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ABSOLUTE SUMMABILITY FACTORS
OVER BANACH ALGEBRAS

Mati Abel (Tartu, Estonia)
Simson Baron (Ramat Gan, Israel)

Dedicated to Professors Ferenc Móricz, Ferenc Schipp and Péter Simon
on their birthdays

Abstract. Let α be a nonnegative integer, A a unital Banach algebra,

X a unital Banach A-algebra, |Tα
A | a method of absolute summability for

X , defined by a normal series-to-series matrix over A, the inverse matrix

of which has exactly α + 1 non-zero diagonals, and BA a method of

summability defined by an infinite matrix over A. The cases, where Tα
A is

a) a Riesz weighted means summability method over A and b) the product

of Riesz weighted means summability method PA and QA over A, are

considered as application.

1. Introduction

1.1. Let K be one of the fields R of real numbers or C of complex numbers,
A an associative (not necessarily commutative) Banach algebra over K (for
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short, a Banach algebra) with norm ‖ · ‖A and X a left Banach A-module, i.e.
a Banach space over K with norm ‖ · ‖X for which there has been defined a
bilinear map (the multiplication over A) (a, x) → ax from A × X into X such
that (cf. [6], p. 49, or [7], pp. 51 and 238)

1◦ a(bx) = (ab)x for each a, b ∈ A and x ∈ X;

2◦ ‖ax‖X ≤ ‖a‖A‖x‖X for each a ∈ A and each x ∈ X;

3◦ if A has the unit element eA, then eAx = x = xeA for each x ∈ X.

A left Banach A-module X is called a left Banach A-algebra if its un-
derlying Banach space is a Banach algebra (see [1], p. 238, or [2]). In this
case

‖x1x2‖X ≤ ‖x1‖X‖x2‖X

for each x1, x2 ∈ X and aeX = eXa for each a ∈ A if X has the unit element
eX .

1.2. Let N0 = {0, 1, . . .}, A a Banach algebra, X a left Banach A-module,
x = (xn), where xn ∈ X for each n ∈ N0,

c(X) := {x : ∃ lim
n→∞xn ∈ X}

and

l(X) :=

{
x :

∞∑
n=0

‖xn‖X < ∞
}

.

The addition and the multiplication over K in l(X) we define coordinate-
wise, the multiplication over A by ax = (axn) for each a ∈ A and each x ∈ l(X)
and the norm ‖x‖l(X) of x ∈ l(X) by

‖x‖l(X) =
∞∑

n=0

‖xn‖X .

Then
‖ax‖l(X) ≤ ‖a‖A‖x‖l(X)

for each a ∈ A and each x ∈ l(X). Taking this into account, we obtain that
l(X) is a left Banach A-module.

1.3. Let A be a Banach algebra with unit element eA and (ank) a normal
matrix over A that is, an infinite matrix over A for which ank = θA (the null
element in A) if k > n for each k, n ∈ N0 and ann is invertible in A for each
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n ∈ N0. Hence every normal matrix over A has the inverse matrix (ξnk) such
that

n∑
k=ν

anνξνk = δnk,

where

δnk =

{
eA if k = n,

θA if k �= n

for each k, n ∈ N0.

1.4. Let A be a Banach algebra, X a left Banach A-module, (τnk) an
infinite matrix over A, which defines a matrix transformation

(1) Tnx =
∞∑

k=0

τnkxk

of a series
∑
k

xk (with terms xk from X) to a sequence (Tnx), and (τnk) is an

infinite matrix over A, which defines a matrix transformation

(2) Tnx =
∞∑

k=0

τnkxk

of a series
∑
k

xk to a series
∑
n

Tnx. We shall say that a normal series-to-series

matrix (τnk) over A is a Tα
A–matrix if the inverse matrix (ηnk) of (τnk), given

by (2), has exactly α + 1 (α is a nonnegative integer) non-zero diagonals that
is, ηnk = θA for n < k and n > k + α. The inverse matrix (ηnk) of the
corresponding series-to-sequence matrix (τnk) has then α+2 nonzero diagonals
because ηnk = ηnk − ηn,k+1 for each n, k ∈ N0 with k ≥ n (see [5], p. 56,
formula (9.7)).

A series
∑
k

xk is called to be

a) summable by the method TA, defined by a matrix (τnk) over A (for short,
TA-summable) if (Tnx) ∈ c(X) and

b) absolutely summable by the method TA, defined by a matrix (τnk) over
A, (for short |TA|-summable) if (Tnx) ∈ l(X).

Let ε = (εn), where εn ∈ A for each N0. If BA is a method of summability
over A, then the sequence ε is called to be a summability factor of
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a) (|Tα
A |, BA)-type for X (for short, ε ∈ (|Tα

A |, BA)) if the series
∑
k

εkxk is

BA-summable for each |TA|-summable series
∑
k

xk in X and

b) (|Tα
A |, |BA|)-type for X (for short, ε ∈ (|Tα

A |, |BA|)) if the series
∑
k

εkxk

is |BA|-summable for each |TA|-summable series
∑
k

xk in X (see [3], p. 147).

In [3] have been proved the following generalizations of a classical Knopp-
Lorentz theorem (see [8], p. 12, or [5], p. 34) and Hahn theorem (see [5], p.
25):

Proposition 1. Let A be a Banach algebra, X a left Banach A-algebra
with unit element eX and (τnk) an infinite matrix over A. The matrix
transformation (2), defined by (τnk), maps l(X) into l(X) if and only if

(3)
∞∑

n=0

‖τnkeX‖X = O(1).

