) = O(N) and
∑
n≤N

ω2(n) = O(N).

Define integers an, 0 ≤ an < n by

(20) qn + ω(n)qn ≡ an mod n

and put

(21) π(n) = (qn + ω(n)qn − an)
1
n

+ 1

for n = 1, 2, . . .. Then, by (19), the corresponding Zeta-function Z(y) =
= Z̃(q−1y) satisfies (13) and (14). Since π(n) � qn we get

λ(n) = nπ(n) + O(n log n · q n
2 ),

and we obtain using (19)

∑
n≤N

λ2(n)
q2n

= O(N)

as N → ∞.
This example shows that the Chebyshev-type assumption λ(N) � qN

is stronger than our assumption
∑
n≤N

(
λ(n)q−n

)2 = O(N) with H ∈ H∞ in

Theorem 2.
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3. Proof of Theorem 1

Obviously,

y
Z ′(y)
Z(y)

=
∞∑

n=1

λ(n)q−nyn =
y

1 − y
+ y

H ′(y)
H(y)

.

We show that, if 0 < r < 1,

π∫
−π

∣∣∣∣reiτZ ′(reiτ )
Z(reiτ )

∣∣∣∣2 dτ � 1
1 − r

.

For this we use the following result which is due to Montgomery (see [2]).

Lemma 1. Let the series

A(y) =
∞∑

n=0

anyn and B(y) =
∞∑

n=0

bnyn

converge for |y| < R. Let |an| ≤ bn hold for n = 0, 1, 2, . . . . Then for 0 < r < R
we have for any τ0

τ0+η∫
τ0

∣∣A(reiτ )
∣∣2 dτ ≤ 2

η∫
−η

∣∣B(reiτ )
∣∣2 dτ.

Proof. See, for example [11].

Note that H(y) has no zeros in the open disc D := {y : |y| < 1}. Since
H(1) = A �= 0 and H(y) is continuous for y ∈ D̄ := {y : |y| ≤ 1} there exists
some η > 0 such that H(y) �= 0 for y = reiτ with 0 ≤ r ≤ 1 and |τ | ≤ η. Fix
0 < η ≤ π. Then

τ0+η∫
τ0

∣∣∣∣reiτZ ′(reiτ )
Z(reiτ )

∣∣∣∣2 dτ ≤ 2

η∫
−η

∣∣∣∣reiτZ ′(reiτ )
Z(reiτ )

∣∣∣∣2 dτ �

� 1 +

η∫
−η

(
1

|1 − reiτ |2 +
∣∣H ′(reiτ )

∣∣2) dτ �
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�
π∫

−π

(
1

|1 − reiτ |2 +
∣∣H ′(reiτ )

∣∣2) dτ =

=
∞∑

n=0

r2n +
∞∑

n=1

n2h2(n)r2n �

� 1
1 − r

and thus
π∫

−π

∣∣∣∣reiτZ ′(reiτ )
Z(reiτ )

∣∣∣∣2 dτ =
∞∑

n=1

(
λ(n)q−n

)2
r2n =

= O

(
1

1 − r

)
.

Choosing r = 1 − N−1 with N > 1 gives

N∑
n=1

(
λ(n)q−n

)2 ≤
(

1 − 1
N

)−2N N∑
n=0

(
λ(n)q−n

)2
r2n =

= O(N).

This ends the proof of Theorem 1.

4. Proof of Theorem 2

We have

nM(n, f) = q−n
∑
a∈G

∂(a)=n

f(a)∂(a) =

= q−n
∑
a∈G

∂(a)=n

∑
bd=a

Λ(b)f(b)f(d) =

=
∑

∂(b)≤n

Λ(b)f(b)
q∂(b)

∑
d

∂(d)=n−∂(b)

f(d)
qn−∂(b)

.
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Then

|nM(n, f)| ≤
∑

∂(b)≤n

Λ(b)
q∂(b)

|M(n − ∂(b), f)| ≤

≤
∑
m≤n

λ(m)
qm

|M(n − m, f)|.

