Annales Univ. Sci. Budapest., Sect. Comp. 33 (2010) 27-48

ABSOLUTE SUMMABILITY FACTORS
OVER BANACH ALGEBRAS

Mati Abel (Tartu, Estonia)

Simson Baron (Ramat Gan, Israel)

Dedicated to Professors Ferenc Moricz, Ferenc Schipp and Péter Simon
on their birthdays

Abstract. Let o be a nonnegative integer, A a unital Banach algebra,
X a unital Banach A-algebra, |T'§| a method of absolute summability for
X, defined by a normal series-to-series matrix over A, the inverse matrix
of which has exactly a + 1 non-zero diagonals, and B4 a method of
summability defined by an infinite matrix over A. The cases, where T is
a) a Riesz weighted means summability method over A and b) the product
of Riesz weighted means summability method P4 and Q4 over A, are
considered as application.

1. Introduction

1.1. Let K be one of the fields R of real numbers or C of complex numbers,
A an associative (not necessarily commutative) Banach algebra over K (for
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short, a Banach algebra) with norm || - ||4 and X a left Banach A-module, i.e.
a Banach space over K with norm || - || x for which there has been defined a
bilinear map (the multiplication over A) (a,2) — ax from A x X into X such
that (cf. [6], p. 49, or [7], pp. 51 and 238)

1° a(bz) = (ab)x for each a,b € A and z € X

2° |laz||x < |la]|allz|lx for each a € A and each = € X;

3° if A has the unit element e 4, then eqxz = x = xze4 for each x € X.

A left Banach A-module X is called a left Banach A-algebra if its un-
derlying Banach space is a Banach algebra (see [1], p. 238, or [2]). In this

case
[z1za|[x < llz1flx |22l x

for each z1,29 € X and aex = exa for each a € A if X has the unit element
€x.

1.2. Let Ng = {0,1,...}, A a Banach algebra, X a left Banach A-module,
z = (z,,), where z,, € X for each n € Ny,

o(X):={z:3 lim z, € X}

and
I(X) = {x : Z lznllx < oo} )
n=0

The addition and the multiplication over K in I(X) we define coordinate-
wise, the multiplication over A by ax = (ax,,) for each @ € A and each z € I(X)
and the norm ||z[[; x) of x € I(X) by

oo
2 llix) =D llznllx-
n=0

Then
llazllixy < llallallzllix)

for each a € A and each x € [(X). Taking this into account, we obtain that
[(X) is a left Banach A-module.

1.3. Let A be a Banach algebra with unit element e and (a,x) a normal
matriz over A that is, an infinite matrix over A for which a,; = 64 (the null
element in A) if k > n for each k,n € Ny and a,,, is invertible in A for each
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n € Ny. Hence every normal matrix over A has the inverse matrix (&,) such
that

n
E anuguk = 5nk:a
k=v

eq ifk=n,
5nk:{

9,4 ifk’;«én

where

for each k,n € Ng.

1.4. Let A be a Banach algebra, X a left Banach A-module, (7,,5) an
infinite matrix over A, which defines a matrix transformation

(]‘) Tnx = Z'rnkxk
k=0

of a series Y xj (with terms xj, from X) to a sequence (T,,x), and (T,x) is an
k
infinite matrix over A, which defines a matrix transformation

(2) Tn:v = Z?nkxk
k=0

of a series Y_ . to a series Y T,#. We shall say that a normal series-to-series
k n

matrix (Tn) over A is a TS —-matriz if the inverse matrix (7,,,) of (Tnk), given
by (2), has exactly @ + 1 (« is a nonnegative integer) non-zero diagonals that
is, T, = 64 for n < k and n > k + a. The inverse matrix (n,x) of the
corresponding series-to-sequence matrix (7,x) has then av+2 nonzero diagonals
because Nk = 7, — Mppe1 for each n,k € No with & > n (see [5], p. 56,
formula (9.7)).

A series Y xy, is called to be
k
a) summable by the method T4, defined by a matrix (7,,5) over A (for short,
T s-summable) if (T,z) € ¢(X) and

b) absolutely summable by the method T 4, defined by a matrix (7,) over
A, (for short |T4|-summable) if (T,,x) € I(X).

