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REMARKS ON THE NUMBER SYSTEMS
OF THE GAUSSIAN INTEGERS

G. Nagy (Budapest, Hungary)

Abstract. In the first section I prove which α = A + i (A ∈ Z)
form a number system with the symmetric digit set in a new way. With

the modification of the canonical coefficient set we can get new number

systems, specially some with holes. In the second section I show that (−A+
+i,−A, {0, 1, . . . , A(A2 + 1) − 1}) is a simultaneous number system if

A > 1.

1. Remarks on modified canonical number systems

Let α = A + Bi, t = N(α), A = complete remainder set mod α. We say
that (α,A) is a number system (in Z[i]), if every β ∈ Z[i] can be written in
finite form β = b0 + b1α + . . . + bkαk, where bj ∈ A (j = 0, 1, . . . , k). We say
that α is the base, and A is the coefficient set. The number system (α,A) with
A = {0, 1, . . . , t−1} is called canonical. I. Kátai and J. Szabó [1] determined all
possible bases of canonical number systems. Namely they proved that α is the
base of a canonical number system if and only if Re(α) < 0 and Im(α) = ±1.

We are interested in the following question: let A = {a1, a2 = a1 +
+1, . . . , at = a1 + (t − 1)}, a1 ∈ Z. Determine all those bases α for which
(α,A) is a number system.

It is clear that if α is such a base, then:

(1) −t < a1 ≤ 0,

(2) B 6= 0,
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(3) |B| = 1,

(4) if α is such a base, then α is such a base as well.

I. Kátai determined in [2] all those α = A+i, for which (α,As) is a number

system, where As =
{
−

[
A2

2

]
, . . . ,

[
A2+1

2

]}
.

I give a new proof for this assertion.

Theorem 1. If α = A + i, A > 4, then (α,As) is a number system.

Proof. Let us consider an arbitrary Gaussian integer β = a + bi. Whilst
β = a + bi = a−Ab + b(A + i) thus we can always write β in the form

β = a0 + a1(A + i) + a2(A + i)2 + . . . + an(A + i)n, aj ∈ Z.

Consider |a0|+ . . . + |an| for all finite representations of β, and choose one for
which |a0| + . . . + |an| is minimal. Let τ(β) = |a0| + |a1| + . . . + |an|. We will
use the following equations:

A2 + 1 = 0 + 2A · (A + i)− 1 · (A + i)2,

−(A2 + 1) = 0− 2A · (A + i) + 1 · (A + i)2.

Consider the representation β = a0 + . . .+anαn, for which the sum is minimal.
Let a0 = q0t + r0, r0 ∈ As. We can write β = r0 + αβ1, where

(1.1) β1 = a1 + a2α + . . . + an−1α
n−1, in the case q0 = 0,

(1.2) β1 = (a1 + q0 · 2A) + (a2 − q0)α + a3α
2 + . . . + an−1α

n−1, in the
case q0 > 0,

(1.3) β1 = (a1 − |q0| · 2A) + (a2 + |q0|)α + a3α
2 + . . . + an−1α

n−1, in the
case q0 < 0.

Lemma 1. Let A > 4. We have τ(β1) ≤ τ(β), and if τ(β1) = τ(β), then
a0 = 0, and so α divides β.

Proof. τ(β1) is smaller or equal to the sum of absolute values of the
coefficients of the expansions of (1.1), (1.2), (1.3), respectively.

τ(β) = |a0|+ |a1|+ |a2|+
∑

j>2

|aj |.

A) If q0 = 0, then τ(β1) ≤ |a1| + |a2| +
∑
j>2

|aj |, thus τ(β) ≥ τ(β1) and

equation holds if and only if a0 = 0.
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B) If q0 > 0, then τ(β1) ≤ |a1| + 2Aq0 + |a2| + q0 +
∑
j>2

|aj |. Let us solve

the inequality:

|a0|+ |a1|+ |a2| ≥ |a1|+ 2Aq0 + |a2|+ q0,

r0 + (A2 + 1) · q0 ≥ (2A + 1) · q0.

Using r0 + (A2 + 1) · q0 ≥ (A2 + 1) · q0 −
⌊

A2

2

⌋
we get:

(A2 + 1) · q0 −
⌊

A2

2

⌋
≥ (2A + 1) · q0,

(A2 − 2A) · q0 ≥
⌊

A2

2

⌋
.

Thus τ(β1) < τ(β) holds in this case, if A > 4.

C) If q0 < 0, then τ(β1) ≤ |a1|+ 2Aq0 + |a2|+ |q0|+
∑
j>2

|aj |. Let us solve

the inequality:

|a0|+ |a1|+ |a2| ≥ |a1|+ 2A|q0|+ |a2|+ |q0|,
|r0 − (A2 + 1) · |q0|| ≥ (2A + 1) · |q0|.