Applying Cauchy-Schwarz’s inequality we obtain

(22) |nM(n, f)| ≤

⎛⎝∑
m≤n

λ(m)2

q2m

⎞⎠ 1
2
⎛⎝∑

m≤n

|M(m, f)|2
⎞⎠ 1

2

=: Σ
1
2
1 · Σ

1
2
2 .

Obviously

Σ
1
2
1 � n

1
2

as n → ∞. By definition

(23) F̂ (y) = exp

( ∞∑
n=1

λf (n)
qnn

yn

)
,

(24) Z(y) = exp

( ∞∑
n=1

λ(n)
qnn

yn

)
.

Putting y = reiτ with 0 < r < 1 and τ ∈ (−π, π] gives

|F̂ (y)|
Z(|y|) =

∣∣∣∣∣exp

( ∞∑
n=1

λf (n)eiτn − λ(n)
qnn

rn

)∣∣∣∣∣ =

= |H1(y)|

∣∣∣∣∣∣exp

⎛⎝−
∑
p∈P

(
1 − f(p)eiτ∂(p)

)
q−∂(p)r∂(p)

⎞⎠∣∣∣∣∣∣ ,
where

H1(y) := exp

⎛⎜⎝ ∞∑
n=1

∑
∂(pk)=n

p∈P,k∈N,k≥2

∂(p)(f(p)keiτn − 1)
qnn

rn

⎞⎟⎠ .

Obviously by Cauchy-Schwarz’s inequality,∑
n≤N

λ(n)
qn

= O(N).
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Since |f | ≤ 1, we conclude

∞∑
n=1

∑
∂(pk)=n

p∈P,k∈N,k≥2

∣∣∣∣∂(p)(f(p)keiτn − 1)
qnn

rn

∣∣∣∣ ≤ ∞∑
n=1

2
∑

∂(p)≤ n
2

p∈P

∂(p)
qnn

rn ≤

≤
∞∑

n=1

2
qnn

∑
∂(a)≤ n

2
a∈G

Λ(a)rn ≤

≤
∞∑

n=1

2
qnn

∑
m≤n

2

λ(m)rn �

�
∞∑

n=1

2
qnn

n

2
q

n
2 rn �

�
∞∑

n=1

1
q

n
2

rn.

Thus H1(y) is holomorphic for |y| < q1/2. Further, using (13) we get

|F̂ (y)| =

∣∣∣F̂ (y)
∣∣∣

Z(|y|) · Z(|y|) =

= |H1(y)| ·

∣∣∣∣∣∣exp

⎛⎝−
∑
p∈P

(
1 − f(p)eiτ∂(p)

)
q−∂(p)rm

⎞⎠∣∣∣∣∣∣ · H(r)
1 − r

.

Assume now that the series (9) diverges for every τ ∈ (−π, π]. Then, for every
τ

−
∑
p∈P

(
1 − Ref(p)eiτ∂(p)

)
q−∂(p)rm → −∞

as r → 1, and Dini’s theorem shows

exp

⎛⎝−
∑
p∈P

(
1 − Ref(p)eiτ∂(p)

)
q−∂(p)rm

⎞⎠ = o(1)

uniformly in τ ∈ (−π, π] as r → 1. Since

H(r)
1 − r

∼ A

1 − r
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we get

(25)
∞∑

m=0

M(m, f)rmemiτ = o

(
1

1 − r

)
uniformly for τ ∈ (−π, π] as r → 1. The remaining part of the proof of (i)
may be found in [7]. For the sake of completeness we repeat the details. By
Parseval’s identity

W (r) :=
∞∑

m=0

|M(m, f)|2r2m =
1
2π

2π∫
0

∣∣∣∣∣
∞∑

m=0

M(m, f)rmemiτ

∣∣∣∣∣
2

dτ.

Then, using the estimate (25)

(26) W (r) = o
(
(1 − r)−

1
2

) 2π∫
0

∣∣∣∣∣
∞∑

m=0

M(m, f)rmemiτ

∣∣∣∣∣
3/2

dτ.

