SOME REMARKS ON A RESULT OF F. LUCA AND I. SHPARLINSKI

I. Kátai (Budapest, Hungary)

Abstract. Luca and Shparlinski proved that $n^{1/\omega(n)} \pmod{1}$ is uniformly distributed. Generalizations are proved here. $\omega(n) =$ number of prime divisors of n.

1. Introduction

Luca and Shparlinski investigated the sequences

$$n^{1/\omega(n)} \pmod{1}, \quad n^{1/\Omega(n)} \pmod{1}, \quad \left(\prod_{p|n}\right)^{1/\omega(n)} \pmod{1}$$

and proved that counted them up to $(n \leq) x$, the discrepancy is $\frac{1}{(\log x)^{1+o(1)}}$. Here and in the sequel $\omega(n)$ is the number of prime divisors, $\Omega(n)$ is the number of prime power divisors of n, p runs over the set of primes.

The main idea of the proof of the first sequence is to write the integers n as n = mp, where p is the largest prime divisor of n, then for fixed m count the distribution of $m^{\frac{1}{\omega(m)+1}}p^{\frac{1}{\omega(m)+1}} \pmod{1}$, where p runs over the set of primes p in the interval P(m) , where in general <math>P(n)= the largest prime divisor of n.

Mathematics Subject Classification: 11J71, 11K65

The European Union and the European Social Fund have provided financial support to the project under the grant agreement TÁMOP-4.2.1/B-09/1/KMR-2010-003. The distribution of

$$p^{\frac{1}{\omega(m)+1}} \mod \left(\frac{1}{m^{1/\omega(m)+1}}\right)$$

can be computed by using the short interval version of the theorem of Huxley [2] and Heath-Brown [3], according to

$$\pi \left(x+y \right) -\pi \left(x \right) = \frac{y}{\log x} \left(1 + O\left(\frac{\left(\log \log x \right)^4}{\log x} \right) \right).$$

Similar assertions with some weaker error term can be proved by other "arithmetical" sequences. These depend on the following obvious Lemma 1 and nontrivial theorems for short interval version of sums of multiplicative functions. Let $\pi_k(x) = \sharp\{n \leq x \mid \omega(n) = k\}$.

Lemma 1. Let $\kappa(n)$ (n = 1, 2, ...) be a sequence of real numbers, $0 < < \kappa(n) < 1$. Assume that for $X > X_0$, the set of integers $n \in [X, 2X)$ can be classified into disjoint sets $\mathcal{I}_1, \mathcal{I}_2, \ldots, \mathcal{I}_t$, \mathcal{T} such that in the notation

$$S_{j}(x) = \sum_{\substack{n \le x \\ n \in \mathcal{I}_{j}}} 1, \quad T(x) = \sum_{\substack{n \le x \\ n \in \mathcal{T}}} 1$$

the following conditions hold:

- (1) $\kappa(n) = \kappa_k$ is fixed for $n \in \mathcal{I}_k$, $k = 1, \ldots, t$.
- (2) $T(2X) \ll X\delta(X)$, where $\delta(x)$ is a monotonically decreasing function defined in $1 < x < \infty$ such that $\delta(\sqrt{x}) \ll \delta(x)$,

$$\max_{\frac{\delta(X)}{\kappa_{k}}x^{1-\kappa_{k}} \leq h \leq x} \max_{x \in [X,2X]} \left| \frac{S_{k}\left(x+h\right) - S_{k}\left(x\right)}{h} - \frac{S_{k}\left(2X\right) - S_{k}\left(X\right)}{X} \right| \ll$$
$$\ll \frac{S_{k}\left(2X\right)}{X} \cdot \delta\left(X\right).$$

Then the discrepancy of the sequence $n^{\kappa(n)} \pmod{1}$ $(n = 1, \dots, [x])$ is $\mathcal{O}(\delta(x))$.