Let € = (e,,), where €, € A for each Ny. If By is a method of summability
over A, then the sequence ¢ is called to be a summability factor of
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a) (|T%], Ba)-type for X (for short, € € (|T'%], Ba)) if the series > epxy, is
k

Bj-summable for each |T4|-summable series ) zj in X and
k

b) (TS|, |Bal)-type for X (for short, € € (|T'%],|Bal)) if the series > ez
k

is |Ba|-summable for each |T4|-summable series Yz in X (see [3], p. 147).
k

In [3] have been proved the following generalizations of a classical Knopp-
Lorentz theorem (see [8], p. 12, or [5], p. 34) and Hahn theorem (see [5], p.
25):

Proposition 1. Let A be a Banach algebra, X a left Banach A-algebra
with unit element ex and (T,i) an infinite matriz over A. The matriz
transformation (2), defined by (Tnr), maps (X)) into I(X) if and only if

(3) > IFakexlix = O(1).
n=0

Proof. See [3], pp. 149-150.

Proposition 2. Let A be a Banach algebra, X a left Banach A-algebra
with unit ex and (T,x) an infinite matriz over A. The matriz transformation

(1), defined by (Tnr), maps I(X) into ¢(X) if and only if

1) [rmrex|l = O(1);
2) (Tarex) converges in X for each k € Np.
Proof. See [3], pp. 151-152.

1.5. In the paper [3], Theorems 4 and 5, have been found the necessary
and sufficient conditions for elements ¢,, of a Banach algebra A to be (|Pa|, Ba)-
factors and (|Pal, |Bal)-factors of summability for a left Banach A-algebra X,
where (see [3], pp. 147-148) P4 denotes the Riesz weighted means summability
method over A (it is a Tj-method of summability) and By is a described
summability method over A.

In the present paper we generalize these results giving the necessary and
sufficient conditions for elements ¢, of a Banach algebra A to be (|T%|, Ba)-
factors and (|T'%|, | Bal)-factors of summability for a left Banach A-algebra X in
case, when an integer a > 1 and By is a described summability method over A.
As an application, the (|Pa|, Ba)-factors, (|Pal,|Bal)-factors, (|QaPal, Ba)-
factors and (|QaPal,|Bal)-factors of summability for a left Banach A-algebra
X are described in case when the matrix method B4 satisfies other conditions
than in [3].
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2. Main result

Before to describe the main result of this paper we give the necessary
notations. For a given unital Banach algebra A method T} of summability,
defined by the matrix (7,;) over A, and a sequence € := (g,) in A let

D, = Sl;p 1Tt ket kTt k| A5

n+an+ao

Ken =Y ek,

k=n v=Ek
where (7,) is the inverse matrix of (7).

If (nnk) is the inverse matrix of (7,,) over A and (7,,;) is the corresponding
matrix (on the series to series form), then elements of these matrices are
connected by

n
(4) Nk = Z Nny
v=k

(see [5], formula (9.6)) for each n > k. By means of (4) we obtain

n+ao
(5) Ken =Y el

Proposition 3. Let a be a nonnegative integer, A a unital Banach algebra
and X a left Banach A-algebra with unit element ex. Let |T'| be a series-to-
series method of summability, defined by a TS -matriz (Tnk), and Ba a series-

to-sequence method of summability defined by a matriz (B.i) over A. Let B, =
= Bnk — PBn—1,k- Then we have

a) If (Buk) satisfies the condition
(6) lim B, =ea

n—oo

and elements i, of A are (|TS|, Ba)-factors for X, then

(7) |BrnenTan exllx = O(1)
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and
(8) [(Ken)ex|lx = O(1).
If, in addition |T$| preserves the absolute convergence®, then also

(9) lenex|lx = O(1).

b) If D,, is finite for eachn € {0,1,...,a+1} and B4 is a normal method
of summability which satisfies the conditions (6),

(10) Z 1(AB,)B 4 = O(1),

(11) Hﬂkkﬁ]g_-il,k-H”A - 0(1)

and

(12) > 1Baklla = 0(1),
n=~k

then the elements e, of A are (|T%],|Bal)-factors for X if conditions (7) and
(8) hold.