The Euler-product gives the representation

(27) F̂ (y) =
∞∑

m=0

M(m, f)ym = H2(y) exp

⎧⎨⎩
∞∑

k=1

q−k
∑

∂(p)=k

f(p)yk

⎫⎬⎭ ,

where |y| < 1 and H2(y) is a regular function in the disc |y| < 1 + c with some
c > 0. Observe that H2(y) �= 0 and H2(y) � 1 in the disc |y| ≤ 1. Hence using
the same representation for the function fg, where g(a) = (3/4)Ω(a) and Ω(a)
denotes the number of all prime elements dividing a, we obtain
(28)

|F̂ (y)|3/4 � exp

⎧⎨⎩
∞∑

k=1

q−k
∑

∂(p)=k

3
4
f(p)yk

⎫⎬⎭ �
∞∑

m=0

M(m, fg)ym, for |y| < 1.

Since |M(m, fg)| � |M(m, g)|, applying the Parseval’s identity again we
deduce

2π∫
0

|F̂ (reiτ )|3/2 dτ �
2π∫
0

∣∣∣∣∣
∞∑

m=0

M(m, fg)rmemiτ

∣∣∣∣∣
2

dτ =

= 2π

∞∑
m=0

|M(m, fg)|2r2m �

� 2π
∞∑

m=0

|M(m, g)|2r2m =

=

2π∫
0

∣∣∣∣∣
∞∑

m=0

M(m, g)rmemiτ

∣∣∣∣∣
2

dτ.



On mean-value theorems for multiplicative functions 63

The representation of type (27) and H ∈ H∞ shows that

(29)

2π∫
0

∣∣∣∣∣
∞∑

m=0

M(m, g)rmemiτ

∣∣∣∣∣
2

dτ �
2π∫
0

|Z(reiτ )|3/2dτ =

=

2π∫
0

∣∣∣∣H(reiτ )
1 − reiτ

∣∣∣∣3/2

dτ �

�
2π∫
0

|1 − reiτ |−3/2dτ.

Hence

(30)

2π∫
0

|F̂ (reiτ )|3/2 dτ �
2π∫
0

|1 − reiτ |−3/2 dτ �

(31) �
1−r∫
0

(1 − r)−3/2 dτ +

2π∫
1−r

τ−3/2 dτ � 1
(1 − r)1/2

.

Thus from (26) we have the estimate W (r) = o
(

1
1−r

)
. Our assumption (14)

yields by Hardy-Littlewood’s Tauberian Theorem (see [4], p.155, Theorem 96)∑
m≤n

|M(m, f)|2 = o(n).

It follows
nM(n, f) ≤ Σ

1
2
1 · Σ

1
2
2 � o(n)

for n → ∞. This ends the proof of assertion (i).

Next, we need the following

Lemma 2. Let G be an additive arithmetical semigroup satisfying∑
n≤N

(
λ(n)q−n

)2 = O(N)
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and let further f be a completely multiplicative function with |f | ≤ 1 and
suppose the series (9) converges for τ = 0. Then we have uniformly for y = r
and 1

2 (1 − η) ≤ 1 − r ≤ 1 − η,

(32)
∑
p∈P

∣∣∣η∂(p) − r∂(p)
∣∣∣ |1 − f(p)|

q∂(p)
= o(1)

as η → 1−.

Proof. For every M > 0

∑
p∈P

∣∣∣η∂(p) − r∂(p)
∣∣∣ |1 − f(p)|

q∂(p)
=

∑
p∈P

∂(p)≤M

∣∣∣η∂(p) − r∂(p)
∣∣∣ |1 − f(p)|

q∂(p)
+

+
∑
p∈P

∂(p)>M

∣∣∣η∂(p) − r∂(p)
∣∣∣ |1 − f(p)|

q∂(p)
=

= S1 + S2.