Using |r0 − (A2 + 1) · |q0|| ≥ (A2 + 1) · |q0| −
⌊

A2+1
2

⌋
we get

(A2 + 1) · |q0| −
⌊

A2 + 1
2

⌋
≥ (2A + 1) · |q0|,

(A2 − 2A) · |q0| ≥
⌊

A2 + 1
2

⌋
.

Thus τ(β1) < τ(β).

Proof of Theorem 1. This is an immediate consequence of Lemma 1.
Indeed: if β = 0, then it can be represented in (α,As). Assume that β 6= 0. Let
us consider the sequence τ(β), τ(β1), τ(β2) . . . . If there is a ν for which τ(βν) =
= 0, then β can be represented. It remains the case when there is a ν for which
0 6= τ(βν) = τ(βν+1) = τ(βν+2) = . . . . But then βν = αkβν+k (k = 1, 2, . . .),
consequently αk|βν for every k, which implies that βν = 0. We are ready.
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This proof works for the case A < −4, too. If |A| ≤ 4 we can determine
whether (α,As) is a number system by checking the Gaussian integers with
absolute value less than ⌊

A2+1
2

⌋

|α| − 1
.

In the cases α = 3+ i, α = 2+ i, α = 1+ i and α = −2+ i we can find periodic
elements.

Lemma 2. If α = A+ i and ∃aj ∈ A : A2− 2A+2|aj , then (α,A) is not
a number system.

Proof.
aj + ajα + ajα

2 + . . . =
aj

1− α
,

aj

1− α
=

aj

1− (A + i)
=

aj

(1−A)− i
· (1−A) + i

(1−A) + i
=

aj(1−A + i)
A2 − 2A + 2

=

=
aj(1−A)

A2 − 2A + 2
+

aj

A2 − 2A + 2
i.

If A2 − 2A + 2|aj , then aj

1−α ∈ Z[i] and its expansion would not be finite, thus
(α,A) cannot be a number system.

Remark 1. If −(A2 − 2A + 2) < a1 and at < A2 − 2A + 2, then {−2A +
+1,−2A + 2, . . . , 2A− 2, 2A− 1} ⊂ A.

Theorem 2. If α = A + i (A > 3), and A = {a1, a1 + 1, . . . , a1 + t− 1},
furthermore, a1 > −(A2 − 2A + 2) and a1 + t− 1 < A2 − 2A + 2, then (α,A)
is a number system.

Proof. Let z ∈ Z[i] be an arbitrary Gaussian integer. By Theorem 1 we
have the following finite expansion of z :

z =
n∑

j=0

ajα
j , aj ∈

{
−

⌊
A2

2

⌋
, . . . ,

⌊
A2 + 1

2

⌋}
= As.

Let us examine a0, a1, . . . If aj 6∈ A is realized for some j then let us change aj ,
aj+1 and aj+2 as follows:

if aj + t ∈ A, then

aj := aj + t, aj+1 := aj+1 − 2A, aj+2 := aj+2 + 1;

if aj − t ∈ A, then

aj := aj − t, aj+1 := aj+1 + 2A, aj+2 := aj+2 − 1.
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Depending on the modification of an−1 and an we get 9 different values for
(an+1, an+2) :

(0, 0), (2A,−1), (−2A, 1), (−1, 0), (2A− 1,−1),

(−2A− 1, 1), (1, 0), (2A + 1,−1), (−2A + 1, 1),

0, 1, −1, 2A− 1 and −2A + 1 are in A.

If 2A 6∈ A, then 2A − t ∈ A and whilst 2A − 1 · α = 2A − t + (2A − 1) ·
α − 1 · α2 we get a finite expansion with appropriate digits. Similarly we get
that (2A + 1)− 1 · α = (2A + 1− t) + (2A− 1) · α − 1 · α2, and it is a proper
expansion as well. Since 2A− t = −(A2− 2A + 1) ∈ A, therefore −2A− 1 ∈ A
and so −2A ∈ A.

If 2A ∈ A and 2A + 1 6∈ A, then in the case A = 4 we get that A = As, so
(α,A) is a number system. In the case A > 4, since 2A+1− t = −A2 +2A ∈ A
it is also true that −2A−1,−2A ∈ A, furthermore (2A+1)−1 ·α = (2A+1−
−t) + (2A− 1) ·α− 1 ·α2, so arbitrary Gaussian integer has a finite expansion
with proper digits. The proofs are similar in the cases −2A 6∈ A respectively
−2A ∈ A and −2A− 1 6∈ A.

Theorem 3. If α = −A+i (A > 2), and A = {a1, a1 +1, . . . , a1 +t−1},
furthermore 0 ∈ A, then (α,A) is a number system.

