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CLUSTERING-LEARNING MODEL
FOR REDUCING THE DELAY
IN TRAFFIC GROOMING OPTIMIZATION

Vo Viet Minh Nhat and Le Manh Thanh
(Hue, Vietnam)

Abstract. Hopfield networks have been suggested as a tool for the
optimization of traffic grooming. However, the optimization based on
neural networks normally requires a considerable delay to find an optimal
solution, which has limited practicability in optical data transport. This
paper proposes a solution to reduce this delay. That is a clustering-learning
model which (1) eliminates the arriving serving patterns that do not need
optimizing its grooming, (2) removes the services which do not participate
in the grooming optimization in an arriving service pattern, and (3) clusters
arriving service patterns into the groups in which the service patterns
belonging to each group have the same optimal grooming solution. For
the last case, the learning function of this model checks if an arriving
service pattern is similar to another optimized before: if one is found, the
corresponding optimal grooming solution is returned immediately. If not, an
optimization process is required to determine its optimal grooming solution.
This solution is "memorized” and reused for next arriving service patterns.

1. Introduction

Traffic grooming has attracted the attention of researchers in the area of
optical data transport with the aim of exploiting at maximum the potential
bandwidth capacity of optical fibers. It can be considered under different
approaches, such as the minimization of the number of used wavelengths,
equipped adding/dropping multiplexers, or/and required wavelength converters
[7, 6, 3, 5] which are formulated as integer linear functions and then minimized
using heuristic algorithms. In [8], traffic grooming is an optimization of the
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service-into-burst multiplexing and the service-between-burst switching, which
is presented in the form of a Hopfield energy function and optimized by
the principle "the minimal energy, the optimal solution” [2]. A limit of the
optimization based on neural networks normally is to require a considerable
delay to find an optimal solution, which is hard to be used in optical data
transport. However, a characteristic of these methods is that the optimization
process is done gradually basing on the principle "the longer the optimization
cycle is, the better the returned solution is”. So, if the limited delay is short,
a nearly-optimal solution can be returned for the current traffic grooming. As
shown in Figure 1, the Hopfield energy function never increases with time.
Assuming that the nearly-optimal solutions can be used from the time t;, we
can then stop the current optimization process at any time ¢, (. > tx) and the
corresponding returned solution is nearly-optimal. Of course, if t. < t;, the
optimization methods based on Hopfield networks cannot be used. '

In [8], we have proposed solutions to reduce the delay of traffic grooming
optimization based on Hopfield networks. That is a determination in advance
mathematically of the connection weights and the activation thresholds of the
Hopfield networks used for optimization.

Energy
. Acceptable solutions
Nearly-optimal

solution Optimal
‘ solution

Figure 1. A nearly-optimal grooming solution can be returned if the
permitted delay of traffic grooming is limited (¢, > tx)

Moreover, the chosen constraint weights and the improvements in algo-
rithms also help to minimize this delay. However, based on the simulation
results in (8], the traffic grooming optimization based on Hopfield networks is
only practical for the service patterns of small dimension (Figure 2). When this
dimension increases, the delay becomes too long to be practicable. This paper
proposes a more complete solution to reduce the delay of the traffic grooming
optimization based on Hopfield networks. That is a clustering-learning model
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which (1) eliminates the arriving service patterns that do not need to be
optimized its grooming, (2) removes the services which do not participate in the
grooming optimization in an arriving service pattern, and (3) clusters arriving
service patterns into groups in which the service patterns belonging to each
group have the same optimal grooming solution. For the last case, the learning
function of this model checks if an arriving service pattern is ”similar” to
another optimized before: if one is found, the corresponding optimal grooming
solution is returned immediately. If not, an optimization process is required
to determine its optimal grooming solution. This solution is "memorized” and
reused for next arriving service pattern.
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Figure 2. The optimization delay increases when increasing the dimension
of service pattern

2. Overview of the traffic grooming optimization based on Hopfield
networks

In [8], the traffic grooming is considered as multiplexing of arriving services
into bursts at edge nodes and as switching services between bursts at core
nodes. The bursts used to carry services are supposed to divide into timeslots.
Arriving services (considered as a pattern of N services) are then represented
by a two-dimension binary matrix (Figure 3a), where each line corresponds to
a service and the number of columns is equal to the number of timeslots in
each burst. On each line of the matrix a service is expressed by a chain of
successive cells of value 1. The position of a service on a burst is important,
e.g. for determining its destination. With this representation the optimization
of multiplexing a service pattern into bursts is considered as an arrangement of
these services into bursts so that the number of bursts used is minimal. Figure
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3b illustrates an example of multiplexing a 4-services pattern into 2-bursts
pattern.
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Figure 3. Example of multiplexing a service pattern into bursts