Choose ε > 0. Since |1 − f(p)|2 ≤ 2(1 − Ref(p)) for |f(p)| ≤ 1 there exists
M0 > 0 such that for M > M0

S2
2 ≤

∑
p∈P

∂(p)>M

q−∂(p)
∣∣∣η∂(p) − r∂(p)

∣∣∣2 ∑
p∈P

∂(p)>M

|1 − f(p)|2
q∂(p)

≤

≤
∑
p∈P

∂(p)>M

q−∂(p)r2∂(p)

∣∣∣∣(η

r

)∂(p)

− 1
∣∣∣∣2 ε =

= εS3.

Observe ∣∣∣∣(η

r

)∂(p)

− 1
∣∣∣∣2 ≤ 2∂(p) log

r

η
≤

≤ 4∂(p)(1 − r).

Then

S3 ≤ 4(1 − r)
∑
p∈P

∂(p)
q∂(p)

r2∂(p) ≤

≤ 4(1 − r)
∞∑

n=1

λ(n)
qn

r2n =

= 4(1 − r)O
(

1
1 − r

)
=

= O(1)
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as r → 1 since
∑
n≤N

λ(n)
qn

= O(N). Letting r → 1 and η → 1 gives S1 = o(1)

and this ends the proof of Lemma 2.

We assume now that (9) converges for τ = 0. Our aim is to prove first

(33) NM(N, f) =
1

2πi

∫
|y|=r

F̂ ′(y)
yN

dy = cNL(N) + o(N),

where 0 < r < 1 and c is an appropriate real constant. For this we will show
the following estimate

F̂ (y) =
c

1 − y
L

(
1

1 − |y|

)
+ o

(
1

1 − |y|

)
as |y| → 1−.

For |y| < 1 we have

F̂ (y) = exp

( ∞∑
n=1

λf (n)
qnn

yn

)
,

Z(y) = exp

( ∞∑
n=1

λ(n)
qnn

yn

)
.

This yields
F̂ (y)
Z(y)

= exp

( ∞∑
n=1

λf (n) − λ(n)
qnn

yn

)
=

= H3(y) exp

⎛⎜⎝ ∞∑
n=1

∑
p∈P

∂(p)=n

f(p) − 1
qn

yn

⎞⎟⎠ ,

where

H3(y) := exp

⎛⎜⎝ ∞∑
n=1

∑
∂(pk)=n

p∈P,k∈N,k≥2

∂(p)(f(p)k − 1)
qnn

yn

⎞⎟⎠ .
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Similarly as above H3(y) is holomorphic for |y| < q1/2. Further

exp

⎛⎜⎝ ∞∑
n=1

∑
p∈P

∂(p)=n

f(p) − 1
qn

yn

⎞⎟⎠ = exp
{
−
∑
p∈P

(y∂(p) − |y|∂(p))q−∂(p)(1 − f(p))−

−
∑
p∈P

|y|∂(p)q−∂(p)(1 − Ref(p))
}

L

(
1

1 − |y|

)
,

where

L

(
1

1 − |y|

)
:= exp

⎛⎝i
∑
p∈P

|y|∂(p)q−∂(p)Imf(p)

⎞⎠ .

Obviously, |L| = 1. Put u := (1 − |y|)−1. To show that L(u) is a slowly
oscillating function of u, it suffices to note that, for 1

2u ≤ v ≤ u, by Lemma 2
with η = 1 − v−1,

L(v)
L(u)

= exp

⎛⎝i
∑
p∈P

(
η∂(p) − |y|∂(p)

) Imf(p)
q∂(p)

⎞⎠ =

= exp(o(1))

as u → ∞. Set

c1 := H1(1) exp

⎛⎝−
∑
p∈P

q−∂(p)(1 − Ref(p))

⎞⎠ .

