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THREE REMARKS
ON THE CONJUCTIVELY POLYNOMIAL–LIKE

BOOLEAN FUNCTIONS

J. Gonda (Budapest, Hungary)

Abstract. A Boolean function is conjunctively polynomial-like if the

spectra of its modified conjunctive normal form and its Zhegalkin poly-

nomial are equal. In the following article some equivalent forms of the

previous definition are given and furthermore it is pointed out that the given

definition is the natural equivalent of the similar notion of the polynomial-

like Boolean functions.

In this article disjunction and logical sum, conjunction and logical product,
exclusive or and modulo two sum, as well as complementation and negation are
used in the same sense and they are denoted respectively by +, · (or simply
without any operation sign), ⊕ and .̄ The elements of the field with two
elements and the elements of the Boolean algebra with two elements are denoted
by the same signs, namely by 0 and 1; N denotes the non-negative integers,
and N+ the positive ones.

1. Introduction

1.1. It is well-known that an arbitrary two-valued logical function of
n variables can be written in the uniquely determined canonical disjunctive
normal form, i.e. as a logical sum whose members are pairwise distinct logical
products of n factors, where all of such logical products contain every logical
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09/1/KMR-2010-003.



190 J. Gonda

variable exactly once, either negated or not negated exclusively. Clearly, there
exist exactly 2n such products. Supposing that the variables are indexed by the
integers 0 ≤ j < n, these products can be numbered by the numbers 0 ≤ i < 2n

in such a way that we consider the non-negative integer containing 0 in the j-
th position of its binary expansion if the j-th variable of the given product is
negated, and 1 in the other case. Of course, this is a one to one correspondence
between the 2n distinct products and the integers of the interval [0..2n − 1],

and if i =
n−1∑
j=0

a
(i)
j 2j , where a

(i)
j is either 0 or 1, then the product belonging to

it is

(1) m
(n)
i =

n−1∏

j=0

(
a
(i)
j ⊕Xj

)
.

Such a product is called minterm (with n variables).With the numbering
given above we numbered the Boolean functions of n variables, too. A Boolean
function is uniquely determined by the minterms contained in its canonical
disjunctive normal form, so a Boolean function is uniquely determined by a 2n

long sequence of 0-s and 1-s, where a 0 in the j-th position (now 0 ≤ j < 2n)
means that m

(n)
j does not occur in that function, and 1 means that the canonical

disjunctive normal form of the function contains the minterm of the index j,

i.e. for k =
2n−1∑
i=0

α
(k)
i 2i with α

(k)
i ∈ {0, 1}

(2) f
(n)
k =

2n−1∑

i=0

α
(k)
i m

(n)
i .

Now f
(n)
k denotes the k-th Boolean function of n variables.

A similar representation of a Boolean function is the canonical conjunctive
normal form of the function. Let us consider

(3) M
(n)
i =

n−1∑

j=0

(
a
(i)
j ⊕Xj

)

for 2n > i ∈ N. This function, the i-th maxterm of n variables is equal to 0
if and only if Xj = a

(i)
j for every 0 ≤ j < n. By these maxterms a Boolean

function can be expressed as

(4) f (n) =
2n−1∏

i=0

(
αi + M

(n)
i

)
,
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where αi = f (n)
(
a
(i)
n−1, . . . , a

(i)
0

)
, and

(5) f
(n)
k =

2n−1∏

i=0

(
α

(k)
i + M

(n)
i

)
.

In [7] it were defined the modified maxterms by

(6) M
(n)′
i =

n−1∑

j=0

(
a
(i)
j ⊕ xj

)
.

It is easy to see that M
(n)
i = M

(n)′
2n−1−i. Now if f (n) =

2n−1∏
i=0

(
βi + M

(n)′
i

)
= f

(n)
k

then αi = f (n)
(
a
(i)
n−1, . . . , a

(i)
0

)
= β2n−1−i. This form of the function given by

the modified maxterms is the modified conjunctive normal form of the function.

