
Annales Univ. Sci. Budapest., Sect. Comp. 32 (2010) 201-220

TOOL SUPPORTED PERFORMABILITY INVESTIGATIONS
OF

HETEROGENEOUS FINITE-SOURCE RETRIAL QUEUES

J. Sztrik (Debrecen, Hungary)

C.S. Kim (Wonju, Korea)

Abstract. This paper concerns with a retrial queueing system with a finite num-
ber of heterogeneous sources of calls serviced by a single unreliable server, which
means that the server is subject to random breakdowns depending on whether it is
busy or idle. The failure of the server may block or unblock the system’s operations
and the service of the interrupted request may be resumed or the call can be trans-
mitted to the orbit. All random variables involved in the model constructions are
supposed to be exponentially distributed and independent of each other.
The novelty of the investigation is the heterogeneous sources and the variability of
this non-availability of the server which makes the system rather complicated. That
is the reason why the MOSEL tool is used to formulate and solve the problem and
the main stead-state performability measures are derived and graphically displayed.
Several numerical calculations are performed to show the effect of the breakdown of
the server on the mean response times of the calls and the mean number of requests
staying at the service facility.

1. Introduction

Queueing system with repeated requests have wide practical use in designing tele-
phone switching systems, telecommunication networks, computer networks and com-
puter systems, call centers, etc. For a systematic account of the fundamental meth-
ods and results, applications, furthermore an accessible classified bibliography on this

202 J. Sztrik and C.S. Kim

topic the interested reader is referred to, for example [7], [9], [12], [16], [17], and
references therein.

Since in practice some components of the systems are subject to random break-
downs (see for example [29], [34], [39]) it is of basic importance to study reliability of
retrial queues with server breakdowns and repairs because of limited ability of repairs
and heavy influence of the breakdowns on the performance measures of the system.
However, so far the repairable retrial queues are analyzed only by queueing theory.
For related literature the reader is referred to the works [6], [11], [9], [30], [40] where
infinite-source non-reliable retrial queues were treated.

In many practical situations it is important to take into account the fact that the rate
of generation of new primary calls decreases as the number of customers in the system
increases. This can be done with the help of finite-source, or quasi-random input
models. Queueing systems without retrials, that is systems with classical waiting lines
and finite population have been reviewed in detail by Takagi [37]. Since Kornyshev
[28], which was the first paper devoted to finite-source retrial queues, there has been
a rapid growth in the literature on this topic. A complete survey on related results
can be found in Artalejo [7] for systems of type M/G/1//K and M/M/c//K in
Kendall’s notation. In addition, in the papers Falin and Artalejo [18], Falin [19] not
only the outside observer’s distributions of the systems in steady state, but also the
stationary performance characteristics are considered on more detail. In particular, all
main measures were expressed in terms of the server utilization. Arriving customer’s
distribution of the system state, busy period and waiting time processes (which is
especially complex for retrial queues due to the overtaking) were investigated, too.
Further recent results with finite-source of primary requests can be found in [9], [10],
[15], [17], [20], [21], [27], [31], [35].

Retrial queues with quasi-random input are recent interest in modelling mag-
netic disk memory systems [33], cellular mobile networks [38], computer networks
[22], and local-area networks with non-persistent CSMA/CD protocols [31], with star
topology [24, 32], with random access protocols [25], and with multiple-access pro-
tocols [26].

This paper generalizes the results of [17] where homogeneous systems with re-
liable multiple servers were dealt with. Similarly, it is another extension of inves-
tigations for heterogeneous finite-source queueing systems without retrials but with
server’s breakdowns which were treated in [36]. Finally, it can be considered as the
natural continuation of [3] in which reliable heterogeneous finite-source retrial sys-
tems were analyzed. It gives further investigations for retrial queues treated in [5] but
because of page limitations some case studies were omitted.

The paper is organized as follows. In Section 2 the full description of the model by
the help of the corresponding multi-component Markov chain is given. Then the main
performance and reliability measures of the system are derived that can be obtained
using MOSEL tool. In Section 3 several numerical examples are presented and some
comments are made. Finally, the paper ends with a Conclusion.