Let M be a fixed positive real number. The function F̂ (y)
(
L
(

1
1−|y|

)
Z(y)

)−1

is holomorphic in the disc |y| < 1 and converges at the boundary point y = 1.
Then, by Stolz’s theorem (see [12], page 121) we conclude, putting y = reiτ ,

F̂ (y)

L
(

1
1−|y|

)
Z(y)

= c1 + oM (1),

as |y| → 1− uniformly for |τ | ≤ M(1 − |y|). Hence

(34) F̂ (y) = c1
H(y)
1 − y

L

(
1

1 − |y|

)
+ oM

(
1

|1 − y|

)
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and ∣∣∣∣∣ F̂ (y)
Z(|y|)

∣∣∣∣∣ =

= exp

( ∞∑
m=1

Reλf (m)eiτm − λ(m)
mqm

rm

)
=

= exp

⎛⎝−
∑
p∈P

q−∂(p)r∂(p)
(
1 − Ref(p)eiτ∂(p)

)⎞⎠×

× exp

⎛⎜⎝−
∞∑

m=1

∑
p∈P,k≥2
∂(pk)=m

1 − Ref(p)keiτ∂(p)

mqm
rm

⎞⎟⎠ �

� exp

⎛⎝−
∑
p∈P

q−∂(p)r∂(p)
(
1 − Ref(p)eiτ∂(p)

)⎞⎠ .

This shows

|F̂ (y)|
Z(|y|)|Z(ȳ)| =

∣∣∣∣∣ F̂ (y)
Z(|y|)

∣∣∣∣∣
2

· Z(|y|)
|Z(ȳ)| �

� exp

⎛⎝−2
∑
p∈P

q−∂(p)r∂(p)
(
1 − Ref(p)eiτ∂(p)

)
+

+
∑
p∈P

q−∂(p)r∂(p)
(
1 − Re e−iτ∂(p)

)⎞⎠ �

� exp

⎛⎝2
∑
p∈P

q−∂(p)r∂(p) (1 − Ref(p))

⎞⎠
� 1,

since the series (9) converges for τ = 0 and since

2
(
1 − Re e−iτ∂(p)

)
=
∣∣∣1 − e−iτ∂(p)

∣∣∣2 ≤

≤ 2|1 − f(p)|2 + 2
∣∣∣f(p) − e−iτ∂(p)

∣∣∣2 ≤

≤ 4(1 − Ref(p)) + 4
(
1 − Re eiτ∂(p)

)
.
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This implies for |τ | ≥ M(1 − |y|),

(35) |F̂ (y)| � M− 1
2

1
1 − |y| .

Collecting (34) and (35) shows

(36) F̂ (y) =
c

1 − y
L

(
1

1 − |y|

)
+ o

(
1

1 − |y|

)
as |y| → 1−.

Now we proceed similarly as in the proof of Theorem 6.2.2 in [11]. Set
r = 1 − 1

N . Let K be a large positive number and let N be chosen that
N ≥ 2K2. We break the circle y = reiτ into two arcs

A0 :=
{

τ : |τ | ≤ K

N

}
and A1 :=

{
τ :

K

N
≤ |τ | ≤ π

}
.

We estimate the integral on the left-hand side of (33) on each arc separately.
This will show that the integral on A0 produces the main term on the right-
hand side of (33), whereas the integral on A1 gives an o-term.

(i) Estimate of
∫

A0

.

Let y ∈ A0 and consider the circle |w − y| = 1
2N . In the range 1 − 3

2N ≤
≤ |w| ≤ 1 − 1

2N we have

L

(
1

1 − |w|

)
= L(N) + o(1).

Thus, by (36),

F̂ (w) =
c

1 − w
L

(
1

1 − |w|

)
+ o

(
1

1 − |w|

)
=

=
c

1 − w
L(N) + o(N)

on this circle. Now, by Cauchy’s theorem

F̂
′
(y) =

c

(1 − y)2
L(N) + o(N2) if y ∈ A0.
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Then

(37)
1

2πi

∫
A0

F̂
′
(y)

yN
dy =

cL(N)
2πi

∫
A0

dy

(1 − y)2yN
+ o(N2)

2K

N
.