Proof. a) Since every T§-matrix is normal, there exists the inverse
transformation

k
(13) Tk = ZﬁkuTVx
v=0

of (2). Therefore,
) = Zﬁnugumu = Zﬁnugv Zﬁykax = Z (Z 5nv€vnuk> Tkx
v=0 v=0 k=0 k=0 \v=k

or

n
ex) = Z Yk T,
k=0

! That is, every sequence = € [(X) is |T¢|-summable.
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where
k+a
Tnk = Z BrveuTly
v=~k
for k& < n because 7,, = 04 if n > k + a. The matrix (y,5) transforms

(T,x) € I(X) into (B,(cx)) € ¢(X) if and only if
(14) [vnkex |l x = O(1)

and there exists
(15) Jim ynpex =
in X for each k € Ny by Proposition 2. Hence,
[ Brererminexllx = llvevex|lx = O(1),

from which follows the condition (7) because 7, = 7., for each k € Ny (see
[5], p. 57).

Since v, = (Keg)ex by the condition (6) in view of (5), then the condition
(8) holds. In the particular case, when |T'§| preserves absolute convergence in
X, then holds also (9) by Lemma 1 from [3], p. 152.

b) Let the elements ¢,, € A satisfy the conditions (7) and (8). To show
that e € (|T%|, |Bal), we have to show that the series > &,,x,, is | Ba|-summable

n

for each |T'¢|-summable series Yz, in X. For it we assume that > x, is a
n n

|T%|-summable series in X. Since every T'%-matrix is normal, there exists the
inverse transformation (13) of (2). Then

n n v n n
En(gx) = Zﬁny‘elﬁxu = Zﬁnu‘gv Zﬁvakx = Z (Z Bn'ugvn'uk> Tkx
v=0 v=0 k=0

k=0 \v=k
or

n
B,(ex) = Zinkfkm,
k=0

where
k4o

Z Bnl/e”ﬁuk
v=k

n
777,]{: = E ﬁnysvﬁuk =
v=k
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for k > n because again 7,,;, = 04 if n > k + . The matrix (7,,,) transforms
(T,x) € I(X) into (B, (ex)) € [(X) if and only if

(16) > Furexllx = 0(1)
n=k

by Proposition 1.
By partial summation we have

k4o k+a
Wnk n n+1 Z Ean/k + Z A/an Zelnlk - Z Aﬂnv (Z Z > 5:lﬁlk'
=k l=v+1
Since Bn,n-s-l =0, then
n B - - B
Wnk = (Z Aﬁnu) K‘gk - Ank = ﬁnkKSk - Ank
v=~k

by (5), where

k4o
Ak = Z AB,., Z EiMy-
l=v+1
We show first that
0 —
(17) > Rnkex|l = O(1).
n==k
Indeed,
n . k4o
ZH)\nk@XHX = Z > (BB B > alpex| <
n=~k |lv=k l=v+1 X
[e%) n B k4o
< Z Z ||(Aﬁ7w)ﬁ;}||A BVV Z 5lﬁlkeX =
n=kv=~k l=v+1 X
k+a oo .
= Z ﬁuu Z EiMpex Z ||(A5nu)ﬁu_ul||A =
I=v+1 x n=v
) k+a
:O(l)z Buv Z EimMpex
v=k l=v+1 X
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by the assumption (10). Since the method By defined by (8,x) satisfies the
condition (11), there is a number M > 1 (which does not depend on k) such
that ||ﬁkk5;;i1k+1||A < M for each k € N. Therefore

l —k
(18) S BBt la < Z (L =k +1)M!=*
v=~k r=0

for each k <1 < k + a. Taking this into account, we have

(%) k+a
Z Ankexllx = 0> 1B Y B BuerryH(ullex| =
v=k l=v+1 X
oo k+o
WD BBy M la 1Bz exllx Irumpexlx =
v=k l=v
k+a l 1
1) Z 1Buerm; texix I Y msexlx Y 18w By lla =
= s=k v=k
k4o

Z |1Bueimy texllx Z lrumsex |l x

by (4) and (18). Now, by the condition (7), we have

oo k+ak+ta k+a k+a—s
D Pakexlx =0 3> llrumslla = 0(1) Y Z
n=k s=k l=s s=k =0

k+ak+t+a—s

> Z Dy=0(1)) (a+1-1)D;=0(1)
s=k =0 1=0

because Dy, Dq,...,D,_1 and D, are finite.
Next we show that

(19) > IBu(Kep)ex|x = O(1).

n=k

Since B4 satisfies the condition (12), then by the condition (8) we have

Z 1B (Ker)ex|lx < Z 1Burllall(Ker)ex|x = O(1) Y [Burlla = O1).
n=~k

n=~k
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Hence,

D Fkexlix <3 Bu(Ker)ex|x + Y [Aurex|x = O(1)

n=~k n=~k n=k

by (16) and (17). Consequently, ¢, are (|T'%],|Bal)-factors.