Proof. See [3], pp. 149–150.

Proposition 2. Let A be a Banach algebra, X a left Banach A-algebra
with unit eX and (τnk) an infinite matrix over A. The matrix transformation
(1), defined by (τnk), maps l(X) into c(X) if and only if

1) ‖τnkeX‖ = O(1);

2) (τnkeX) converges in X for each k ∈ N0.

Proof. See [3], pp. 151–152.

1.5. In the paper [3], Theorems 4 and 5, have been found the necessary
and sufficient conditions for elements εn of a Banach algebra A to be (|PA|, BA)-
factors and (|PA|, |BA|)-factors of summability for a left Banach A-algebra X,
where (see [3], pp. 147–148) PA denotes the Riesz weighted means summability
method over A (it is a T 1

A-method of summability) and BA is a described
summability method over A.

In the present paper we generalize these results giving the necessary and
sufficient conditions for elements εn of a Banach algebra A to be (|Tα

A |, BA)-
factors and (|Tα

A |, |BA|)-factors of summability for a left Banach A-algebra X in
case, when an integer a ≥ 1 and BA is a described summability method over A.
As an application, the (|PA|, BA)-factors, (|PA|, |BA|)-factors, (|QAPA|, BA)-
factors and (|QAPA|, |BA|)-factors of summability for a left Banach A-algebra
X are described in case when the matrix method BA satisfies other conditions
than in [3].
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2. Main result

Before to describe the main result of this paper we give the necessary
notations. For a given unital Banach algebra A method Tα

A of summability,
defined by the matrix (τnk) over A, and a sequence ε := (εn) in A let

Dn = sup
k

‖τn+k,n+kηn+k,k‖A,

Kεn =
n+α∑
k=n

n+α∑
ν=k

ενηνk,

where (ηnk) is the inverse matrix of (τnk).

If (ηnk) is the inverse matrix of (τnk) over A and (ηnk) is the corresponding
matrix (on the series to series form), then elements of these matrices are
connected by

(4) ηnk =
n∑

ν=k

ηnν

(see [5], formula (9.6)) for each n ≥ k. By means of (4) we obtain

(5) Kεn =
n+α∑
ν=n

ενηνn.

Proposition 3. Let α be a nonnegative integer, A a unital Banach algebra
and X a left Banach A-algebra with unit element eX . Let |Tα

A | be a series-to-
series method of summability, defined by a Tα

A -matrix (τnk), and BA a series-
to-sequence method of summability defined by a matrix (βnk) over A. Let βnk =
= βnk − βn−1,k. Then we have

a) If (βnk) satisfies the condition

(6) lim
n→∞βnk = eA

and elements εk of A are (|Tα
A |, BA)-factors for X, then

(7) ‖βnnεnτ−1
nn eX‖X = O(1)
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and

(8) ‖(Kεn)eX‖X = O(1).

If, in addition |Tα
A | preserves the absolute convergence1, then also

(9) ‖εneX‖X = O(1).

b) If Dn is finite for each n ∈ {0, 1, . . . , α+1} and BA is a normal method
of summability which satisfies the conditions (6),

(10)
∞∑

n=ν

‖(Δβnν)β−1
νν ‖A = O(1),

(11) ‖βkkβ−1
k+1,k+1‖A = O(1)

and

(12)
∞∑

n=k

‖βnk‖A = O(1),

then the elements εk of A are (|Tα
A |, |BA|)-factors for X if conditions (7) and

(8) hold.

Proof. a) Since every Tα
A -matrix is normal, there exists the inverse

transformation

(13) xk =
k∑

ν=0

ηkνT νx

of (2). Therefore,

Bn(εx) :=
n∑

ν=0

βnνενxν =
n∑

ν=0

βnνεv

ν∑
k=0

ηvkT kx =
n∑

k=0

(
n∑

v=k

βnvεvηvk

)
T kx

or

Bn(εx) =
n∑

k=0

γnkT kx,

1 That is, every sequence x ∈ l(X) is |Tα
A |-summable.
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where

γnk =
k+α∑
ν=k

βnνενηνk

for k ≤ n because ηnk = θA if n > k + α. The matrix (γnk) transforms
(Tnx) ∈ l(X) into (Bn(εx)) ∈ c(X) if and only if

(14) ‖γnkeX‖X = O(1)

and there exists

(15) lim
n→∞ γnkeX = γk

in X for each k ∈ N0 by Proposition 2. Hence,

‖βkkεkηkkeX‖X = ‖γkkeX‖X = O(1),

from which follows the condition (7) because ηkk = τ−1
kk for each k ∈ N0 (see

[5], p. 57).