For u ⊕ v = u ⊕ v, so a
(i)
j ⊕ xj = a

(i)
j ⊕ xj and M

(n)′
i =

n−1∑
j=0

(
a
(i)
j ⊕ xj

)
. If

g(n) =
2n−1∏
i=0

(
βi + M

(n)
i

)
, then

(7)

f (n) (xn−1, . . . , x0) =
2n−1∏

i=0


αi +

n−1∑

j=0

(
a
(i)
j ⊕ xj

)

 =

=
2n−1∏

i=0

(
αi + M

(n)
i

)
=

2n−1∏

i=0

(
βi + M

(n)′
i

)
=

=
2n−1∏

i=0


βi +

n−1∑

j=0

(
a
(i)
j ⊕ xj

)

 =

= g(n) (xn−1, . . . , x0) = g(n) (xn−1, . . . , x0) =

= g(n)D (xn−1, . . . , x0) ,

where D denotes the dual of the function. As if f = gD then g = fD, so g(n)

is the complement of the dual of f (n) in (7).

Another possibility for giving a Boolean function is the so-called Zhegalkin-

polynomial. Let S
(n)
i =

n−1∏
j=0

(
a
(i)
j + Xj

)
, where i =

n−1∑
j=0

a
(i)
j 2j again. This
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product contains only non-negated variables, and the j-th variable is contained
in it if and only if the j-th digit is 1 in the binary expansion of i. There
exist exactly 2n such products which are pairwise distinct. Now any Boolean
function of n variables can be written as a modulo two sum of such terms, and
the members occurring in the sum are uniquely determined by the function.
This means that we can give the function by a 2n-long 0 - 1 sequence, and if
the i-th member of such a sequence is ki then

(8) f (n) =
2n−1⊕
i=0

kiS
(n)
i .

Between the first and third representations of the same Boolean function
there is a very simple linear algebraic transform. In [3] it is pointed out
that considering the coefficients of a Boolean function of n variables and
the coefficients of the Zhegalkin polynomial of n variables, respectively, as
the components of an element of a 2n-dimensional linear space over F2, the
relation between the vectors belonging to the two representations of the same
Boolean function of n variables could be given by k = A(n)α. Here k is
the vector containing the components of the Zhegalkin polynomial, α is the
vector, composed of the coefficients of the disjunctive representation of the
given function, and A(n) is the matrix of the transform in the natural basis.
In the article mentioned above it is proved that

(9) A(n) =





(1) if n = 0,
(

A(n−1) 0(n−1)

A(n−1) A(n−1)

)
if n ∈ N

and as a consequence that

(10) A(n)2 = I(n),

where I(n) and 0(n) denote the 2n-dimensional identity and zero matrix,
respectively. From this follows that if k = A(n)α, then α = A(n)k. In
the special case when α = k, the corresponding function is a polynomial-like
Boolean function, defined in [6].

There is a similar relationship between the modified conjunctive normal
form and the Zhegalkin polynomial of the same Boolean function, namely k =
=

(
A(n)P(n)

)
α, if α is the spectrum of the modified conjunctive normal form

of the function and P(n) is a 2n×2n matrix with the elements Pi,j = δ2n−1−i,j ,
that is with 1 in the side diagonal and with 0 at the other positions of the
matrix. In [7] the notation U(n) = A(n)P(n) was applied. Now if α = k, then
the corresponding function is a conjunctively polynomial-like Boolean function.
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1.2. Let T be an n×m matrix, and let T∗ be such a matrix that (T∗)i,j =
= Tm−1−j,n−1−i for every n > i ∈ N and m > j ∈ N, that is, T∗ is the
transpose of T with respect to the side diagonal of the matrix. Then the
following properties are valid:

(1) (a) (T∗)∗ = T;

(b)
(
TT

)∗
= (T∗)T ;

(c) (cT)∗ = cT∗;

(d) (T1 + T2)
∗ = T∗1 + T∗2;

(e) (T1T2)
∗ = T∗2T

∗
1.

(2) If P[t] is a t × t matrix so that P
[t]
i,j = δt−1−i,j for any t > i ∈ N and

t > j ∈ N, then

(
P[t]

)2

= I(t×t);(a)
(
P[t]

)∗
= P[t] =

(
P[t]

)T

;(b)

P[n]TP[m] = (T∗)T
.(c)

(3) From the last property we get that

T∗P[n] = P[m]TT ;(a)

if T∗ = T (and then necessarily m = n) then P[n]TP[n] =(b)

= TT ∧TP[n] = P[n]TT .

From now on let P(n) = P[2n].