Tool supported investigations of heterogeneous finite-source retrial queues 203

2. The ~M/ ~M/1//K retrial queueing model

In this paper single server finite-source queueing systems with the following as-
sumptions are investigated. The primary calls are generated by K, 1 < K < ∞ het-
erogeneous sources. The server can be in operational (up) or non-operational (down
) states. If it is idle and up, it can serve the calls of the sources. Each of the sources
can be in three states: generating a primary call (busy), sending repeated calls and
under service. The i-th source can generate a primary call during interval (t, t + dt)
with probability λidt+o(t). If the server is free at the time of arrival of a call then the
call starts to be served immediately, the source moves into the under service state and
the server moves into busy state. The service is finished during the interval (t, t + dt)
with probability µidt + o(t) if the server is available (up). If the server is busy, then
the source starts generating of a Poisson flow of repeated calls with rate νi until it
finds the server free. After service the source can generate a new primary call, and the
server becomes idle so it can serve a new call. The server can fail during the interval
(t, t + dt) with probability δdt + o(t) if it is idle, and with probability γdt + o(t) if
it is busy. If δ = 0, γ > 0 or δ = γ > 0 active or independent breakdowns can be
discussed, respectively. If the server fails in busy state, it either continues servicing
the interrupted call after it has been repaired or the interrupted request returns to the
orbit. The repair time is exponentially distributed with a finite mean 1/τ . If the server
is failed two different cases can be treated. Namely, blocked sources case when all
the operations are stopped, that is no new primary and repeated calls are generated. In
the non-blocked (intelligent) sources case only service is interrupted but all the other
operations are continued (new and repeated calls can be generated). All the times
involved in the model are assumed to be mutually independent of each other.
As it can be seen this systems is rather complicated since it involves two types of
failures, continued or repeated service and blocked or non-blocked operations during
breakdowns.

Our objective is to give the main usual stationary performance and reliability (per-
formability) measures of the system and to display the effect of different parameters
on them. To achieve this goal a tool called MOSEL (Modeling, Specification and
Evaluation Language) developed at the University of Erlangen, Germany, see [13],
is used to formulate and solve the problem. We show how this system can be mod-
elled, and how easily performance measures can graphically be represented using IGL
(Intermediate Graphical Language).

2.1. The underlying Markov chain

Because of the exponentiality of the involved random variables the following pro-
cess will be a Markov chain. The state of the system at time t can be described by the

204 J. Sztrik and C.S. Kim

process
X(t) = ((Y (t); αC(t);β1, . . . , βN(t)), t ≥ 0),

where Y (t) = 0 if the server is up, Y (t) = 1 if the server is down, C(t) = 0 if the
server is idle, C(t) = 1 if the server is busy, and αC(t) is the index of the request
under service at time t if the server is busy. Let N(t) be the number of sources of
repeated calls at time t, and because of the heterogeneity of the sources we need to
identify their indices that are denoted by βj , j = 1, ..., N(t) if there is a customer in
the orbit, otherwise the third component is 0.

Since its state space is finite the process (X(t), t ≥ 0) is ergodic for all values of the
rate of generation of new primary calls, and from now on we assume that the system
is in the steady state.

We define the stationary probabilities

P (q; 0; 0) = lim
t→∞

P (Y (t) = q; C(t) = 0; N(t) = 0), q = 0, 1,

P (q; j; 0) = lim
t→∞

P (Y (t) = q; α1 = j;N(t) = 0),

q = 0, 1, j = 1, . . . ,K,

P (q; 0; i1, . . . , ik) = lim
t→∞

P (Y (t) = q; C(t) = 0; β1 = i1, . . . , βk = ik),

q = 0, 1, k = 1, . . . , K∗,

P (q; j; i1, . . . , ik) = limt→∞ P (Y (t) = q; α1 = j; β1 = i1, . . . , βk = ik),

q = 0, 1, k = 1, . . . ,K − 1.

where

K∗ =

{
K − 1 for blocked case,
K for non-blocked case.