Proof. The proof is similar to the proof of Theorem 2.

Definition 1. We say that δ ∈ Z[i] is a hole in (α,A) if δ 6∈ Γk and
δ + ε ∈ Γk ∀ε ∈ {±1,±i} for some k ∈ N, where Γk = {z ∈ Z[i] | z =
= a0 + a1α + . . . + akαk, aj ∈ A}.

Theorem 4. Let α = −A+i and A = {0, 1, 2, . . . , A2−2, A2−1, 2A2+1},
where A ∈ Z, A > 2. Then (α,A) is a number system with hole.

Proof. First we shall prove that (α,A) is a number system, i.e. that every
Gaussian integer has a finite expansion with digits from A. We can reach this
by proceeding from the expansion with canonical digit set and making some
modifications. These modifications do not affect the digits with smaller index
than the modified digit and none of the digits becomes negative. A digit must
be modified if it is greater than A2 − 1. We need the following Lemmas.

Lemma 3.

A2 = 2A2 + 1 + 2Aα + α2,

A2 = 2A2 + 1− (A− 1)2α− (2A− 1)α2 − α3.

Remark 2. If A > 2, then 2A < A2, and so 2A ∈ A.



182 G. Nagy

Proof of the Lemma. The statements can be verified with simple
calculations.

Lemma 4.

A2 + 1 = 0 + (A− 1)2α + (2A− 1)α2 + α3,

A2 + 1 = 0− 2Aα− α2.

Proof. The statements can be verified with simple calculations.

If a digit is equal to A2, then we change it to 2A2 + 1 and we change
the other digits by Lemma 3. If a digit is greater than A2, then we decrease
it by A2 + 1 and we change the other digits by Lemma 4. Applying these
modifications the change of a digit affects at the most 3 more digits.

Lemma 5. Throughout the procedure none of the digits become greater
than 2A2 + 1.

Proof. Each digit is at the most three times increased and the increment
is at the most (A− 1)2, 2A− 1 and 1, so each digit is increased by at the most
(A− 1)2 + 2A− 1 + 1 = A2 + 1.

Let us consider the canonical expansion of an arbitrary Gaussian integer
z :

z = a0 + a1α + a2α
2 + . . . + anαn, ai ∈ {0, 1, . . . , A2}.

Let bi := ai for 0 ≤ i ≤ n and perform the following procedure:

First examine b0. If b0 < A2, then we do not change it. If b0 = A2

and b1 ≥ (A − 1)2 and b2 ≥ (2A − 1) and b3 ≥ 1, then we do the following
modifications:

b0 := 2A2 +1, b1 := b1− (A−1)2, b2 := b2− (2A−1), b3 := b3−1.

If b0 = A2 is realized but some of the other conditions not, then we do the
following modifications:

b0 := 2A2 + 1, b1 := b1 + 2A, b2 := b2 + 1.

After this we examine b1. In this case b1 > A2 is also possible. If b1 ≤ A2, then
we make the above modifications. If b1 > A2 and b2 ≥ 2A and b3 ≥ 1, then we
do the following modifications:

b1 := b1 − (A2 + 1), b2 := b2 − 2A, b3 := b3 − 1.
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If b1 > A2 is realized but some of the other conditions not, then we do the
following modifications:

b1 := b1−(A2+1), b2 := b2+(A−1)2, b3 := b3+2A−1, b4 := b4+1.

After the n-th step of this procedure when bn is modified to be in A we examine
bn+1, bn+2 and bn+3 (bi = 0, if i > n + 3). There are 3 cases:

1st case: bn+1 < A2.

In this case bn+2 < A2 and bn+3 < A2 hold, because bn+2 and bn+3 were
originally 0, and they were not increased by the modification of bn+1.

2nd case: bn+1 = A2.

In this case bn+2 is increased by 2A and bn+3 is increased by 1 with the
modification of bn+1, so none of them can increase over A2 − 1.

3rd case: bn+1 = A2 + 1.

It holds only if bn−2 > A2, bn−1 > A2 and bn > A2 stood. In this
case bn+1 = 2A and bn+2 = 1 hold so with the modification of bn+1 we get
bn+1 = 0, bn+2 = 0 and bn+3 = 0.

The existence of hole follows from

Lemma 6.

0 + (A2 − 2A− 1)(−A + i) + (A− 1)(−A + i)2 = A2 − i · (A2 + 1) + 1,

A2 − 1 + (A2 − 1)(−A + i) + (A)(−A + i)2 = A2 − i · (A2 + 1)− 1,

A− 1 + (A2 − 2A)(−A + i) + (A− 1)(−A + i)2 = A2 − i · (A2 + 1) + i,

A2 −A + (A2 − 2)(−A + i) + (A)(−A + i)2 = A2 − i · (A2 + 1)− i,

2A2+1+(2A−2)(−A+i)+(A2−A+2)(−A+i)2+(2A−1)(−A+i)3+(−A+i)4 =

= A2 − i · (A2 + 1).