Theorem 1. Let a be a nonnegative integer, A a unital Banach algebra, X
a left Banach A-algebra with unit element ex, |T%| a series-to-series method
of summability, defined by a TS -matriz (Tnr) over A, and By a method of
summability defined by a matriz (Bx) over A. If (Bnr) satisfies the conditions
(6), (10), (11) and (12) and D,, is finite for each n € {0,1,...,a}, then
elements e, of A are (TS|, Ba)-factors and (|T%],|Bal)-factors of summability
for X if and only if the conditions (7) and (8) hold.

Proof. Since B4 D |Ba| (that is, every |Ba|-summable series is also Ba-
summable), then conditions, necessary for (|T'¢|, Ba)-factors of summability
for X, are necessary for (|74, |Bal)-factors of summability for X also and
conditions, sufficient for (|T'Y|, |Bal)-factors of summability for X, are sufficient
for (|T'}|, Ba)-factors of summability for X also. Therefore, Theorem 1 holds
by Proposition 3.

In particular case, when A = R or A = C, Theorem 1 has been proved in
[4], Theorem 3, and when Ty is the Riesz weighted means summability method
over Banach algebra A, the Theorem 1 is proved in [3], Theorems 3 and 5.

Corollary 1. Let « be a nonnegative integer, A a unital Banach algebra,
TS| @ series-to-series method of summability, defined by a T%-matriz (Tpnk)
over A, and Ba a method of summability defined by a matriz (Bnr) over A.
If D, is finite for each n € {0,1,...,a} and (Bnk) is normal and satisfies the
conditions (6), (10), (11) and (12), then elements i, of A are (|TS|, Ba)-factors
and (|T'S|, |Bal)-factors for A if and only if

”ﬂnngnTrjanA - 0(1)

and
[Kenlla=0(1).
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3. Applications to the Riesz weighted means summability method
over Banach algebras

1. Let A be a Banach algebra with unit element e4 and (p,) be such a
sequence of elements of A for which

P,=po+...+pn

is invertible in A for each n € Ny. The Riesz weighted means summability
method P4 (which transforms a series to sequence) is defined by the matrix
(Tnk), where
eA — Pn_lpk_l if k< n,
Tnk =
04 if k > n,

and the Riesz weighted means summability method |P4| (which transforms a
series to a series) is defined by the matrix (7,x), where

= _ p-1 —1

Tnk = Pn_lpnPn Pk—l
for each k,n € Ny with & < n (see [3], p. 147-148). Moreover, if all elements

pr, are also invertible in A, then we can speak about the inverse matrix (7,,;)
of (Tni), where

P Pa if k =n,
ﬁnk = _p;llpn72 lf k’ =n — 1,
04 ifk<n—1lork>n

for each k,n € No. Taking this and the equality n.x = 7, — 7, 41 intO
account, we see that elements of the inverse matrix (1,x) of (7,x) have the

form
Pyt Py if k =n,

—(py P )Py ifk=n—1,
Tk =
—Ppi1Pas if k=mn—2,

04 fk<n—2ork>n
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for each n, k € Ny. Therefore, in the present case
Do = sup |[mernella = sup [[(ea — Py Peo1)py ' Pilla =
k k

= sup 1Py (Pe — Pre1)py, ' Pilla = Sup I1P¢  prpy, ' Pella = 1,

(ea — P Po)l=(pp " + 0t ) Pellla =

Dy =sup |
k
= sup 1Py (Pt — P)l(0 ' + Prgr) Pellla =
= sup || B} (Pe '+ Dit1) Br)lla =
= kp k+1PE+1\Dy, P )fe)llA =
= sup | Py prrapy, P+ Py Pr)lla <
< sup Pt pes1py  Pella + 1+ sup | Pt pia 4,
Dy = sup [ Tk+2,k+2mk42,6][ 4 = sup 1Py foprvopy iy Pella <