The traditional way is to derive the related Kolmogorov equations for these probabili-
ties and using the norming condition somehow we have to solve the set of equations.
Usually it is not so easy, but in our case these two steps are performed by the help of
the tool demonstrated in the next subsection.

Once we have obtained these limiting probabilities the main system performance
measures can be derived in the following way.

1. The server utilization with respect to source j

Uj = P (the server is up and busy with source j)

Tool supported investigations of heterogeneous finite-source retrial queues 205

that is, we have to summarize all the probabilities where the first component is 0 and
the second component is j. Formally,

Uj =
K−1∑

k=0

∑

i1,...,ik 6=j

P (0; j; i1, . . . , ik).

Hence the server utilization

US = E[Y (∞) = 0; C(∞) = 1] =
K∑

j=1

Uj .

2. Utilization of source i

U (i) = P (source i generates a new primary call).

It should be mentioned that in the blocked case the server have to be up, but in the
non-blocked case the request generation is independent of the server’s state.

3. Utilization of the repairman

UR = E[Y (∞)] =
K∑

j=0

K∗∑

k=0

∑

i1,...,ik 6=j

P (1; j; i1, . . . , ik).

4. Availability of the server

AS = 1− UR.

Let us denote by P
(i)
O the steady state probability that request i is staying in the orbit.

It is easy to see that

P
(i)
O =

1∑
q=0

K∑

j=0,j 6=i

K∗∑

k=1

∑

iε(i1,...,ik)

P (q; j; i1, . . . , ik).

Similarly, it can easily be seen, that the steady-state probability P
(i)
S that request i is

at the server is given by

P
(i)
S =

1∑
q=0

K∗∑

k=0

∑

i6=i1,...,ik)

P (q; i; i1, ..., ik).

206 J. Sztrik and C.S. Kim

Hence, the probability P (i) that request i is at the service facility can be obtained by

P (i) = P
(i)
S + P

(i)
O .

5. Mean response time of source i

The derivation of the following formulae are based on [1, 37]. Let us denote by E[Ti]
the mean response time of customer i, and by γi the throughput of request i, that is,
the mean number of times that request i is served per unit time. These are related by

(2.1) γi =
1

E[Ti] + E[Si]
= λiU

(i) = µiUi, i = 1, . . . , K,

where E[Si] denotes the mean sojourn time of request i in the source. Since the server
is subject to random breakdowns which may stop the operations of the sources, it is
clear that E[Si] = E[Di] + 1/λi ≥ 1/λi, where E[Di] denotes the mean delay time
due to the failure of the server.

Hence, with the aid of (2.1) for U (i) we get

U (i) =
1/λi

E[Ti] + E[Si]
=

µiUi

λi
≤ 1− P (i), i = 1, . . . , K,

and for P (i) we have

(2.2) P (i) =
E[Ti]

E[Ti] + E[Si]
= γiE[Ti] = λiU

(i)E[Ti], i = 1, . . . , K,

which represents Little’s theorem for request i at the service facility.

By the help of (2.2) we can express the mean response time E[Ti] for request i as

E[Ti] =
P (i)

λiU (i)
=

P (i)

µiUi
, i = 1, ..., K.

6. Mean waiting time of source i

The mean waiting time E[Wi] of request i is due to the time spent in the orbit (
irrespective of whether the server is up or down), and the delay time because of the
server’s failure. It is easy to see that E[Wi] is given by

E[Wi] = E[Ti]− 1/µi =
P (i) − Ui

µiUi
, i = 1, . . . , K.

Tool supported investigations of heterogeneous finite-source retrial queues 207

7. Mean number of sources of repeated calls

N = E[N(∞)] =
K∑

i=1

P
(i)
O .

8. Mean number of calls staying at the service facility

M = E[C(∞) + N(∞)] =
K∑

i=1

P (i) =
K∑

i=1

(P (i)
S + P

(i)
O) =

K∑

i=1

P
(i)
S +

K∑

i=1

P
(i)
O .