When the burst pattern arrives at a core node, the services carried on
this burst pattern can be switched to another burst pattern which requires the
exchanges of their bursts (i.e. wavelength conversion) or both the exchanges
of their timeslots and bursts. Since the devices required for these switches are
costly, the optimization of switching services between bursts is considered as
a minimization of the switching cost. Figure 4 illustrates an example for all
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Figure /. Example of switching a service between bursts

possible cases of switching services between bursts. By using the Hopfield
networks as an optimization tool, these two problems of traffic grooming
are formulated under objective functions and concerned constraints. The
penalty function approach [4] is then used to transform them to a Hopfield
energy function. From there we can determine the Hopfield networks with all
connection weights and the activation threshold of each neuron.
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2.1. Problematic

As presented in [9, 8], the delay problem of the optimization method based
on Hopfield networks has been resolved. However, there exist in fact two other
factors which influence the average delay of this optimization. That is the
number of patterns which needs optimizing and the size of optimized service
patterns. If we can reduce these two factors, more delay can be minimized.

Indeed, there are some arriving N-services patterns which always require
N-bursts patterns for their multiplexing. That is the case in which each service
in an arriving N-services pattern requires a complete burst for its multiplexing.
So, the optimization for its multiplexing is unneeded.

In the case of an arriving /N-services pattern multiplexed into a K-bursts
pattern (N > K), an optimization for it is required because some services can
be multiplexed into a same burst. However, there also the exist services which
cannot be multiplexed with any other. There services are then removed to
reduce the size of the service pattern optimized. It means that the delay of its
optimization is also minimized.

In another case, there exists arriving different service patterns which are
a same optimal grooming solution, called ”similar” service patterns. These
service patterns are then clustered into a group corresponding to the optimal
grooming solution. When a new service pattern arrives, it is checked if it
belongs to any existing optimized group: if one is found, the corresponding
optimal grooming solution is returned immediately. If not, an optimization
process is required to determine its optimal grooming solution. That is
the principle of the learning function in our clustering-learning model. The
following describes in detail the clustering-learning model.

3. The clustering-learning model for reducing the delay in traffic
grooming optimization

3.1. Sorting the services in each service pattern

Let us consider arriving NN-services patterns, each service of which is
represented on T-timeslots. The number of possible representations of these

N-services patterns is
n= (C’IT)Nv
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where CT is the number of possible representations of a service on a burst.
However, a N-services pattern has in fact N! permutations of its representation.
As shown in Figure 5, a 4-services pattern has 4! = 24 permutations. If all these
permutations are sorted in ascending or descending order, they have only one
representation, as shown in Figure 5a and 5a’. In other words, the real number
of possible representations of the N-services patterns is
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Figure 5. All possible permutations of a 4-services pattern
3.2. Eliminating the service patterns that do not need optimizing

We can recognize that there are some arriving N-services patterns which
always require N-bursts patterns for their multiplexing. Those are the service
patterns (e.g. Figure 6 with N = 4) for which any pair of services cannot be
multiplexed on the same burst. In other words, there always exists at least a
column having all values set to 1 on their representation matrix (e.g. column
t3 in Figure 6a and 6b). For these service patterns, the optimization of their
multiplexing is unneeded. They are then eliminated from the optimization
process.
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3.3. Clustering based on the number of used bursts

Normally, with an arriving service pattern, we can determine the minimal
number of bursts needed for its multiplexing. As shown in the examples of
Figure 6, the minimal number of bursts needed is 3, because the maximal
overlap on all columns of their representation matrix is 3 (in Figure 7a, service
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Figure 6. The services in these service patterns cannot be multiplexed

so overlaps with s3 and s4 at timeslot t3; and in Figure 7b, service sy overlaps
with s3 and s4 at t4). In other words, the minimal number of bursts needed is
determined by the maximal number of overlapping cells (with value 1) on all
columns. By this clustering way, the minimal number of bursts needed for an
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Figure 7. These service patterns require at least 3 bursts for their
multiplexing

arriving service pattern cannot be lower than M = %, if N is multiple of T,
or M = NT— + 1, otherwise. It means that we can cluster arriving N-services
patterns into (N — M) separated groups corresponding to the minimal number

of bursts needed: the N-bursts group, the (N — 1)-bursts group, etc. and the
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M-bursts group. For the N-bursts group, it corresponds to arriving service
patterns which are unneeded to be optimized.