< sup 1Bl ypisapich Pl (1 +om ||P,;+11pk+1||A)

and if n > 3 then D,, = 0. Hence, if

(20) 1P, palla = O(1)
and
(21) 1Pyt pnsapy  Palla = O(1),

then D; and D, are finite. Moreover,

n+1
(22) Ké‘n = Z EVﬁyn = 5np:llpn - €n+1p;1Pn—l = (Asn)pglpn + en+1.

v=n
Taking this into account, we have

Theorem 2. Let A be a unital Banach algebra, (p,) a sequence in A
such that p, and P, are invertible in A for each n € Ny and X a left Banach
A-algebra with unit element ex. Let Py the Riesz weighted means summability
method over A. Let Ba be a method of summability defined by a matriz (Bnx)
over A. If conditions (20), (21) and

(23) ZH 2P Py Peci]la = 0(1)
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have been satisfied and B is normal and satisfies conditions (6), (10), (11)
and (12), then elements i, of A are (|Pal, Ba)-factors and (|Pa|, |Bal)-factors
of summability for X if and only if hold (9),

(24) 1Banen Py tpnexllx = O(1)
and
(25) H(Aé“n)PEanGXHX = O(l)

Remark 1. By Proposition 1 the method B, (resp. Pj4) preserves the
absolute convergence if and only if (12) (resp. (23)) is satisfied.

Proof of Theorem 2. If ¢ € (|Ps|,Ba) and € € (|Pal,|Bal), then
condition (9) holds by Proposition 3 (because |P4| preserves the absolute
convergence by Proposition 1) and

(26) 1(Aen)p, ' Prex + entiex]||x = O(1)

hold by Theorem 1 and the equality (22). Since

1(Aen)py " Prexllx < II(Aen)py ' Paex + ensiexx + lensiex|x,

the condition (25) holds by (9) and (26).

Let now the elements ¢, of A satisfy the conditions (9), (24) and (25).
Then the condition (7) of Theorem 1 holds. Since

I(Ken)exllx < 1(Aen)pn' Puexllx + llensiexllx

by the equality (22), the condition (8) of Theorem 1 holds by the conditions
(9) and (25). Consequently, the elements € € (|P4l|, Ba) and € € (|Pal,|Bal)
by Theorem 1.

Corollary 2. Let A be a unital Banach algebra, (p,) a sequence in A such
that p, and P, are invertible in A for eachn € Ny. Let P4 be the Riesz weighted
means summability method over A and B a method of summability, defined by
a matriz (Bnr) over A. If the conditions (20), (21) and (23) have been satisfied
and (Bnk) s a normal matriz which satisfies the conditions (6), (10), (11) and
(12), then elements e, of A are (|Pal, Ba)-factors and (|Pal,|Bal)-factors of
summability for A if and only if

(27) lenlla = O(1),
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(28) ||5nn5nprzlpn”f1 =0(1)
and
(29) ”(Aen)pglanA =0(1).

2. Let A be a Banach algebra with unit element e4. Let (p,,) and (g,,) be
two sequences of elements of A for which

are invertible in A for each n € Ny. The method (QP)4 of summability over
A (which first transforms the sequence x = (z,) to the sequence y = (yn)
and then the sequence (y,) to the sequence (z,)) we define by the matrix
transformations

(30) Zn = Ztnkxky
k=0

where
Q;l( qu{1> pr  ifk<n,
tnk = i=k
04 if k> n.

Then (by the formula (8.5) from [5], p. 51) elements of the corresponding ma-
trix (7% ) of this method of summability (which transforms series to sequence)
has the form
Qn' Y gilea— P 'Pey) ifk <n,
Tnk = i=k
04 if k> n,

and the summability method |(QP)a| (which transforms a series to a series)
we define by the matrix (7,), where?

n

Q110,07 Qi1 — A (Q;l > qu;IPk_1> if k <n,

Tnk = i=k

04 if k> n,

2 Here and later on Aany = anp — Gp—1k, Where ap;, € A for each k,n € N,
and Aa,, = a,, — 4,1, where a,, € A for each n € N.
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because Tp; = AT,y for each n, k € Ny (see [5], p. 50, formula (8.2)).