9. Mean rate of generation of primary calls

λ =
K∑

i=1

γi =
K∑

i=1

λiU
(i) =

K∑

i=1

µiUi.

10. Blocking probability of primary call i

Bi =

λi

K∑
j=1,j 6=i

K−1∑
k=0

∑
i6=i1,...,ik

P (0;j;i1,...,ik)

λ
for blocked case,

λi

K∑
j=1,j 6=i

K−1∑
k=0

∑
i6=i1,...,ik

(P (0;j;i1,...,ik)+P (1;j;i1,...,ik))

λ
for non-blocked case.

Hence blocking probability of primary calls

B =
K∑

i=1

Bi

which is the fraction of primary calls which were blocked (i.e. met the server busy).

It is easy to see that in the case of non-blocked operations (intelligent sources) with
non-reliable server, U (i) = 1 − P (i), i = 1, ..., K, and we get the same formulae
derived in [3] that is, most performance measures can be expressed in the terms of the
corresponding utilizations Ui as it was stated in [18].

208 J. Sztrik and C.S. Kim

2.2. The MOSEL implementation

We used the software tool MOSEL (Modeling, Specification and Evaluation Lan-
guage) to formulate the model and to calculate the main performance measures. In
this section we show a part of the base MOSEL program and explanations without
the technical details of programming. It doesn’t contains the picture section, which is
needed to generate various graphical representations of the measures. The figures in
the next section are automatically generated by the tool with the corresponding picture
part. In the MOSEL program we used the following terminology: The server and the
sources are referred to as a CPU and terminals, respectively.

/* retrialnr-het-cpu-cont.msl begins */
/*-- Definitions ---*/
#define NT 3 // change it to 4, 5, 6, 7, ...

/*================== No changes required below =============*/
<1..NT> VAR double prgen#;
<1..NT> VAR double prretr#;
<1..NT> VAR double prrun#;

VAR double cpubreak_idle;
VAR double cpubreak_busy;
VAR double cpurepair;

enum cpu_states {cpu_busy, cpu_idle};
enum cpu_updown {cpu_up, cpu_down};
enum terminal_states {term_busy, term_retrying, term_waiting};

/*------------------------------------- Node definitions ---*/
<1..NT> NODE terminal#[terminal_states] = term_busy;

NODE cpu_state[cpu_states] = cpu_idle;
NODE cpu[cpu_updown] = cpu_up;

/*-- Transitions ---*/
<1..NT> IF cpu==cpu_up FROM cpu_idle, terminal#[term_busy]

TO cpu_busy, terminal#[term_waiting]
W prgen#;

<1..NT> IF cpu_state==cpu_busy AND cpu==cpu_up
FROM terminal#[term_busy]
TO terminal#[term_retrying]
W prgen#;

<1..NT> IF cpu==cpu_up FROM cpu_idle, terminal#[term_retrying]
TO cpu_busy, terminal#[term_waiting]
W prretr#;

<1..NT> IF cpu==cpu_up FROM cpu_busy, terminal#[term_waiting]
TO cpu_idle, terminal#[term_busy]

Tool supported investigations of heterogeneous finite-source retrial queues 209

W prrun#;
IF cpu_state==cpu_idle FROM cpu_up TO cpu_down W cpubreak_idle;
IF cpu_state==cpu_busy FROM cpu_up TO cpu_down W cpubreak_busy;
FROM cpu_down TO cpu_up W cpurepair;

/*-- Results ---*/
RESULT>> if(cpu==cpu_up AND cpu_state==cpu_busy)

cpuutil += PROB;
<1..NT> RESULT>> if(cpu==cpu_up AND terminal#==term_busy)

termutil# += PROB;
<1..NT> RESULT>> if(terminal#!=term_busy) termwaiting# += PROB;
<1..NT> RESULT>> if(cpu==cpu_up AND terminal#==term_retrying)

retravg += PROB;
RESULT>> if(cpu == cpu_up) goodcpu += PROB;