3.4. Removing the services which do not participate in the optimiza-
tion process in a service pattern

For an N-services pattern clustered into the K-bursts group (N > K),
some services in this pattern can be multiplexed into a same burst. But, there
is the existence of the other services which cannot be multiplexed with any
other. In other words, they are unneeded to participate in the multiplexing
optimization and then they are removed to reduce the optimization delay. As
shown in Figure 8a and 8b, the service s; in these two service patterns cannot
be multiplexed with any other and then removed. A problem that appeared
in this case is, with a given service pattern, how to search and remove the
services which do not participate in its multiplexing optimization; and if this
search-and-remove process takes a long delay. In fact, it is not necessary to
have an exhaustive search-and-remove process. Based on the arriving services
which are sorted, the following algorithm can return a good result, but it does
not consume much time.
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Figure 8. Service s; in these service patterns cannot be multiplexed with
any other

Suppose that the services which are sorted in descending order in each
service pattern.

Begin with the first service s; (¢ = 1);
Check if the service s; can be multiplexed with the last service (sn);
If yes, remove the service s; and return the step 2 with service s;41;

Ll

Terminate the algorithm. The rest services then really participate in the
multiplexing optimization of the current service pattern.
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By using this algorithm, a service pattern in the K-bursts group can reduce
its size to an H-bursts group, where H < K. It means that the delay for its
optimization process is then reduced considerably.

3.5. Clustering based on the same optimal grooming solution

The clustering based on the number of used bursts only clusters arriving
services patterns into N — M ”crude” groups. In each of these groups, we
can in fact cluster them into many other smaller groups which correspond
to separate optimal grooming solutions. For example, two arriving service
patterns in Figure 9 are all in the 2-bursts group, but corresponding to two
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Figure 9. Two service patterns in the 2-bursts group have different optimal
multiplexing solutions
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Figure 10. These service patterns in the 2-bursts group have the same
optimal grooming solution
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separate optimal multiplexing solutions. However, there also exist other service
patterns in the 2-bursts group, which have the same optimal grooming solution,
as shown in Figure 10. The simplest way to cluster the service patterns in
a K-group (N > K > M) is based on the experiment: an arriving service
pattern is first optimized to determine what its optimal grooming solution
is. Basingon this result, this service pattern will be clustered into a right
group. In conclusion, the clustering function in our clustering-learning model
can be described hierarchically as shown in Figure 11. When a service pattern
arrives, the services in this service pattern are sorted. The service pattern is
next clustered by basing on the minimal number of used bursts. This phase
also determines if this service pattern is unneeded to optimize its multiplexing
(for the case in the N-bursts group). If it is the service pattern that needs
optimizing, it is now checked if they have the services which do not participate
in its multiplexing optimization. These services are then removed and the
current service pattern is moved to a new group (with fewer bursts used). This

Arriving N- \\

services patterns /
\< _//

—_—

Sort services in each pattern

—
Sorted N-services\ \

panerny

Cluster based on the number of used bursts

// Group Group% Group of
N N burs(s K-bursts M-burst

Remove the servnoes unneeded to opnmlze in each pattern

-

\
\/

\ _‘\
Group of -e ( Group of
K-bursts / N M-burst

Cluster based on the optimal grooming solution

\A\

/Grou SGro N\ e /%Gr(;up
) (S

Figure 11. The hierarchic clustering of an arriving service pattern
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service pattern is at last clustered one more time, but now based on its optimal
grooming solution. This process clusters this service pattern into a smaller
group in which all service patterns have the same optimal grooming solution.