Since γk = (Kεk)eX by the condition (6) in view of (5), then the condition
(8) holds. In the particular case, when |Tα

A | preserves absolute convergence in
X, then holds also (9) by Lemma 1 from [3], p. 152.

b) Let the elements εn ∈ A satisfy the conditions (7) and (8). To show
that ε ∈ (|Tα

A |, |BA|), we have to show that the series
∑
n

εnxn is |BA|-summable

for each |Tα
A |-summable series

∑
n

xn in X. For it we assume that
∑
n

xn is a

|Tα
A |-summable series in X. Since every Tα

A -matrix is normal, there exists the
inverse transformation (13) of (2). Then

Bn(εx) :=
n∑

ν=0

βnνενxν =
n∑

ν=0

βnνεv

ν∑
k=0

ηvkT kx =
n∑

k=0

(
n∑

v=k

βnvεvηvk

)
T kx

or

Bn(εx) =
n∑

k=0

γnkT kx,

where

γnk =
n∑

ν=k

βnνενηνk =
k+α∑
ν=k

βnνενηνk
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for k ≥ n because again ηnk = θA if n > k + α. The matrix (γnk) transforms
(Tnx) ∈ l(X) into (Bn(εx)) ∈ l(X) if and only if

(16)
∞∑

n=k

‖γnkeX‖X = O(1)

by Proposition 1.
By partial summation we have

γnk = βn,n+1

n∑
ν=k

ενηνk +
n∑

ν=k

Δβnν

ν∑
l=k

εlηlk =
n∑

ν=k

Δβnν

(
k+α∑
l=k

−
k+α∑

l=ν+1

)
εlηlk.

Since βn,n+1 = 0, then

γnk =

(
n∑

ν=k

Δβnν

)
Kεk − λnk = βnkKεk − λnk

by (5), where

λnk =
n∑

ν=k

Δβnν

k+α∑
l=ν+1

εlηlk.

We show first that

(17)
∞∑

n=k

‖λnkeX‖ = O(1).

Indeed,

∞∑
n=k

‖λnkeX‖X =
∞∑

n=k

∥∥∥∥∥
n∑

ν=k

(Δβnν)β−1
νν βνν

k+α∑
l=ν+1

εlηlkeX

∥∥∥∥∥
X

≤

≤
∞∑

n=k

n∑
ν=k

∥∥(Δβnν)β−1
νν

∥∥
A

∥∥∥∥∥βνν

k+α∑
l=ν+1

εlηlkeX

∥∥∥∥∥
X

=

=
∞∑

ν=k

∥∥∥∥∥βνν

k+α∑
l=ν+1

εlηlkeX

∥∥∥∥∥
X

∞∑
n=ν

∥∥(Δβnν)β−1
νν

∥∥
A

=

= O(1)
∞∑

ν=k

∥∥∥∥∥βνν

k+α∑
l=ν+1

εlηlkeX

∥∥∥∥∥
X
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by the assumption (10). Since the method BA defined by (βnk) satisfies the
condition (11), there is a number M > 1 (which does not depend on k) such
that ‖βkkβ−1

k+1k+1‖A ≤ M for each k ∈ N. Therefore

(18)
l∑

ν=k

‖βvvβ−1
ll ‖A ≤

l−k∑
r=0

Mr ≤ (l − k + 1)M l−k

for each k ≤ l ≤ k + a. Taking this into account, we have

∞∑
n=k

‖λnkeX‖X = O(1)
∞∑

ν=k

∥∥∥∥∥βνν

k+α∑
l=ν+1

β−1
ll (βllεlτ

−1
ll )(τllηlk)eX

∥∥∥∥∥
X

=

= O(1)
∞∑

ν=k

k+α∑
l=ν

‖βννβ−1
ll ‖A ‖βllεlτ

−1
ll eX‖X ‖τllηlkeX‖X =

= O(1)
k+α∑
l=k

‖βllεlτ
−1
ll eX‖X ‖τll

l∑
s=k

ηlseX‖X

l∑
ν=k

‖βννβ−1
ll ‖A =

= O(1)
k+α∑
l=k

‖βllεlτ
−1
ll eX‖X

l∑
s=k

‖τllηlseX‖X

by (4) and (18). Now, by the condition (7), we have

∞∑
n=k

‖λnkeX‖X = O(1)
k+α∑
s=k

k+α∑
l=s

‖τllηls‖A = O(1)
k+α∑
s=k

k+α−s∑
l=0

‖τl+s,l+sηl+s,s‖A =

= O(1)
k+α∑
s=k

k+α−s∑
l=0

Dl = O(1)
α∑

l=0

(α + 1 − l)Dl = O(1)

because D0, D1, . . . , Dα−1 and Dα are finite.
Next we show that

(19)
∞∑

n=k

‖βnk(Kεk)eX‖X = O(1).

Since BA satisfies the condition (12), then by the condition (8) we have

∞∑
n=k

‖βnk(Kεk)eX‖X ≤
∞∑

n=k

‖βnk‖A‖(Kεk)eX‖X = O(1)
∞∑

n=k

‖βnk‖A = O(1).
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Hence,

∞∑
n=k

‖γnkeX‖X ≤
∞∑

n=k

‖βnk(Kεk)eX‖X +
∞∑

n=k

‖λnkeX‖X = O(1)

by (16) and (17). Consequently, εn are (|Tα
A |, |BA|)-factors.

Theorem 1. Let α be a nonnegative integer, A a unital Banach algebra, X
a left Banach A-algebra with unit element eX , |Tα

A | a series-to-series method
of summability, defined by a Tα

A -matrix (τnk) over A, and BA a method of
summability defined by a matrix (βnk) over A. If (βnk) satisfies the conditions
(6), (10), (11) and (12) and Dn is finite for each n ∈ {0, 1, . . . , α}, then
elements εn of A are (|Tα

A |, BA)-factors and (|Tα
A |, |BA|)-factors of summability

for X if and only if the conditions (7) and (8) hold.