2. Development

2.1. As A(0) = (1), so
(
A(0)

)∗
= A(0). Supposing that

(
A(n)

)∗
= A(n)

we get that (
A(n+1)

)∗
=

(
A(n) 0(n)

A(n) A(n)

)∗
=
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(11)
=

( (
A(n)

)∗ (
0(n)

)∗
(
A(n)

)∗ (
A(n)

)∗
)

=

=
(

A(n) 0(n)

A(n) A(n)

)
= A(n+1),

so
(
A(n)

)∗
= A(n) for any n ∈ N. With 3b in 1.2 in the Introduction we get

that

(12) A(n)P(n) = P(n)
(
A(n)

)T

and

(13)
(
A(n)

)T

P(n) = P(n)A(n).

In [7] it was proved that
(
A(n)P(n)

)3
= I(n), so

(14) P(n)A(n) =
(
A(n)P(n)

)2

= A(n)
(
P(n)A(n)P(n)

)

and then

(15)
A(n)P(n)A(n) = P(n)A(n)P(n) =

=
((

A(n)
)∗)T

=
(
A(n)

)T

.

From the last result we get that A(n)
(
A(n)

)T
A(n) = P(n), and then

(16) A(n)
(
A(n)

)T

= P(n)A(n) =
(
A(n)

)T

P(n)

and

(17)
(
A(n)

)T

A(n) = A(n)P(n) = P(n)
(
A(n)

)T

.

With the previous results we proved the following theorem.

Theorem 1. The following statements are equivalent:
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(1)

v =
(
A(n)P(n)

)
u;(a)

v =
(
P(n)

(
A(n)

)T
)

u;(b)

P(n)v =
(
A(n)

)T

u;(c)

A(n)v = P(n)u.(d)

(2)

u =
((

A(n)
)T

P(n)

)
u;(a)

u =
(
P(n)A(n)

)
u;(b)

u =
(
A(n)P(n)

)
u;(c)

u =
(
P(n)

(
A(n)

)T
)

u;(d)

u =
((

A(n)
)T

A(n)

)
u;(e)

u =
(
A(n)

(
A(n)

)T
)

u;(f)

P(n)u = A(n)u;(g)

P(n)u =
(
A(n)

)T

u;(h)

A(n)u =
(
A(n)

)T

u;(i)
(
A(n)P(n)

)
u =

(
P(n)A(n)

)
u.(j)

2.2. From the results in Theorem 1 we emphasize the following.

Theorem 2. If u is the spectrum of the modified conjunctive normal form
of a conjunctively polynomial-like Boolean function then the Boolean function
determined by u← = Pu as the spectrum of the modified conjunctive normal
form of the function is conjunctively polynomial-like, too.
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Proof. As we saw (2g), if u =
(
A(n)P(n)

)
u, then P(n)u = A(n)u, and

then

(18)

P(n)u = A(n)u = A(n)
(
I(n)u

)
=

= A(n)
((

P(n)P(n)
)

u
)

= A(n)
(
P(n)

(
P(n)u

))
=

=
(
A(n)P(n)

)(
P(n)u

)
.

2.3. Let γ ∈ F2n

2 , and let f (n) such a Boolean-function that its modified

conjunctive normal form contains M
(n)′
i , where 2n > i ∈ N, if and only if

γi = 1. Then

(19) f (n) =
2n−1∏

i=0

(
γi + M

(n)′
i

)
=

2n−1∏

i=0

(
αi + M

(n)′
i

)

and so α = γ = 1(n)+γ, where 1(n) ∈ F2n

2 is such a vector, that 1i = 1 for every
2n > i ∈ N (briefly we consider the complement of a given Boolean function).
Now we could consider those functions, for which γ = k, that is those functions
which contain the term indexed by i in their Zhegalkin-polynomials exactly in
those cases if the term belonging to the same index occurs in the spectra of
the modified conjunctive normal forms of the functions. Even more in some
respect could be rather these functions considered conjunctively polynomial-
like Boolean functions, but this is impossible by the following theorem.

Theorem 3. The only Boolean function with equal spectra belonging to
the Zhegalkin polynomial and to the modified conjunctive normal form of the
complement of the function is f

(1)
2 , that is the identity function of one variable.

Before the proof of the previous theorem we would like to remind of U(n) =
= A(n)P(n):

(20) U(n) =





(1) n = 0,
(

0(n−1) U(n−1)

U(n−1) U(n−1)

)
n > 0.