<1..NT> RESULT>> resptime# = termwaiting# / (prgen# * termutil#);
/* retrialnr-het-cpu-cont.msl ended */

In the declaration part we define the number of terminals (NT), this is the only
program code line, that must be modified when modeling larger systems. The termi-
nals have three states: busy (primary call generation), retrying (repeated call gener-
ation) and waiting (job service at the CPU). The CPU has two states: idle and busy,
and it can be up or failed in both states. We define the three parameters for the hetero-
geneous terminals with shortcuts: prgen denotes the rate of primary call generation,
prretr references to the rate of repeated call generation and prrun denotes the service
rate. The cpubreak idle, cpubreak busy and cpurepair variables denote the failure
rate in the two CPU states and the repair rate.

The node part defines the nodes of the system: Our queueing network contains
NT + 2 nodes: the two nodes for the CPU (which is idle and up at the starting time)
and NT number of terminals (they are busy when the system starts).

The transition part describes how the system works. The first transition rule
defines the successful primary call generation: the CPU moves from the idle state to
busy and the terminal from busy to waiting. The second rule shows an unsuccessful
primary call generation: if the CPU is busy when the call is generated then the terminal
moves to state retrying. The third rule handles the case of a successful repeated call
generation: the CPU moves from the idle state to busy and the terminal from retrying
to waiting. The fourth rule describes the request service at the CPU. The fifth and
sixth rules describe the CPU fail in idle and busy state. The last rule shows the CPU
repair.

Finally the result part calculates the output performance measures.

210 J. Sztrik and C.S. Kim

3. Numerical examples

In this section we consider some sample numerical results to illustrate the influ-
ence of the non-reliable server on the mean response time E[Ti] and the mean number
of request M staying at the service facility (in the orbit and at the server). In the cases
when the server’s failure rate is very small and the repair rate is large the non-reliable
model should be very close to the reliable system. The results in the homogeneous
case were validated by the Pascal program given in [17]. For the heterogeneous case
the calculations were checked by the numerical results of [3]. In the case of homoge-
neous sources but with server’s breakdowns the program was tested by the examples
of [4].

3.1. Validation of results

In Table 1 some test results are collected when the server’s failure rate is quite
small and the requests’ retrial rates are quite large. Hopefully the corresponding
performance measures should be very close to each other in the case of continued,
restarted (abbreviated by orbit) service after repair and FIFO disciplines. As we can
see in the Table 1, the results confirm our expectation.

non–rel. retrial(cont.) non–rel. retrial(orbit) non–rel. FIFO
Number of sources: 3 3 3

Request’s generation rate: 0.2, 0.3, 0.5 0.2, 0.3, 0.5 0.2, 0.3, 0.5
Service rate: 1, 1.2, 1.1 1, 1.2, 1.1 1, 1.2, 1.1
Retrial rate: 1e+20 1e+20 -

Server’s failure rate: 0.002 0.002 0.002
Server’s repair rate: 0.04 0.04 0.04

Utilization of the server: 0.578593008176 0.578593460071 0.578595143583
Mean response time

Source 1: 1.61016598407 1.61027143737 1.6109393482
Source 2: 1.41365083148 1.41357129589 1.41287007613
Source 3: 1.35362123345 1.35362137877 1.35372999206

Table 1. Validations

3.2. Further examples

In this part some additional sample results are displayed showing the effect of dif-
ferent parameters on mean response times of calls and the mean number of requests
staying at the service facility. The input parameters are collected in Table 2. In each
cases independent breakdowns were treated. In homogeneous cases the parameters
are the arithmetic means of the corresponding values.