Proof. Since BA ⊃ |BA| (that is, every |BA|-summable series is also BA-
summable), then conditions, necessary for (|Tα

A |, BA)-factors of summability
for X, are necessary for (|Tα

A |, |BA|)-factors of summability for X also and
conditions, sufficient for (|Tα

A |, |BA|)-factors of summability for X, are sufficient
for (|Tα

A |, BA)-factors of summability for X also. Therefore, Theorem 1 holds
by Proposition 3.

In particular case, when A = R or A = C, Theorem 1 has been proved in
[4], Theorem 3, and when TA is the Riesz weighted means summability method
over Banach algebra A, the Theorem 1 is proved in [3], Theorems 3 and 5.

Corollary 1. Let α be a nonnegative integer, A a unital Banach algebra,
|Tα

A | a series-to-series method of summability, defined by a Tα
A -matrix (τnk)

over A, and BA a method of summability defined by a matrix (βnk) over A.
If Dn is finite for each n ∈ {0, 1, . . . , α} and (βnk) is normal and satisfies the
conditions (6), (10), (11) and (12), then elements εk of A are (|Tα

A |, BA)-factors
and (|Tα

A |, |BA|)-factors for A if and only if

‖βnnεnτ−1
nn ‖A = O(1)

and
‖Kεn‖A = O(1).
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3. Applications to the Riesz weighted means summability method
over Banach algebras

1. Let A be a Banach algebra with unit element eA and (pn) be such a
sequence of elements of A for which

Pn = p0 + . . . + pn

is invertible in A for each n ∈ N0. The Riesz weighted means summability
method PA (which transforms a series to sequence) is defined by the matrix
(τnk), where

τnk =

⎧⎨⎩ eA − P−1
n Pk−1 if k ≤ n,

θA if k > n,

and the Riesz weighted means summability method |PA| (which transforms a
series to a series) is defined by the matrix (τnk), where

τnk = P−1
n−1pnP−1

n Pk−1

for each k, n ∈ N0 with k ≤ n (see [3], p. 147–148). Moreover, if all elements
pn are also invertible in A, then we can speak about the inverse matrix (ηnk)
of (τnk), where

ηnk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
p−1

n Pn if k = n,

−p−1
n−1Pn−2 if k = n − 1,

θA if k < n − 1 or k > n

for each k, n ∈ N0. Taking this and the equality ηnk = ηnk − ηn,k+1 into
account, we see that elements of the inverse matrix (ηnk) of (τnk) have the
form

ηnk =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

p−1
n Pn if k = n,

−(p−1
n−1 + p−1

n )Pn−1 if k = n − 1,

−p−1
n−1Pn−2 if k = n − 2,

θA if k < n − 2 or k > n
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for each n, k ∈ N0. Therefore, in the present case

D0 = sup
k

‖τkkηkk‖A = sup
k

‖(eA − P−1
k Pk−1)p−1

k Pk‖A =

= sup
k

‖P−1
k (Pk − Pk−1)p−1

k Pk‖A = sup
k

‖P−1
k pkp−1

k Pk‖A = 1,

D1 = sup
k

‖τk+1,k+1ηk+1,k‖A = sup
k

‖(eA − P−1
k+1Pk)[−(p−1

k + p−1
k+1)Pk]‖A =

= sup
k

‖P−1
k+1(Pk+1 − Pk)[(p−1

k + p−1
k+1)Pk]‖A =

= sup
k

‖P−1
k+1pk+1(p−1

k + p−1
k+1)Pk)‖A =

= sup
k

‖P−1
k+1pk+1p

−1
k Pk + P−1

k+1Pk)‖A ≤

≤ sup
k

‖P−1
k+1pk+1p

−1
k Pk‖A + 1 + sup

k
‖P−1

k+1pk+1‖A,

D2 = sup
k

‖τk+2,k+2ηk+2,k‖A = sup
k

‖P−1
k+2pk+2p

−1
k+1Pk‖A ≤

≤ sup
k

‖P−1
k+2pk+2p

−1
k+1Pk+1‖A

(
1 + sup

k
‖P−1

k+1pk+1‖A

)
and if n ≥ 3 then Dn = 0. Hence, if

(20) ‖P−1
n pn‖A = O(1)

and

(21) ‖P−1
n+1pn+1p

−1
n Pn‖A = O(1),

then D1 and D2 are finite. Moreover,

(22) Kεn =
n+1∑
ν=n

ενηνn = εnp−1
n Pn − εn+1p

−1
n Pn−1 = (Δεn)p−1

n Pn + εn+1.

Taking this into account, we have

Theorem 2. Let A be a unital Banach algebra, (pn) a sequence in A
such that pn and Pn are invertible in A for each n ∈ N0 and X a left Banach
A-algebra with unit element eX . Let PA the Riesz weighted means summability
method over A. Let BA be a method of summability defined by a matrix (βnk)
over A. If conditions (20), (21) and

(23)
∞∑

n=k

‖P−1
n−1pnP−1

n Pk−1‖A = O(1)
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have been satisfied and BA is normal and satisfies conditions (6), (10), (11)
and (12), then elements εk of A are (|PA|, BA)-factors and (|PA|, |BA|)-factors
of summability for X if and only if hold (9),

(24) ‖βnnεnP−1
n pneX‖X = O(1)

and

(25) ‖(Δεn)p−1
n PneX‖X = O(1).