2. Short interval version of sums of some multiplicative function

By using the so called Hooley-Huxley contour for functions depending on Dirichlet L-function, Ramachandra [4] proved a general theorem:

Let S_1, S_2, S_3 be the sets of *L*-series, the derivatives, and the logarithms of *L*-series, respectively. log $L(s, \chi)$ is defined by analytic continuation from the halfplane $\sigma = \text{Re } s > 1$; for some complex *z*, we define

$$L(s,\chi)^{z} = \exp\left(z\log L(s,\chi)\right).$$

Let $P_1(s)$ be any finite product (with complex exponents) of functions of S_1 . Let $P_2(s)$ be any finite power product (with nonnegative integral exponents) of functions of S_2 . Let also $P_3(s)$ denote any finite power product with nonnegative exponents of S_3 . Let c_n be a sequence of complex numbers such that $|c_n| \ll n^{\varepsilon}$ for every $\varepsilon > 0$ and

$$\sum \frac{|c_n|}{n^{\sigma}} < \infty \qquad \text{for} \quad \sigma > 1/2.$$

Let $F_0(s) = \sum_n \frac{c_n}{n^s}$. Furthermore, let

$$F_1(s) = P_1(s) P_2(s) P_3(s) F_0(s) = \sum \frac{g_n}{n^s}$$

and

$$E\left(x\right) = \sum_{n \le x} g_n$$

Let 0 < r < 1/2. We define the contour C(r) by starting from the circle $\{s | | s - 1| = r\}$, removing the point 1 - r, and proceeding on the remaining portion of the circle in the clockwise direction. Let $C_0 = C(r)$. Assume that r is so small that $F_1(s)$ has no singularities on the boundary and in interior of it, except, possibly, the place s = 1.

Let $N_{\chi}(\alpha, T)$ be the number of roots ρ of $L(s, \chi)$ in the region Re $\rho \geq \alpha$, $|\text{Im } \rho| \leq T$. Assume that

$$N_{\chi}(\alpha, T) = \mathcal{O}\left(T^{B(1-\alpha)} \left(\log T\right)^2\right)$$

holds for all characters occurring in P_1, P_2 and P_3 .

Let $\varphi = 1 - 1/B + \varepsilon$.

Remark. According to Huxley's result, φ can be any constant greater than $\frac{7}{12}$.

Theorem of Ramachandra. Let x be sufficiently large and $1 \le h \le x$. Let

$$I(x,h) = \frac{1}{2\pi i} \int_{0}^{h} \left(\int_{C_0} F_1(s) (v+x)^{s-1} ds \right) dv.$$

Then

$$E(x+h) - E(x) = I(x,h) + \mathcal{O}_{\varepsilon}\left(h \cdot \exp\left(-\left(\log x\right)^{1/6}\right) + x^{\varphi}\right).$$

In [5] it was deduced from the above theorem that

$$\sum_{\substack{x \le n \le x+h \\ \omega(n)=k}} 1 = (1+o(1)) \frac{h}{x} \pi_k(x)$$

uniformly for any $k \leq \log \log x + c_x \sqrt{\log \log x}$, where $c_x \to \infty$ sufficiently slowly, if $x^{\frac{7}{12}+\varepsilon} \leq h \leq x$. Sankaranarayanan and Srinivas [8] gave a version of Ramachandra's result in which the function $F_1(s)$ may depend on a parameter.

In our paper [7] we deduced the following theorem: Let $C_1 = C\left(\frac{1}{\log x}\right)$, and let L^-, L^+ be defined as the intervals of straightlines

$$L^{-} = \left[\left(1 - \frac{1}{r} \right) e^{-i\pi}, \quad \left(1 - \frac{1}{\log x} \right) e^{-i\pi} \right],$$
$$L^{+} = \left[\left(1 - \frac{1}{\log x} \right) e^{i\pi}, \quad \left(1 - \frac{1}{r} \right) e^{i\pi} \right].$$

Let C^* be the contour going along L^- starting from $\left(1-\frac{1}{r}\right)e^{-i\pi}$, then on C_1 , and finally, on L^+ .