3.6. Learning function

service pattern is at last clustered one more time, but now based on its
optimal grooming solution. This process clusters this service pattern into a
smaller group in which all service patterns have the same optimal grooming
solution. Sometimes, an arriving service pattern is ”similar” to another which
has been optimized. The optimal grooming solution found and memorized
can be reused for this service pattern. The learning function proposed in our
clustering-learning model is based on this principle, as presented in Figure 12.
Its objective is to eliminate the service pattern optimized and then reduce the
average optimization delay. Initially, an arriving service pattern is input into
the optimization unit (1) to determine its optimal grooming solution. Because
of the time-limit for its grooming, a nearly optimal (instead of optimal) solution
is returned (2). However, the optimization process is continued to determine
an optimal solution. This result is then provided to the clustering unit (3).
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Figure 12. Learning model for reducing the delay

By the "similarity” of some arriving service patterns, the clustering unit
clusters these service patterns into a same group, which corresponds to a found
optimal grooming solution. The results of this clustering are then delivered to
the learning unit to be stored (4).

When a new service pattern arrives: it is input to the learning unit to
check if there exists a corresponding optimal solution (5). If one is found,
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the corresponding optimal solution is returned immediately (6). If not, an
optimization process is required to find its optimal solution (7).

However, the time required to check if a ”similarity” service pattern
exists will increase when the size of knowledge of optimized grooming solutions
increases. This delay can exceed the time-limit for a grooming. The solution
for this problem is that an arriving service pattern is input at the same time to
the optimization unit (1) and the learning unit (5). The first result returned
by one of two units is the optimal grooming solution for the current service
pattern.

4. Simulation results and analysis

All simulations of our learning model were run on a PC Pentium 4, 1G
RAM and 2.3 GHz. We tested the average delay for three cases: without
clustering-learning model (as done also in [9]), with the clustering-learning
model but without (CLModel-1) and with (CLModel-2) the operation of
removing the services in a service pattern which does not participate in its
optimization process. Essentially, the objective of CLModel-1 is to reduce
the number of arriving service patterns that do not need optimizing, while
CLModel-2 is for the purpose of minimizing the size of each arriving service
pattern. Table 1 shows the result of our simulations over different size 5 x 8
(5 services of 8 timeslots), 10 x 8, 15 x 8, 20 x 8 and 30 x 8 of 32000 arriving
service patterns.

Size Without CLModel With CLModel-1 With CLModel-2

5x8 0.101594 0.050313 0.022406
10x8 1.243156 1.133219 0.398906
15x8 5.878844 6.019969 2.277437
20x8 18.47891 18.45472 7.106563
25x8 42.76272 43.54294 17.67691
30x8 87.75941 87.70138 37.04206

Table 1. Average delay (ms) over the cases: without CLModel, with
CLModel-1 and with CLModel-2
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As shown in Table 1, the delay (in milliseconds) in the case with CLModel-
1 is not better than the case without clustering-learning model. Instead (as
shown in Figure 13), the probability of an arriving service pattern which
does not need to be optimized (PU2) and is similar to another one optimized
before (PoS) is too small to need optimizing (P20), particularly for the service
patterns with big size. So, no advantage is denoted between the case with
CLModel-1 and the case without the learning model (see Figure 14).

However, in the case with the CLModel-2 model, the delay is considerably
reduced in comparison with the two previous cases. Instead, as presented in
[2], the delay of the optimization based on Hopfield networks is an exponential
function of the problem size (the size of service pattern in this case). Therefore,
if we can reduce the size of optimized service pattern, more delay can be
minimized.
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5. Conclusion

The optimization based on Hopfield networks normally requires a consid-
erable delay to find an optimal solution, but this has limited the applicability
of this method in optical data transport, where the delay required for traffic
grooming is short. So, reducing this delay is an important factor of our
model of the traffic grooming optimization based on Hopfield networks. In
[5, 6] we have proposed solutions to reduce this delay, but only for the
method. There exist two other factors which influence the average optimization
delay: the number of service patterns that need to be optimized and the size
of optimized service patterns. This paper, therefore, has proposed a more
complete solution to reduce these two factors. That is a clustering-learning
model, which (1) eliminates arriving service patterns which do not need to be
optimized its multiplexing, (2) removes the services which do not participate in
the multiplexing optimization in an arriving service pattern, and (3) clusters
arriving service patterns into the groups in which the service patterns in a
group have the same optimal grooming solution. A learning function is also
added to eliminate an arriving service pattern from its optimization process if
it is ”similar” to another optimized before. Basing on the simulation results,
our clustering-learning model has proved its advantages. This improves the
practicability of our model of traffic grooming optimization based on Hopfield
networks.
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