Transforming the equation (30), we have

n k
Z(ann) =A Z qkpk_l <2p1£1>‘| = qn P, (Z pz$z>
k=0 1=0
and -
A( nQn (ann)) = PnZn.
Therefore

n =D [Pty "A(Qnzn) — Poo16, 1 A(Qn-12n-1)] =
:P; [ ndn (ann Qn-12n-1) — Pn—lq,fil(Qn_lzn_l — Qn—22’n_2)} —
= [p;anq; Q"] Zn — [ ;1anr:1Qn—1 +p';1P"—1qgi1Qn—1} Zn1+
+ [pglpn—lqgilQn—Q] Zn—2-

Hence, elements of the inverse matrix (&,x) of (

tnk) we
Pt Pty Qn if k = n,
- [pT_Lanqrlenfl +p;1Pn71q;E1anl] ifk=n-— 1,
fnk =
pr_Lan—lq;ilQn—Q ifk=n-—2,

04 ifk<n-—1ork>n.

For finding n,,%, we calculate
Az, =
= [ _1Pn _1Qn] n—

[pnlpnqlen 1+ D, Pn—lqgllQn—l +p;11Pn—1q;11Qn—1] Zn—1t+

+[pn n—14y 1Qn 2+ D, 1Pn 2qp QQn 2+ D,_ 1Pn 19, 1Qn 2] Zp—2—
[pn 1Pn Qqn 2Qn 3] Zn—3-
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Consequently, the elements of the inverse matrix (n,5) of (7,x) are

Pn Pagy, ' Qn if k =n,
C—1p -1 1 1
[pn P’ﬂqn anl +pn P’nflqnlenfl—’_
+p;ilpn—lq;E1Qn—l] lfk:nfl,
— —1 —1 —1 —1
Tk = Pn Pnflqn—lQn72 +pn_1Pn71qn—1an2+
9,1 P20, 5Qns if k=n—2,
_py_Lian—2q;i2Qn—3 ifk=n-— 3,
04 ifk<n—3ork>n.

Now by (4) we have that
Mn = pﬁlanElQn,

Npn—1 =
= (Pn ' Pty 'Qn = 1y Paty ' Qn1) —

— (P Pr14;, 21 Qne1 + 05 P10, 1 Q) =
=, Py — (7 Prdyt1Qn-1— 4,1 Qne1 + 9y 1 Pao10, 1 Qn1) =
=p, ' P, (6A - Q;ilQn—l) + (€A *p;ilpnq) a1 Qno1 =
= = Pagy 1 Qn—2 — Pt Pa2a,t 1 Qut,

Mpn—2 =

= [Py (Pact + )@ 1 Qu—z] + [=Pp 1 Pao2¢y 1 Qn-2 — Gn_1+
9,1 (P2 + PN-1)25 1 Q2] + Pyt Pa—2), 5 Qn2 =
=—¢, 1 Qu-2 — P 1 Paca + 4,51 Qnz + 1y, L Pr2q, Lo Qo =
= Pt Pa2(4y20Qn—2 — €a) = P2 Pa2¢, 15Qn3

and 7j,, ,,_o = 04 for each k <n —3. Then (QP)4 is a T;-matrix.

Hence,
n+2

Ke, = Z Ellyn =
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= Snpy_Lan(L::LQ — En+41 [anann 1Qn + qn (Qn - Qn) p;ilpn'i‘
+pn1P7’bqn Q - qn 1Qn] + EnJrszn-‘ranqlen p';—i-lpn] =

(Agn)pnlpn 1Qn - (A5n+1)pn+1 ndp 1Qn (A5n+1)(p7:j—1pn+1 -

+ En4+1 =

= A(Aeppy ') Pogy ' Qn + (AEnJrl)p»;JlranJrl + Ent2-
To find Dy, Dy and D3, we calculate

Tk+1,k+1Mk+1,k =

ea)+

= Q1 @1 P okt [Prts Pes1Gu i1 Qe + D Pray ' Qr + vy, " Pray, ' Qi) =

= —Qit1(Qri1 — But1) — Q1@ 1 Pt (Prgr — Pra1)ay, ' Qu—
— Q1@ P prrapy,  Pray Qi =
=—ea+ Q;;ilqkﬂ + Q;ilqkﬂqk_le + Q;;ilqkﬂpk_jlpkﬂqk_le—
— Qi1 We+1 Pl pis vy Peay ' Qi
Tk+2,k+2Tk+2,k =
= Qrtatn+2Piiapire [Pt Prr1d Qr + Piotr Pont €y Qi t
Pt P Q] =