Remark 1. By Proposition 1 the method BA (resp. PA) preserves the
absolute convergence if and only if (12) (resp. (23)) is satisfied.

Proof of Theorem 2. If ε ∈ (|PA|, BA) and ε ∈ (|PA|, |BA|), then
condition (9) holds by Proposition 3 (because |PA| preserves the absolute
convergence by Proposition 1) and

(26) ‖(Δεn)p−1
n PneX + εn+1eX‖X = O(1)

hold by Theorem 1 and the equality (22). Since

‖(Δεn)p−1
n PneX‖X ≤ ‖(Δεn)p−1

n PneX + εn+1eX‖X + ‖εn+1eX‖X ,

the condition (25) holds by (9) and (26).
Let now the elements εn of A satisfy the conditions (9), (24) and (25).

Then the condition (7) of Theorem 1 holds. Since

‖(Kεn)eX‖X ≤ ‖(Δεn)p−1
n PneX‖X + ‖εn+1eX‖X

by the equality (22), the condition (8) of Theorem 1 holds by the conditions
(9) and (25). Consequently, the elements ε ∈ (|PA|, BA) and ε ∈ (|PA|, |BA|)
by Theorem 1.

Corollary 2. Let A be a unital Banach algebra, (pn) a sequence in A such
that pn and Pn are invertible in A for each n ∈ N0. Let PA be the Riesz weighted
means summability method over A and BA a method of summability, defined by
a matrix (βnk) over A. If the conditions (20), (21) and (23) have been satisfied
and (βnk) is a normal matrix which satisfies the conditions (6), (10), (11) and
(12), then elements εk of A are (|PA|, BA)-factors and (|PA|, |BA|)-factors of
summability for A if and only if

(27) ‖εn‖A = O(1),



40 Mati Abel and Simson Baron

(28) ‖βnnεnP−1
n pn‖A = O(1)

and

(29) ‖(Δεn)p−1
n Pn‖A = O(1).

2. Let A be a Banach algebra with unit element eA. Let (pn) and (qn) be
two sequences of elements of A for which

Pn = p0 + . . . + pn and Qn = q0 + . . . + qn

are invertible in A for each n ∈ N0. The method (QP )A of summability over
A (which first transforms the sequence x = (xn) to the sequence y = (yn)
and then the sequence (yn) to the sequence (zn)) we define by the matrix
transformations

(30) zn =
n∑

k=0

tnkxk,

where

tnk =

⎧⎪⎨⎪⎩Q−1
n

(
n∑

i=k

qiP
−1
i

)
pk if k ≤ n,

θA if k > n.

Then (by the formula (8.5) from [5], p. 51) elements of the corresponding ma-
trix (τnk) of this method of summability (which transforms series to sequence)
has the form

τnk =

⎧⎨⎩Q−1
n

n∑
i=k

qi(eA − P−1
i Pk−1) if k ≤ n,

θA if k > n,

and the summability method |(QP )A| (which transforms a series to a series)
we define by the matrix (τnk), where2

τnk =

⎧⎪⎨⎪⎩Q−1
n−1qnQ−1

n Qk−1 − Δ
(

Q−1
n

n∑
i=k

qiP
−1
i Pk−1

)
if k ≤ n,

θA if k > n,

2 Here and later on Δank = ank − an−1,k, where ank ∈ A for each k, n ∈ N,
and Δan = an − an−1, where an ∈ A for each n ∈ N.
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because τnk = Δτnk for each n, k ∈ N0 (see [5], p. 50, formula (8.2)).

Transforming the equation (30), we have

Δ(Qnzn) = Δ

[
n∑

k=0

qkP−1
k

(
k∑

i=0

pixi

)]
= qnP−1

n

(
n∑

i=0

pixi

)

and
Δ
(
Pnq−1

n Δ(Qnzn)
)

= pnxn.

Therefore

xn = p−1
n

[
Pnq−1

n Δ(Qnzn) − Pn−1q
−1
n−1Δ(Qn−1zn−1)

]
=

= p−1
n

[
Pnq−1

n (Qnzn − Qn−1zn−1) − Pn−1q
−1
n−1(Qn−1zn−1 − Qn−2zn−2)

]
=

=
[
p−1

n Pnq−1
n Qn

]
zn −

[
p−1

n Pnq−1
n Qn−1 + p−1

n Pn−1q
−1
n−1Qn−1

]
zn−1+

+
[
p−1

n Pn−1q
−1
n−1Qn−2

]
zn−2.

Hence, elements of the inverse matrix (ξnk) of (tnk) we

ξnk =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

p−1
n Pnq−1

n Qn if k = n,

−
[
p−1

n Pnq−1
n Qn−1 + p−1

n Pn−1q
−1
n−1Qn−1

]
if k = n − 1,

p−1
n Pn−1q

−1
n−1Qn−2 if k = n − 2,

θA if k < n − 1 or k > n.