Theorem (1 and 2, in [7]). Assume that $F_1(s)$ satisfies the conditions stated in Ramachandra's theorem. Let r > 0 and $\varepsilon > 0$ be constants so that $\frac{7}{12} + \varepsilon < \frac{2}{3} - \frac{2r}{3}$, and that $U(s) := F_1(s)(s-1)^{-z}$ is analytic in the disc $|s-1| \le \varepsilon$. Consequently $U(s) = A_0 + A_1(s-1) + \ldots + A_k(s-1)^k + (s-1)^{k+1} V(s)$ holds for every fixed k, where V(s) is bounded in $|s-1| \le r$.

whenever Re $z \leq k+1.$

3. Short interval versions of the theorems of Sathe and Selberg

Let furthermore

$$\pi_{l}(x) := \# \{ n \le x | \omega(n) = l \}; \quad N_{l}(x) := \# \{ n \le x | \Omega(n) = l \}.$$

Further we shall use the abbreviation: $x_1 = \log x$, $x_2 = \log x_1$, etc. By using our theorem for

$$F_1(s) = \sum \frac{z^{\omega(n)}}{n^s} = \zeta^z(s) h(s),$$
$$h(s) = \prod_p \left(1 - \frac{1}{p^s}\right)^z \left(1 - \frac{z}{p^s - 1}\right)$$

 $(h(s) \text{ is regular in } \operatorname{Re} s > 1/2 \text{ for arbitrary } z \in \mathbb{C}), \text{ and for }$

$$F_{1}(s) = \sum \frac{z^{\Omega(m)}}{m^{s}} = \zeta^{z}(s) h(s),$$

$$h(s) = \prod_{p} \left(1 - \frac{z}{p^s}\right)^{-1} \left(1 - \frac{1}{p^s}\right)^z$$

 $(h(s) \text{ is regular in Re } s > 1/2, \text{ whenever } |z| \le 2 - \delta, \ \sigma > 0).$

We deduced the following assertions which will be quoted now as Lemma 2 and 3.

Lemma 2. Let $c_1 > 0$, $\varepsilon > 0$ be arbitrary positive constants, r be another constant so that $\frac{7}{12} + \varepsilon \leq \frac{2}{3} - \frac{2r}{3}$. Then, for $|z| \leq c_1$, $x^{\frac{7}{12} + \varepsilon} \leq h \leq x^{\frac{2}{3} - \frac{2r}{3}}$ we have

$$h^{-1}\sum_{x\leq m\leq x+h} z^{\omega(m)} = \varphi(z)\left(\log x\right)^{z-1} + \mathcal{O}\left(\left(\log x\right)^{\operatorname{Re} z-2}\right),$$

where

$$\varphi(z) = \frac{1}{\Gamma(z+1)} \prod_{p} \left(1 - \frac{1}{p}\right)^{z} \left(1 + \frac{z}{p-1}\right).$$

Lemma 3. Let $|z| \leq 2 - \delta$, $0 < \delta < 1$ be an arbitrary constant, ε, r be as in Lemma 2, $x^{\frac{7}{12}+\varepsilon} \leq h \leq x^{\frac{2}{3}-\frac{2r}{3}}$. Then

$$h^{-1} \sum_{x \le m \le x+h} z^{\Omega(m)} = G(z) (\log x)^{z-1} + \mathcal{O}\left((\log x)^{\operatorname{Re} z-2}\right),$$
$$G(z) = \frac{1}{\Gamma(z+1)} \prod_{p} \left(1 - \frac{z}{p}\right)^{-1} \left(1 - \frac{1}{p}\right)^{z}.$$

Lemma 4. Let c be an arbitrary constant, $\varepsilon, r > 0$ be such constants for which $\frac{7}{12}\varepsilon < \frac{2}{3} - \frac{2r}{3}$ (i.e. $r < \frac{3}{4} - \frac{3}{2}\varepsilon$). Then, uniformly as $1 \le k \le \le cx_2$, $x^{\frac{7}{12}+\varepsilon} \le h \le x^{\frac{2}{3}-\frac{2r}{3}}$, we have

$$\pi_k (x+h) - \pi_k (x) = \frac{h}{x_1} \cdot \frac{x_2^{k-1}}{(k-1)!} \left\{ \varphi \left(\frac{k-1}{x_2} \right) + \mathcal{O} \left(\frac{k}{x_2^2} \right) \right\}.$$