From the structure of the matrix it is easy to see that

• all of the elements of the side diagonal of the matrix are equal to 1;
• the elements above of the side diagonal are equal to 0 (that is U(n) is a

bottom triangle matrix with respect to the side diagonal);
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• the matrix is symmetrical to the main diagonal;
• the last row and the last column contain only 1-s;
• the number of the 1-s contained in a row (or in a column) is even with the

exception of the first row (and the first column).

Now let us see the proof of the theorem.

Proof. If γ ∈ Fn
2 is the vector containing a 1 at the position indexed by i,

where 2n > i ∈ N, exactly in the case if the modified conjunctive normal form
of the Boolean function of n variables contains M

(n)′
i then the spectrum of the

Zhegalkin-polynomial of the same function is equal to

(21)
k =

(
A(n)P(n)

)(
1(n) + γ

)
=

(
A(n)P(n)

)
1(n) +

(
A(n)P(n)

)
γ =

= e
(n)
0 +

(
A(n)P(n)

)
γ,

where e
(n)
0 is the 2n-dimensional vector over F2 with 1 exactly at the position

belonging to the index i = 0. Thus if k = γ, then

(22) e
(n)
0 + γ =

(
A(n)P(n)

)
γ = U(n)γ.

If u ∈ F2n

2 is the solution of the previous equation then

(23)

1⊕ 2n−1⊕
i=0

ui = (1⊕ u0)⊕
2n−1⊕
i=1

(0⊕ ui) =

=
2n−1⊕
i=0

((
e
(n)
0

)
i
⊕ ui

)
=

2n−1⊕
i=0

(
e
(n)
0 + u

)
i
=

=
2n−1⊕
i=0

(
U(n)u

)
i
=

2n−1⊕
i=0

2n−1⊕
j=0

U
(n)
i,j uj =

2n−1⊕
j=0

uj

2n−1⊕
i=0

U
(n)
i,j =

=
2n−1⊕
j=0

ujδ0,j = u0

and from here we get that

(24) 1 = u0 ⊕
2n−1⊕
i=0

ui =
2n−1⊕
i=1

ui.
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If n = 0, then 1 =
20−1⊕
i=1

ui =
0⊕

i=1
ui = 0, which is a contradiction. If n = 1,

then with 1 =
21−1⊕
i=1

ui =
1⊕

i=1
ui = u1

(25)
1⊕ u0 =

(
e
(1)
0 + u

)
0

=
(
U(1)u

)
0

=
21−1⊕
j=0

U
(1)
0,j uj =

= 0 · u0 ⊕ 1 · u1 = u1 = 1,

that is u = 01 is a solution. If γ = u, then the appropriate Boolean function is
the following:

(26)

f (1) (x0) =
21−1∏

i=0

(
γi + M

(n)′
i

)
=

=
(
0 + M

(1)′
0

) (
1 + M

(1)′
1

)
=

= (1 + x0) (0 + x0) = 1 · x0 = x0.

Finally let n ≥ 2. Then

(27)

2n−1−2⊕
i=1

ui ⊕ u2n−1 =
2n−1−2⊕

i=1
(0⊕ ui)⊕ (0⊕ u2n−1) =

=
2n−1−2⊕

i=1

((
e
(n)
0

)
i
⊕ ui

)
⊕

((
e
(n)
0

)
2n−1

⊕ u2n−1

)
=

=
2n−1−2⊕

i=1

(
e
(n)
0 + u

)
i
⊕

(
e
(n)
0 + u

)
2n−1

=

=
2n−1−2⊕

i=1

(
U(n)u

)
i
⊕

(
U(n)u

)
2n−1

=

=
2n−1−2⊕

i=1

2n−1⊕
j=0

U
(n)
i,j uj ⊕

2n−1⊕
j=0

U
(n)
2n−1,juj =

=
2n−1⊕
j=0

(
2n−1−2⊕

i=1
U

(n)
i,j

)
uj ⊕

2n−1⊕
j=0

U
(n)
2n−1,juj =

=
2n−2⊕

j=2n−1+1
uj ⊕ (u2n−1−1 ⊕ u2n−1) =

=
2n−1⊕

j=2n−1−1
uj ⊕ u2n−1 ,
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so
2n−1−2⊕

i=1
ui =

2n−1⊕
i=2n−1−1

ui and rearranging we get
2n−1⊕
i=1

ui = 0. Comparing this

result with the earlier result in (24) that is
2n−1⊕
i=1

ui = 1 we get that 0 = 1, which

is an obvious impossibility.
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