For finding ηnk, we calculate
Δxn =

=
[
p−1

n Pnq−1
n Qn

]
zn−

−
[
p−1

n Pnq−1
n Qn−1 + p−1

n Pn−1q
−1
n−1Qn−1 + p−1

n−1Pn−1q
−1
n−1Qn−1

]
zn−1+

+
[
p−1

n Pn−1q
−1
n−1Qn−2 + p−1

n−1Pn−2q
−1
n−2Qn−2 + p−1

n−1Pn−1q
−1
n−1Qn−2

]
zn−2−

−
[
p−1

n−1Pn−2q
−1
n−2Qn−3

]
zn−3.
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Consequently, the elements of the inverse matrix (ηnk) of (τnk) are

ηnk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p−1
n Pnq−1

n Qn if k = n,

−
[
p−1

n Pnq−1
n Qn−1 + p−1

n Pn−1q
−1
n−1Qn−1+

+ p−1
n−1Pn−1q

−1
n−1Qn−1

]
if k = n − 1,

p−1
n Pn−1q

−1
n−1Qn−2 + p−1

n−1Pn−1q
−1
n−1Qn−2+

+p−1
n−1Pn−2q

−1
n−2Qn−2 if k = n − 2,

−p−1
n−1Pn−2q

−1
n−2Qn−3 if k = n − 3,

θA if k < n − 3 or k > n.

Now by (4) we have that

ηnn = p−1
n Pnq−1

n Qn,

ηn,n−1 =

=
(
p−1

n Pnq−1
n Qn − p−1

n Pnq−1
n Qn−1

)
−

−
(
p−1

n Pn−1q
−1
n−1Qn−1 + p−1

n−1Pn−1q
−1
n−1Qn−1

)
=

= p−1
n Pn −

(
p−1

n Pnq−1
n−1Qn−1 − q−1

n−1Qn−1 + p−1
n−1Pn−1q

−1
n−1Qn−1

)
=

= p−1
n Pn

(
eA − q−1

n−1Qn−1

)
+
(
eA − p−1

n−1Pn−1

)
q−1
n−1Qn−1 =

= −p−1
n Pnq−1

n−1Qn−2 − p−1
n−1Pn−2q

−1
n−1Qn−1,

ηn,n−2 =

=
[
−p−1

n (Pn−1 + pn)q−1
n−1Qn−2

]
+
[
−p−1

n−1Pn−2q
−1
n−1Qn−2 − qn−1+

+p−1
n−1(Pn−2 + pN−1)q−1

n−1Qn−2

]
+ p−1

n−1Pn−2q
−1
n−2Qn−2 =

= −q−1
n−1Qn−2 − p−1

n−1Pn−2 + q−1
n−1Qn−2 + p−1

n−1Pn−2q
−1
n−2Qn−2 =

= p−1
n−1Pn−2(q−1

n−2Qn−2 − eA) = p−1
n−1Pn−2q

−1
n−2Qn−3

and ηn,n−2 = θA for each k ≤ n − 3. Then (QP )A is a T 2
A-matrix.

Hence,

Kεn =
n+2∑
ν=n

ενηνn =
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= εnp−1
n Pnq−1

n Qn − εn+1[p−1
n+1Pnq−1

n Qn + q−1
n (Qn − qn) − p−1

n+1Pn+

+ p−1
n Pnq−1

n Qn − q−1
n Qn] + εn+2[p−1

n+1Pnq−1
n Qn − p−1

n+1Pn] =

= (Δεn)p−1
n Pnq−1

n Qn − (Δεn+1)p−1
n+1Pnq−1

n Qn + (Δεn+1)(p−1
n+1Pn+1 − eA)+

+ εn+1 =

= Δ(Δεnp−1
n )Pnq−1

n Qn + (Δεn+1)p−1
n+1Pn+1 + εn+2.

To find D1, D2 and D3, we calculate

τk+1,k+1ηk+1,k =

= Q−1
k+1qk+1P

−1
k+1pk+1

[
p−1

k+1Pk+1q
−1
k+1Qk + p−1

k+1Pkq−1
k Qk + p−1

k Pkq−1
k Qk

]
=

= −Q−1
k+1(Qk+1 − qk+1) − Q−1

k+1qk+1P
−1
k+1(Pk+1 − pk+1)q−1

k Qk−
− Q−1

k+1qk+1P
−1
k+1pk+1p

−1
k Pkq−1

k Qk =

= −eA + Q−1
k+1qk+1 + Q−1

k+1qk+1q
−1
k Qk + Q−1

k+1qk+1P
−1
k+1pk+1q

−1
k Qk−

− Q−1
k+1qk+1P

−1
k+1pk+1p

−1
k Pkq−1

k Qk,

τk+2,k+2ηk+2,k =

= Q−1
k+2qk+2P

−1
k+2pk+2

[
p−1

k+2Pk+1q
−1
k+1Qk + p−1

k+1Pk+1q
−1
k+1Qk+

+p−1
k+1Pkq−1

k Qk

]
=

= Q−1
k+2qk+2P

−1
k+2(Pk+2 − pk+2)q−1

k+1(Qk+1 − qk+1)+

+ Q−1
k+2qk+2P

−1
k+2pk+2p

−1
k+1Pk+1q

−1
q+1(Qk+1 − qk+1)+

+ Q−1
k+2qk+2P

−1
k+2pk+2p

−1
k+1(Pk+1 − pk+1)q−1

k Qk =

= Q−1
k+2qk+2q

−1
k+1Qk+1 − Q−1

k+2qk+2 − Q−1
k+2qk+2P

−1
k+2pk+2q

−1
k+1Qk+1+

+ (Q−1
k+2qk+2)(P−1

k+2pk+2) + Q−1
k+2qk+2P

−1
k+2pk+2p

−1
k+1Pk+1q

−1
k+1Qk+1−

− (Q−1
k+2qk+2)(P−1

k+2pk+2p
−1
k+1Pk+1)+

+ (Q−1
k+2qk+2P

−1
k+2pk+2p

−1
k+1Pk+1q

−1
k+1Qk+1)(Q−1

k+1qk+1q
−1
k Qk)−

− (Q−1
k+2qk+2P

−1
k+2pk+2q

−1
k+1Qk+1)(Q−1

k+1qk+1q
−1
k Qk)