It is known (see e.g. in J. Kubilius [9], or in G. Tenenbaum [10]) that under the conditions stated for |z| in Lemma 2 and 3,

$$\frac{1}{x} \sum_{m \le x} z^{\Omega(m)} = G(z) \left(\log x\right)^{z-1} + \mathcal{O}\left(\left(\log x\right)^{\operatorname{Re} z - 2}\right),$$
$$\frac{1}{x} \sum_{m \le x} z^{\omega(m)} = \varphi(z) \left(\log x\right)^{z-1} + \mathcal{O}\left(\left(\log x\right)^{\operatorname{Re} z - 2}\right),$$

consequently

$$\left|\frac{1}{h}\sum_{x\leq m\leq x+h} z^{\Omega(m)} - \frac{1}{x}\sum_{m\leq x} z^{\Omega(m)}\right| \ll \left(\log x\right)^{\operatorname{Re} z-2},$$

$$\frac{1}{h} \sum_{x \le m \le x+h} z^{\omega(m)} - \frac{1}{x} \sum_{m \le x} z^{\omega(m)} \bigg| \ll (\log x)^{\operatorname{Re} z - 2}$$

and by integrating with respect to z on the unit circle we obtain that

(3.1)
$$\max_{k} \left| \frac{\pi_k \left(x + h \right) - \pi_k \left(x \right)}{h} - \frac{\pi_k \left(x \right)}{x} \right| \ll \frac{1}{\log x},$$

(3.2)
$$\max_{k} \left| \frac{N_k \left(x + h \right) - N_k \left(x \right)}{h} - \frac{N_k \left(x \right)}{x} \right| \ll \frac{1}{\log x}$$

(3.1), (3.2) is proved under the condition $h \leq x^{\frac{2}{3} - \frac{2r}{3}}$. By using the formula (17) and (19) in [10] Chapter II.6., page 205 we obtain that

(3.3)
$$\max_{x < y < 2x} \left| \frac{\pi_k(x)}{x} - \frac{\pi_k(y)}{y} \right| \ll \frac{1}{\log x}$$

uniformly as $k \leq Ax_2$, and that

(3.4)
$$\max_{x < y < 2x} \left| \frac{N_k(x)}{x} - \frac{N_k(y)}{y} \right| \ll \frac{1}{\log x},$$

uniformly as $k \leq (2 - \delta) x_2$. Hence we obtain easily

Lemma 5. (3.1) is true uniformly as $x^{\frac{7}{12}+\varepsilon} \leq h \leq x$, $k \leq Ax_2$; (3.2) is true uniformly as $x^{\frac{7}{12}+\varepsilon} \leq h \leq x$, $k \leq (2-\delta)x_2$.

4. Main result

Theorem 4. Let $Q(n) = a_0 n^m + a_1 n^{m-1} + ... + a_m \in R[x]$ be a polynomial, $a_0 > 0$.

(1) Assume that for every $X \ge 2$ for $n \in [X, 2X] \kappa(n)$ depends only on $\omega(n)$ if $\omega(n) \le e \log \log X$. Assume furthermore that

(4.1)
$$\frac{5}{12m} - \varepsilon > \kappa(n) > \frac{1}{\left(\log X\right)^{1-\delta}} \quad for \quad n \in [X, 2X]$$

satisfying $\omega(n) \leq e \log \log X$. Then the discrepancy of the sequence $Q(n)^{\kappa(n)} \pmod{1} \quad (n \leq x) \text{ is } \mathcal{O}\left(\frac{x_2}{x_1}\right).$

(2) Assume that for every $X \ge 2$ for $n \in [X, 2X]$ $\kappa(n)$ depends only on $\Omega(n)$ if $\Omega(n) \le \beta \log \log X$, where $1 < \beta < 2$. Assume furthermore that (4.1) holds if $\Omega(n) \le \beta \log \log X$. Then the discrepancy of $Q(n)^{\kappa(n)}$ (mod 1) $(n \le x)$ is $\mathcal{O}\left(\frac{1}{x_1}x_1^{\beta \log \frac{e}{\beta}}\right)$.

Remark. The proof is a straightforward consequence of (3.1),(3.2) since the sums

(4.2)
$$\begin{aligned}
\# \left\{ n | n \in \mathcal{P}_k, \quad A < Q^{\kappa(n)}(n) < A + \Delta \right\} = \\
= \# \left\{ n | n \in \mathcal{P}_k, \quad Q^{-1}\left(A^{\frac{1}{\kappa(n)}}\right) < n < Q^{-1}\left((A + \Delta)^{\frac{1}{\kappa(n)}}\right) \right\}
\end{aligned}$$

and similarly

(4.3)
$$\begin{aligned}
\#\left\{n|n\in\mathcal{N}_{k},\ A< Q^{\kappa(n)}\left(n\right)$$

can be estimated by error $\mathcal{O}\left(\frac{1}{\log x}\right)$, uniformly as $\frac{1}{\log x} \leq \Delta \leq 1$, uniformly as $k \leq ex_2$ in the case (4.2), and as $k \leq \beta x_2$ in the case (4.3).