Tool supported investigations of heterogeneous finite-source retrial queues 211

Figure 1. E[T] versus primary request generation rate

Figure 2. E[T] versus primary request generation rate

212 J. Sztrik and C.S. Kim

Figure 3. E[T] versus retrial rate

Figure 4. E[T] versus retrial rate

Tool supported investigations of heterogeneous finite-source retrial queues 213

Figure 5. E[T] versus service rate

Figure 6. E[T] versus service rate

214 J. Sztrik and C.S. Kim

Figure 7. E[T] versus CPU failure rate in busy state

Figure 8. E[T] versus CPU failure rate in busy state

Tool supported investigations of heterogeneous finite-source retrial queues 215

Figure 9. M versus retrial rate

Figure 10. M versus retrial rate

216 J. Sztrik and C.S. Kim

In Figures 1 - 6 the mean response time E[Ti] is displayed in continuous and non-
continuous service after repair in the case of blocked, non-blocked (intelligent sources)
operations, as the function of primary request generation, retrial and service rates, re-
spectively.
In Figures 7 - 8 also E[Ti] is pictured in the case of blocked operations with continu-
ous and non-continuous service after repair as the function of the server’s failure rate
in busy state, respectively.
Finally, in Figures 9 - 10 the mean number of request M staying at the service fa-
cility can be seen in reliable and non-reliable case with homogeneous, heterogeneous
sources under blocked, non-blocked operations combined with continuous and non-
continuous service after repair as the function of the retrial rate of repeated calls.

3.3. Comments

• In Table 1 we can see that there is a slight difference between continuous,
restarted service and the FIFO disciplines which can be expected.

• In Figures 1-2 we can see the mean response time E[Ti] for the non-reliable
system with continuous, non-continuous service after repair, with blocked and
non-blocked operations during service failure when the primary request gen-
eration rate increases. Figure 1 demonstrates a surprising phenomenon of re-
trial queues having a maximum of E[Ti] which was noticed for homogeneous
sources treated in [18], too. The difference between continuous, non-continuous
service, moreover blocked, non-blocked (intelligent) systems’s operations is
clearly shown. The non-continuous case always have longer response times.
Similarly, the intelligent sources suffers from longer times, too. However, their
curves are very interesting, since for some sources at the beginning they de-
crease then increase, finally decrease again. This shows that the systems is very
complex and at different parameter setup we can see different effects.

• In Figures 3, 4, and similarly in Figures 5, 6 the effect of retrial rate, service
rate is demonstrated on E[Ti], respectively. Again the non-continuous case al-
ways have longer response times, and the intelligent sources suffers from longer
times, too. However, the difference between the continuous and non-continuous
case decreases as the corresponding rate increase. Furthermore, in each cases
E[Ti] decreases as we expected.

• In Figures 7, 8 the effect of server’s failure is displayed in the blocked operations
case. Again the non-continuous case have always longer response times, which
is clear. Moreover, for reliable busy server we have the same results which
was expected, too. The almost linear increase in E[Ti] in each cases can be
explained as follows. Since the failure of the server blocks all the operations
and the response time is the sum of the down time of the server, service and
repeated call generation time of the request (which do not change during the
failure) thus the failure has a linear effect on this measure.

Tool supported investigations of heterogeneous finite-source retrial queues 217

• In Figures 9, 10 the effect of the retrial rate on the mean number of request M
staying at the service facility is pictured. The curves confirm our expectation
with respect to the service after repair and blocked operations during the failure.
M decreases as the retrial rate increases, which is clear. It is also worth pointing
out that the values for the reliable case and non-reliable blocked case coincide.
However, it is not so surprising since during the failure the number of requests
remain the same.

NT λ µ ν δ γ τ
Fig. 1,2 5 x axis 4.1,4.3,4.5,4.7,4.9 0.35,0.4,0.45,0.6,0.7 0.05 0.05 0.1
Fig. 3,4 5 2.5,3,4,6.5,9 6,7,8,13,16 x axis 0.05 0.05 0.1
Fig. 5,6 5 0.04,0.06,0.1,0.14,0.16 x axis 0.2,0.25,0.3,0.55,0.7 0.05 0.05 0.1
Fig. 7,8 5 0.6,0.7,0.8,0.9,1 4.1,4.3,4.5,4.7,4.9 0.35,0.4,0.45,0.6,0.7 0.05 x axis 0.1
Fig. 9 5 0.1 0.5 x axis 0.05 0.05 0.1
Fig. 10 5 0.06,0.08,0.1,0.12,0.14 0.3,0.4,0.5,0.6,0.7 x axis 0.05 0.05 0.1