and
τk+3,k+3ηk+3,k =

= −Q−1
k+3qk+3P

−1
k+3pk+3

[
p−1

k+2(Pk+2 − pk+2)q−1
k+1(Qk+1 − qk+1)

]
=

= −
(
Q−1

k+3qk+3P
−1
k+3pk+3p

−1
k+2Pk+2q

−1
k+2Qk+2

) (
Q−1

k+2qk+2q
−1
k+1Qk+1

)
+

+ (Q−1
k+3qk+3)(P−1

k+3pk+3p
−1
k+2Pk+2)+

+ Q−1
k+3qk+3P

−1
k+3pk+3Q

−1
k+2qk+2q

−1
k Qkq−1

k+1Qk+1 − (Q−1
k+3qk+3)(P−1

k+3pk+3).
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Therefore
‖τk+1,k+1ηk+1,k‖A ≤

≤ 1 + ‖Q−1
k+1qk+1‖A + ‖Q−1

k+1qk+1q
−1
k Qk‖A + ‖Q−1

k+1qk+1P
−1
k+1pk+1q

−1
k Qk‖A+

+ ‖Q−1
k+1qk+1P

−1
k+1pk+1q

−1
k p−1

k Pkq−1
k Qk‖A,

‖τk+2,k+2ηk+2,k‖A ≤

≤ ‖Q−1
k+2qk+2q

−1
k+1Qk+1‖A + ‖Q−1

k+2qk+2‖A+

+ ‖Q−1
k+2qk+2P

−1
k+2pk+2q

−1
k+1Qk+1‖A+

+ ‖Q−1
k+2qk+2‖A‖P−1

k+2pk+2‖A + ‖Q−1
k+2qk+2P

−1
k+2pk+2p

−1
k+1Pk+1q

−1
k+1Qk+1‖A+

+ ‖Q−1
k+2qk+2‖A‖P−1

k+2pk+2p
−1
k+1Pk+1)‖A+

+ ‖Q−1
k+2qk+2P

−1
k+2pk+2p

−1
k+1Pk+1q

−1
k+1Qk+1‖A‖Q−1

k+1qk+1q
−1
k Qk‖A+

+ ‖Q−1
k+2qk+2P

−1
k+2pk+2q

−1
k+1Qk+1‖A‖Q−1

k+1qk+1q
−1
k Qk‖A

and
‖τk+3,k+3ηk+3,k‖A ≤

≤ ‖Q−1
k+3qk+3P

−1
k+3pk+3p

−1
k+2Pk+2q

−1
k+2Qk+2‖A‖Q−1

k+2qk+2q
−1
k+1Qk+1‖A+

+ ‖Q−1
k+3qk+3‖A‖P−1

k+3pk+3p
−1
k+2Pk+2‖A+

+ ‖Q−1
k+3qk+3P

−1
k+3pk+3q

−1
k+2Qk+2‖A‖Q−1

k+2qk+2q
−1
k+1Qk+1‖A+

+ ‖Q−1
k+3qk+3‖A‖P−1

k+3pk+3‖A.

Hence
D1 ≤

≤1 + ‖Q−1
k+1qk+1‖A + ‖Q−1

k+1qk+1q
−1
k Qk‖A + ‖Q−1

k+1qk+1P
−1
k+1pk+1q

−1
k Qk‖A+

+ ‖Q−1
k+1qk+1P

−1
k+1pk+1p

−1
k Pkq−1

k Qk‖A,

D2 ≤

≤ ‖Q−1
k+2qk+2q

−1
k+1Qk+1‖A + ‖Q−1

k+2qk+2‖A+

+ ‖Q−1
k+2qk+2P

−1
k+2pk+2q

−1
k+1Qk+1‖A+

+ ‖Q−1
k+2qk+2‖A‖P−1

k+2pk+2‖A+

+ ‖Q−1
k+2qk+2P

−1
k+2pk+2p

−1
k+1Pk+1q

−1
k+1Qk+1‖A+

+ ‖Q−1
k+2qk+2‖A‖P−1

k+2pk+2p
−1
k+1Pk+1‖A+

+ ‖Q−1
k+2qk+2P

−1
k+2pk+2p

−1
k+1Pk+1q

−1
k+1Qk+1‖A‖Q−1

k+1qk+1q
−1
k Qk‖A+

+ ‖Q−1
k+2qk+2P

−1
k+2pk+2q

−1
k+1Qk+1‖A‖Q−1

k+1qk+1q
−1
k Qk‖A
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and

D3 ≤ ‖Q−1
k+3qk+3P

−1
k+3pk+3p

−1
k+2Pk+2q

−1
k+2Qk+2‖A ‖Q−1

k+2qk+2q
−1
k+1Qk+1‖A+

+ ‖Q−1
k+3qk+3‖A ‖P−1

k+3pk+3p
−1
k+2Pk+2‖A+

+ ‖Q−1
k+3qk+3P

−1
k+3pk+3q

−1
k+2Qk+2‖A ‖Q−1

k+2qk+2q
−1
k+1Qk+1‖A+

+ ‖Q−1
k+3qk+3‖A‖P−1

k+3pk+3‖A.