Furthermore, we observe that

$$\# \left\{ n \le x | \omega\left(n\right) > ex_2 \right\} \ll \frac{x}{x_1},$$

$$\# \left\{ n \le x | \Omega \left(n \right) > \beta x_2 \right\} \ll \frac{x}{x_1} x_1^{\beta \log \frac{e}{\beta}}$$

The theorem follows from these observations easily. We omit the details.

5. Further remark

Let $\tau(n)$ be the number of divisors of n. Let K run over the set squarefull numbers, \mathcal{M}_K be the set of square-free integers m which are coprime to K. Every integer $n \in \mathbb{N}$ can be uniquely written as n = Km, where K is the square-full part and m is the square-free part of n. Let $\mathcal{M}_{K,l}$ be the set of those integers *n* the square-full part of which is *K*, the square-free part is *m*, and $\omega(m) = l$. Let

$$M_{K,l}(x) = \# \left\{ n \le x, n \in \mathcal{M}_{K,l} \right\}.$$

By using the method applied in [11] one can prove that

$$\left|\frac{M_{K,l}(x+h) - M_{K,l}(x)}{h} - \frac{M_{K,l}(x)}{x}\right| \ll \frac{1}{K \left(\log x\right)^{1/2}}$$

uniformly as

$$x^{\frac{7}{12}+\varepsilon} \le h \le x^{0,66}, \quad K \le x_1^4, \quad |x_2 - l| \le x_2^{3/4}.$$

Hence it follows

Theorem 2. Let Q be as in Theorem (1). Then the sequence $Q(n)^{1/\tau(n)}$ is uniformly distributed (mod 1).

We omit the proof.

References

- Luca F. and Shparlinski I.E., Uniformity of distribution modulo 1 of the geometric mean prime divisor, *Bol. Soc. Matem. Mexicana*, 12 (2006), 155-163.
- [2] Huxley M.N., On the difference between consecutive primes, *Invent. Math.*, 15 (1972), 164-170.
- [3] Heath-Brown D.R., The number of primes in a short interval, J. Reine und Angewandte Mathematik, 389 (1988), 22-63.
- [4] Ramachandra K., Some problems on analytic number theory, Acta Arithmetica, 31 (1976), 313-324.
- [5] Kátai I., A remark on a paper of Ramachandra, Number Theory. Proc. Ootacamund, ed. K. Alladi, Lecture Notes in Math. 1122, Springer Verlag, 1984, 147-152.
- [6] Kátai I. and Subbarao M.V., Some remarks on a paper of Ramachandra, *Liet. matem. rink.*, 43 (4) (2003), 497-506.
- [7] Kátai I. and Subbarao M.V., The distribution of integers with given number of prime factors in almost all short intervals, *The Riemann zeta* function and related themes. Proc. of Int. Conf. held at National Institute

of Advanced Studies, Bangalore, 13-15 December, 2003, Lecture Notes Series 2, Ramanujan Mathematical Society, 2006, 115-120.

- [8] Sankaranarayanan A. and Srinivas K., On the papers of Ramachandra and Kátai, Acta Arith., 624 (1992), 373-382.
- [9] Кубилюс Й, Вероятностные методы в теории чисел, Гос. изд. полит. и науч. лит. ЛитССР, Вильнюс, 1962. (Kubilius J.P., Probabilistic methods in the theory of numbers, Amer. Math. Soc. Trans. of Math. Monographs 11, Providence, RI, 1964.)
- [10] Tenenbaum G., Introduction to analytic and probabilistic number theory, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1995.
- [11] Kátai I. and Subbarao M.V., On the local distribution of the iterated divisor function, *Mathematica Pannonica*, 15 (1) (2004), 127-140.

(Received September 10, 2010)

I. Kátai

Department of Computer Algebra Eötvös Loránd University Pázmány Péter sét. 1/C H-1117 Budapest, Hungary katai@compalg.inf.elte.hu