Table 2. Input parameters

4. Conclusions

In this paper a heterogeneous finite-source homogeneous retrial queueing system
with non-reliable server is studied. The novelty of the investigation is this non–
reliability of the server and the heterogeneity of sources which makes the system
rather complicated. A tool MOSEL was used to formulate and solve the problem
and the main performance measures were derived and graphically displayed . Sev-
eral numerical calculations were performed to show the effect of the non-reliability of
the server on the mean response times of the calls and the mean number of requests
staying at the service facility.

Acknowledgment

This research has been supported by Sangji University Research Grant 2009. The
work is also supported by the TÁMOP 4.2.1./B-09/1/KONV-2010-0007 project. The
project is implemented through the New Hungary Development Plan, co-financed by
the European Social Fund and the European Regional Development Fund.

218 J. Sztrik and C.S. Kim

References

[1] Almási B., Response time for finite-source heterogeneous nonreliable queueing
systems, Computers and Mathematics with Applications , 31 (1996), 55-59.

[2] Almási B., Bolch G. and Sztrik J., Performability Modeling of Non-
homogeneous Terminal Systems Using MOSEL, 5th International Workshop on
Performnability Modeling of Computer and Communication Systems, Erlangen,
Germany, 2001, 37-41.

[3] Almási B., Bolch G. and Sztrik J. Heterogeneous finite-source retrial queues,
Journal of Mathematical Sciences, 121 (2004), 2590-2596.

[4] Almási B., Roszik J. and Sztrik J., Homogeneous finite-source retrial queues
with server subject to breakdowns and repairs, Mathematical and Computer
Modeling, 42 (2005), 673-682.

[5] Almási B., Roszik J. and Sztrik J., Heterogeneous Finite-Source Retrial
Queues with Server Subject to Breakdowns and Repairs, Journal of Mathemati-
cal Sciences, 132 (2006), 677-685.

[6] Artalejo J.R., New results in retrial queueing systems with breakdown of the
servers, Statistica Neerlandica , 48 (1994), 23-36.

[7] Artalejo J.R., Retrial queues with a finite number of sources, J. Korean Math.
Soc., 35 (1998), 503-525.

[8] Artalejo J.R., Accessible bibliography on retrial queues, Math. Comput. Mod-
eling, 30 (1999), 1-6.

[9] Artalejo J.R. and Gomez-Corral A., Retrial Queueing Systems, A Computa-
tional Approach, Springer Verlag, Berlin, 2008.

[10] Artalejo J.R., Rajagopalan V. and Sivasamy R., On finite Markovian queues
with repeated attemps, Investigacion Operativa, 9 (2000), 83-94.

[11] Aissani A. and Artalejo J. R., On the single server retrial queue subject to
breakdowns, Queueing Systems Theory Applications, 30 (1998), 309-321.

[12] Barcelo J., Escudero L. and Artalejo J., (eds), Proceedings of the 1st Interna-
tional workshop on retrial queues (WRQ’98), Madrid, Top 7(1998).

[13] Begain K., Bolch G. and Herold H., Practical performance modeling, applica-
tion of the MOSEL language, Kluwer Academic Publisher, Boston, 2001.

[14] Daigle J.N., Queueing theory for telecommunications, Addison-Wesley, New
York, 1992.

[15] Dragieva V.I., Single-line queue with finite source and repeated calls, Problems
of Information Transmission, 30 (1994), 283-289.

[16] Falin G.I., A survey of retrial queues, Queueing Systems 7 (1990), 127-168.

Tool supported investigations of heterogeneous finite-source retrial queues 219

[17] Falin G.I. and Templeton J.G.C., Retrial queues, Chapman and Hall, London,
1997.

[18] Falin G.I. and Artalejo J.R., A finite source retrial queue, European Journal of
Operational Research, 108 (1998), 409-424.