The integral on the right-hand side of (37) can be evaluated by using the
residue theorem (for more details see the proof of Theorem 6.2.2 in [11]):

(38)
1

2πi

∫
A0

dy

(1 − y)2yN
= N + O(K−1N).

(ii) Estimate of
∫

A1

.

If f is a completely multiplicative function with |f(a)| ≤ 1, then F̂ (y) �= 0 for
|y| < 1. By Cauchy-Schwarz’s inequality we have∣∣∣∣∣∣

∫
A1

F̂
′
(y)

yN
dy

∣∣∣∣∣∣ ≤

(39) ≤

⎛⎝∫
A1

∣∣∣∣∣reiτ F̂
′
(reiτ )

F̂ (reiτ )

∣∣∣∣∣
2

r−Ndτ

⎞⎠1/2

×

⎛⎝∫
A1

|F̂ (reiτ )|2r−Ndτ

⎞⎠1/2

.

Parseval’s identity and the conditions
∑
n≤N

λ2(n)q−2n = O(N) and |f | ≤ 1

yield

1
2π

∫
A1

∣∣∣∣∣reiτ F̂
′
(reiτ )

F̂ (reiτ )

∣∣∣∣∣
2

r−Ndτ = ≤ r−N 1
2π

π∫
−π

∣∣∣∣∣reiτ F̂
′
(reiτ )

F̂ (reiτ )

∣∣∣∣∣
2

dτ =

= r−N
∞∑

n=0

∣∣∣∣λf (n)
qn

∣∣∣∣2 r2n ≤

≤ r−N
∞∑

n=0

∣∣∣∣λ(n)
qn

∣∣∣∣2 r2n �

� 1
1 − r2

≤ 1
1 − r

=

= N,
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since r = 1 − 1
N . Further

(40)
∫
A1

|F̂ (reiτ )|2r−Ndτ ≤ max
K
N ≤|τ |≤π

|F̂ (reiτ )|1/2

∫
A1

|F̂ (reiτ )|3/2r−Ndτ.

By (36),

|F̂ (reiτ )| ≤
∣∣∣∣ c

1 − reiτ

∣∣∣∣ + o(N).

For K
N ≤ |τ | ≤ π,

|1 − reiτ | ≥
∣∣∣∣1 −

(
1 − 1

N

)
eiK/N

∣∣∣∣ = rN � K

N

and hence

(41) max
K
N ≤|τ |≤π

|F̂ (reiτ )|1/2 ≤ O(K−1/2N1/2) + o
(
N1/2

)
.

As we have seen in the proof of (i) (cf. (28)-(31)) we get

(42)
∫
A1

|F̂ (reiτ )|3/2r−Ndτ �
π∫

−π

|Z(reiτ )|3/2dτ =

π∫
−π

∣∣∣∣H(reiτ )
1 − reiτ

∣∣∣∣3/2

dτ � N
1
2 .

This implies

(43)

∣∣∣∣∣∣
∫
A1

F̂
′
(y)

yN
dy

∣∣∣∣∣∣ � N1/2
([

O(K− 1
2 N

1
2 ) + o(N

1
2 )
]
N

1
2

)1/2

≤

(44) ≤ O
(
K− 1

4 N
)

+ o(N).

Combining the estimates we finally arrive at

1
2πi

∫
|y|=r

F̂
′
(y)

yN
dy =

cL(N)
2πi

∫
A0

dy

(1 − y)2yN
+ o(KN) + O(K− 1

4 N)

= cNL(N) + o(KN) + O(K− 1
4 N).



On mean-value theorems for multiplicative functions 71

Choosing K large and letting N tend to infinity shows

1
2πi

∫
|y|=r

F̂ ′(y)
yN

dy = cNL(N) + o(N),

as N → ∞. Thus by (33)

NM(N, f) = cL(N)N + o(N).

Finally, assume that (9) converges for τ = τ0 �= 0. Then for the completely
multiplicative function f(a)q−i∂(a)τ0 , (9) converges for τ = 0 and the above
arguments prove assertion (ii) of Theorem 2.
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