Consequently, Dk is finite for each k ≤ 3 if the methods PA and QA satisfy
the following conditions:

(31) ‖Q−1
n qn‖ = O(1),

(32) ‖Q−1
n+1qn+1q

−1
n Qn‖A = O(1),

(33) ‖Q−1
n+1qn+1P

−1
n+1pn+1q

−1
n Qn‖A = O(1)

and

(34) ‖Q−1
n+1qn+1P

−1
n+1pn+1p

−1
n Pnq−1

n Qn‖A = O(1).

In the particular case, when A is a commutative Banach algebra, then
conditions (33) and (34) are superfluous, because they hold by conditions (20),
(31) and (32). Taking this into account, we have

Theorem 3. Let A be a unital Banach algebra, (pn) and (qn) sequences
in A such that pn, qn, Pn and Qn are invertible in A for each n ∈ N0, X a left
Banach A-algebra with unit element eX . Let PA and QA two Riesz weighted
means summability methods over A such that |(QP )A| ⊃ |PA| and BA a method
of summability defined by a matrix (βnk) over A. If conditions (20), (21), (23),
(31)–(34),

(35)
∞∑

n=k

‖Q−1
n−1qnQ−1

n Qk−1‖A = O(1)

and

(36)
∞∑

n=k

∥∥∥∥∥Δ

(
Q−1

n

n∑
i=k

qiP
−1
i Pk−1

)∥∥∥∥∥
A

= O(1)
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have been satisfied (in case, when A is commutative, then (20), (21), (23), (31),
(32), (35) and (36)) and BA is normal and satisfies conditions (6), (10), (11)
and (12), then elements εk of A are (|(QP )A|, BA)-factors and (|(QP )A|, |BA|)-
factors of summability for X if and only if (9), (24), (25) and

(37) ‖Δ(Δεnp−1
n )Pnq−1

n QneX‖X = O(1)

have been satisfied.

Proof. If ε ∈ (|(QP )A|, BA) and ε ∈ (|(QP )A|, |BA|), then conditions
(8) and (9) hold by Proposition 3 because |(QP )A| preserves the absolute
convergence by (35) and (36) (see Proposition 1). Since every |PA|-summable
series in X is |QAPA|-summable also by |(QP )A| ⊃ |PA|, the method |PA|
preserves the absolute convergence by the condition (23) (see [3], Corollary 3),
then the condition (24) and (25) hold. Moreover,

‖Δ(Δεnp−1
n )Pnq−1

n QneX‖X ≤

≤ ‖(Kεn)eX‖X + ‖(Δεn+1)p−1
n+1Pn+1eX‖ + ‖εn+2eX‖.

Therefore, the condition (37) holds by conditions (8), (9) and (25).
Let now elements εn of A satisfy the conditions (9), (25) and (37). Since

‖(Kεn)eX‖X ≤‖Δ(Δεnp−1
n )Pnq−1

n QneX‖X + ‖(Δεn+1)p−1
n+1Pn+1eX‖X+

+ ‖εn+2eX‖X ,

then the condition (8) has been satisfied by (9), (25) and (37). Hence, we have
ε ∈ (|(QP )A|, BA) and ε ∈ (|(QP )A|, |BA|) by Theorem 1.

Corollary 3. Let A be a unital Banach algebra, (pn) and (qn) sequences
in A such that pn, qn, Pn and Qn are invertible in A for each n ∈ N0, PA and
QA two Riesz weighted means summability methods over A and BA a method
of summability defined by a matrix (βnk) over A. If conditions (20), (21), (23),
(31)–(34), (35) and (36) (in case, when A is commutative, then conditions
(20), (21), (23), (31), (32), (35) and (36)) have been satisfied and BA is normal
and satisfies conditions (6), (10), (11) and (12), then elements εk of A are
(|(QP )A|, BA)-factors and (|(QP )A|, |BA|)-factors of summability for X if and
only if (27), (28), (29) and

‖Δ(Δεnp−1
n )Pnq−1

n Qn‖A = O(1)

are fulfilled.
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Remark 2. In the particular case, when A is the field of real or complex
numbers, Corollary 2 (see [3], Corollary 6) and Corollary 3 (see [4], p. 177) are
known.

Remark 3. The condition (10) is satisfied, for example, for BA = QA, if
QA conserves the absolute convergence, that is iff (35) is satisfied.

Indeed, (Δβnν)β−1
νν = −Q−1

n−1qnQ−1
n qνQνq−1

ν = −Q−1
n−1qnQ−1

n Qν , and

∞∑
n=ν

‖(Δβnν)β−1
νν ‖A ≤ ‖eA‖A +

∞∑
n=ν+1

‖Q−1
n−1qnQ−1

n Qν‖A = O(1).
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