[19] Falin G.I., A multiserver retrial queue with a finite number of sources of primary
calls, Mathematical and Computer Modelling 30 (1999), 33-49.

[20] Falin G.I. and Gomez Corral A., On a bivariate Markov process arising in the
theory of single-server retrial queues, Statistica Neerlandica, 54 (2000), 67-78.

[21] Gomez Corral A., Analysis of a single-server retrial queue with quasi-random
input and nonpreemptive priority, Computers and Mathematics with Applica-
tions, 43 (2002), 767-782.

[22] Houck D.J. and Lai W.S., Traffic modelling and analysis of hybrid fibercoax
systems, Computer Networks and ISDN Systems, 30 (1998), 821-834.

[23] Jain R., The art of computer systems performance analysis, John Wiley and
Sons, New York, 1991.

[24] Janssens G.K., The quasi-random input queueing system with repeated attempts
as a model for collision-avoidance star local area network, IEEE Transactions on
Communications, 45 (1997), 360-364.

[25] Kalmychkov A.I. and Medvedev G.A. Probability characteristics of Markov
local-area networks with random-access protocols, Automatic Control and Com-
puter Science, 24 (1990), 38-45.

[26] Khomichkov I.I., Study of models of local networks with multiple-access pro-
tocols, Automation and Remote Control, 54 (1993), 1801-1811.

[27] Kok A.G., Algorithmic methods for single server systems with repeated attemps,
Statistica Neerlandica, 38 (1984), 23-32.

[28] Kornyshev Y.N., Design of a fully accessible switching system with repeated
calls, Telecommunications, 23 (1969), 46-52.

[29] Kovalenko I.N., Kuznetsov N.Yu. and Pegg P.A., Mathematical theory of re-
liability of time dependent systems with practical applications, John Wiley and
Sons, Chichester, 1997.

[30] Kulkarni V. G. and Choi Bong Dae, Retrial queues with server subject to break-
downs and repairs, Queueing Systems Theory and Applications, 7 (1990), 191-
208.

[31] Li Hui and Yang Tao, A single server retrial queue with server vacations and
a finite number of input sources, European Journal of Operational Research, 85
(1995), 149-160.

[32] Mehmet-Ali M.K., Hayes J.F. and Elhakeem A.K., Traffic analysis of a lo-
cal area network with star topology, IEEE Transactions on Communications, 36
(1988), 703-712.

[33] Ohmura H. and Takahashi Y., An analysis of repeated call model with a finite
number of sources, Electronics and Communications in Japan, 68 (1985), 112-
121.

220 J. Sztrik and C.S. Kim

[34] Ravichandran N., Stochastic methods in reliabilty theory, John Wiley and Sons,
New York, 1990.

[35] Stepanov S.N., The analysis of the model with finite number of sources and
taking into account the subscriber behaviour, Automation and Remote Control,
55 (1994), 100-113.

[36] Sztrik J. and Pósafalvi A., On the heterogeneous machine interference with
limited server’s availability, European Journal of Operational Research, 28
(1987), 321-328.

[37] Takagi H., Queueing Analysis, A Foundation of Performance Evaluation, Vol.
2., Finite Systems, North-Holland, Amsterdam, 1993.

[38] Tran-Gia P. and Mangjes M., Modeling of customer retrial phenomenon in
cellural mobile networks, IEEE Journal of Selected Areas in Communications,
15 (1997), 1406-1414.

[39] Trivedi K. S., Probability and statistics with reliability, queueing and computer
science applications, Prentice-Hall, Englewood Cliffs, 1982.

[40] Wang Jinting, Cao Jinhua and Li Quanlin, Reliability analysis of the retrial
queue with server breakdowns and repairs, Queueing Systems Theory and Appli-
cations, 38 (2001), 363-380.

(Received September 2, 2010)

J. Sztrik
Faculty of Informatics
University of Debrecen
H-4010 Debrecen, P.O.B. 12
Hungary
jsztrik@inf.unideb.hu

C.S. Kim
Sangji University
Wonju, Korea