= Qi to@hr2Pris (Pt — Pra2) s 1 (Qra1 — Qoa1)+

+ Qut a2 P arsapi 1 Pros10y 1 (Qra1 — Qos1)+

+ Qi to@rr2 Pl oprsopity (Prs1 — 1) ay ' Qr =

—1 —1 —1 —1 -1 —1
= Qk+2qk‘+2qk+1Qk+1 - Qk+2qk+2 - Qk+QQk+2Pk+2pk+2qk+1Qk—o—lJF

—1 -1 -1 -1 -1 —1
+ (Qk+QQk+2)(Pk+2pk+2) + Qk+QQk+2Pk+2pk+2pk;+1Pk+1qk;+1Qk+1_

— (Qpt20k+2) (Pioprr2pi s Prr1)+

+ Qi toth+2 Py loprr2p b1 Po1 @1 Q1) (Qr by ahr1ay, ' Q) —

— (Qi Lo Th 2P oprr20 1 Qi) (Qr 1 Gk 414 ' Q)
and

Tk+3,k+3Mk+3,k =

— Qi sWer3Prlsrts [Prito(Prsz — Pra2)ps1 (Qra1 — Qo)) =
— (Qut3tu+3P5 sPr3Pr Lo Peto @2 Qur2) (Qrtoli+2Grt1Qri1) +
+ (Q/Z}.:,*QkJrS)(P];_;,_lgpk+3p1;igpk+2)+

+ Q];.:,l_g(]k+3pk_+13pk+3Q];_gl.QQk+2qk_1qulg__i1Qk+1 - (Q;Ziqu+3)(Pk_J:3Pk+3)~
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Therefore
(71 k1Mt klla <
<1+ ||Q};Jl1Qk+1||A + |\Q;Z+11Qk+1qk_1Qk||A + ||Q,§i1Qk+1P{f1pk+1q;1Qk||A+
+ |1Q k1 PPy, vy, Prdiy Qi ll 4

1Tkt k+2Mk+2,5] 4 <

< ||Q;§i2ka+2q;i1Qk+1\|A + ||Q;Zi2(Jk+2||A+
+ 11Qst 0@k +2 Priophr 20y Qi a+
1@ fodrr2llall Propresalla + Q5 toGhra Py apirobi s Pet 1@t Qe la+
Qi Lodn+2 ]l all Pyaprrapigy Prr1) | a+
1@ o trr2 P oPrt2Pi iy Pet 10 Quest | all Qi i1y, " Qrellat
H|Qrpothr2 Pl oPrrati s Qua |41 Qry 1 ak145 ' Qrella
and
1 Thot-3,k+3Mk+3,k]1 4 <
< Qi 3k 3P sPrr3Pr o Prroi toQnallallQrt 0@k r2ds Qua |l a+
+ 1@ 3@r+3ll Al Poispr+3pp 4 o Prralla+
+ ||Q;;i3Qk+3P;;f3pk+3q;i2Qk+2HA||Q;;i2%+2q;c_i1@k+1HA+
+ 1Qr i sarrsll all Pelsprrs| a-
Hence
D, <
<1+ Qi trarlla + Q53 gk +105  Qrlla + Q51 a1 Py Prs1dy, ' Qulla+
+ [|Qp b1 G+ 1 Py Prs1py,  Pray Q| a,
Dy <

<@tk 20 1 Qrtalla + | Qpfahralla+
+ |Qrt 2tk +2 Py oPr 420 1 Qg | a+
+ Qi Lagrr2ll all Pelopryall a+
+ 1@ 2 @rr2 Py oPr 2Pty Pot 101 @iy lla+
+ 1Qx s otn+2ll Al Peopiopy y P [ a+
+ HQ]:iQQk+2Pk:lr12pk+2pk_;i1Pk-’rlq;lek"rl ||AHQ];i1Qk+1qk_1QkHA+

+ [|Qpt oGk +2 Py oPrr2G 1 Qs | 4| Q1 T 14, Qi 4



Absolute summability factors over Banach algebras 45

and

D3 < |Qi5@r+3Py 5Pkt3Pk o Prtati 2 Quralla |Qrt 2k +2G 1 Qiar | a+
+ |Qpt3ak+3 14 | PrlsPrtspy o Prsall a+
+ ”Q}Z.:,l_g(]k+3pk_+13pk+3qk_i2Qk+2HA ||Q;;i2%+2q;i1@k+1 la+
+ 1Qr i s@rrsll all Pelsprrs] a-

Consequently, Dy, is finite for each k < 3 if the methods P4 and @ 4 satisfy
the following conditions:

(31) 1@, anll = O(1),

(32) 1@ t10n+14,  @nlla = O(1),

(33> ||Q;i1qn+1pr:-|}1pn+lq;1Qn||A = 0(1)
and

(34) Q41041 Py i pngapy, Pugy ' Qulla = O(1).

In the particular case, when A is a commutative Banach algebra, then
conditions (33) and (34) are superfluous, because they hold by conditions (20),
(31) and (32). Taking this into account, we have

Theorem 3. Let A be a unital Banach algebra, (p,) and (g,) sequences
in A such that p, qn, P, and Q,, are invertible in A for each n € Ny, X a left
Banach A-algebra with unit element ex. Let Py and Qa two Riesz weighted
means summability methods over A such that |(QP)a| D |Pa| and Ba a method
of summability defined by a matrix (Bur) over A. If conditions (20), (21), (23),
(31)-(34),

(35) D@0 14 @y Qi1lla = O(1)
n==k

oo

(36) >

n=~k

=0(1)
A

A (Q;l Z Qipilpk1>
i=k
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have been satisfied (in case, when A is commutative, then (20), (21), (23), (31),
(32), (35) and (36)) and Ba is normal and satisfies conditions (6), (10), (11)
and (12), then elements ey, of A are (|[(QP)al, Ba)-factors and (|(QP) |, |Bal)-
factors of summability for X if and only if (9), (24), (25) and

(37) IA(Aenpy ) Pady Quex | x = O(1)
have been satisfied.

Proof. If ¢ € (|[(QP)a|,B4) and € € (|(QP)al|,|Ba4l|), then conditions
(8) and (9) hold by Proposition 3 because |(QP)a| preserves the absolute
convergence by (35) and (36) (see Proposition 1). Since every |P4l|-summable
series in X is |QaPa|-summable also by [(QP)a| D |Pal, the method |P4]
preserves the absolute convergence by the condition (23) (see [3], Corollary 3),
then the condition (24) and (25) hold. Moreover,

‘lA(Agnp;I)PnQ;lQneX|‘X S

< |[(Ken)ex || x + 1(Aent1)ppts Porrex|l + llenszex]l.

Therefore, the condition (37) holds by conditions (8), (9) and (25).
Let now elements ¢, of A satisfy the conditions (9), (25) and (37). Since

[(Ken)ex|x <IA(Aenpy ") Pady ' Quexllx + [(Aen+1)py by Povrex | x+

+ ||€TL+26X ||Xa

then the condition (8) has been satisfied by (9), (25) and (37). Hence, we have
e € (|(QP)al],Ba) and € € (|(QP) al,|Bal) by Theorem 1.

Corollary 3. Let A be a unital Banach algebra, (p,) and (q,) sequences
i A such that py, qn, P, and Q, are invertible in A for each n € Ny, P4 and
Q4 two Riesz weighted means summability methods over A and B4 a method
of summability defined by a matriz (B.r) over A. If conditions (20), (21), (23),
(31)—(34), (35) and (36) (in case, when A is commutative, then conditions
(20), (21), (23), (31), (32), (35) and (36)) have been satisfied and By is normal
and satisfies conditions (6), (10), (11) and (12), then elements € of A are
((QP) al, Ba)-factors and (|(QP)al,|Bal)-factors of summability for X if and
only if (27), (28), (29) and

”A(A‘Enp;l)anngnHA =0(1)

are fulfilled.
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Remark 2. In the particular case, when A is the field of real or complex

numbers, Corollary 2 (see [3], Corollary 6) and Corollary 3 (see [4], p. 177) are
known.

Remark 3. The condition (10) is satisfied, for example, for By = Q 4, if

Q4 conserves the absolute convergence, that is iff (35) is satisfied.

[1]

Indeed, (Aﬁny) ;Vl - 7Q;i1an:qul/Quq;1 == 7Q7—Li1an7LlQ”’ a‘nd

D> ABL)B A < llealla+ Y 107 11axQ5 Qulla = O(D).
n=v n=v+1
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