Proof of the Lemma. The equations can be verified with simple
calculations.

Whilst A2 − 2A− 1, A− 1, A2 − 1, A, A2 − 2A, A2 −A, A2 − 2, 2A−
−2, A2 − A + 2 and 2A− 1 are all less than A2 and greater than 0, if A > 2,
thus the length of the expansion of A2 − i · (A2 + 1) is 5, and the length of the
expansion of its neighbours is 3, so A2 − i · (A2 + 1) is a hole.
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2. A remark on simultaneous number systems

Definition 2. We call the triple (α, N,A) a simultaneous number system
if arbitrary Gaussian integer z and rational integer n has a finite expansion in
the form:

z = a0 + a1α + . . . + akαk,

n = a0 + a1N + . . . + akNk

such that aj ∈ A.

Theorem 5. If α = −A + i, N = −A, A = {0, 1, . . . , A(A2 + 1) − 1},
A ∈ Z and A > 2, then (α, N,A) is a simultaneous number system.

Statement 1. For all z = a + bi ∈ Z[i] and n ∈ Z exist a0, a1, a2 ∈ Z,
such that z = a0 + a1α + a2α

2 and n = a0 + a1N + a2N
2.

Proof. Let us solve the following system of equations

a + bi = a0 + a1α + a2α
2,

n = a0 + a1N + a2N
2.

The solution is
a0 = n + Ab−A2a + A2n,

a1 = b− 2Aa + 2An,

a2 = −a + n.

If a, b and n are integers, then a0, a1 and a2 are integers as well.

Statement 2. -1 can be written as the sum of the powers of α and N
with the same positive coefficients.

Proof. Let us solve the following system of equations

−1 = b0 + b1α + b2α
2 + b3α

3,

−1 = b0 + b1N + b2N
2 + b3N

3.

The solution is
b0 = −1 + b3A + b3A

3,

b1 = b3 + 3b3A
2,

b2 = 3b3A,

b3 = b3.
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With the choice b3 = 1 we get

b0 = A3 + A− 1,

b1 = 3A2 + 1,

b2 = 3A,

b3 = 1.

If A > 1 then A3 +A−1, 3A2 +1 and 3A are positive, so the statement is true.

Corollary 1. For an arbitrary z = a + bi ∈ Z[i] and n ∈ Z exist

c0, c1, . . . , ck ∈ N such that z =
k∑

j=0

cjα
j and n =

k∑
j=0

cjN
j .

Statement 3.

A(A2 + 1) =

= 0 + (A3 − 3A2 + A− 1)α + (3A2 − 3A + 1)α2 + (3A− 1)α3 + α4,

A(A2 + 1) =

= 0 + (A3 − 3A2 + A− 1)N + (3A2 − 3A + 1)N2 + (3A− 1)N3 + N4.

Proof. The equations can be verified with simple calculations.

Statement 4. A3 − 3A2 + A− 1, 3A2 − 3A + 1 and 3A− 1 are positive
if A > 2.

Proof. The statement can be verified with simple calculations.

Proof of Theorem 5. Let z be an arbitrary Gaussian integer and let n
be an arbitrary rational integer. Let us choose from the expansions

z =
k∑

j=0

ejα
j ,

n =
k∑

j=0

ejN
j ,

where ej ∈ N the one for which τ(z, n) =
k∑

j=0

ej is minimal. Dividing e0 by

A(A2 + 1) we get

e0 = q0(A(A2 + 1)) + r0, 0 ≤ r0 < A(A2 + 1).
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So

z = r0 + (e1 + q0(A3 − 3A2 + A− 1))α + (e2 + q0(3A2 − 3A + 1))α2+

+(e3 + q0(3A− 1))α3 + (e4 + q0)α4 + e5α
5 + . . . + ekαk,

n = r0 + (e1 + q0(A3 − 3A2 + A− 1))N + (e2 + q0(3A2 − 3A + 1))N2+

+(e3 + q0(3A− 1))N3 + (e4 + q0)N4 + e5N
5 + . . . + ekNk.

This new expansion has the same weight as the previous one and r0 ∈ A.

z = r0 + z1α,

n = r0 + n1N,

τ(z1, n1) = τ(z, n)− r0.

So τ(z1, n1) is less than τ(z, n) or they are equal and r0 = 0. Continuing this
procedure we get that for some l ∈ N τ(zl, nl) = 0, so we get a finite expansion
of (z, n) with digits from A or for some m ∈ N rj = 0 holds if j ≥ m. In this
latter case from zm = rm + zm+1α we get that α|zm. From this and rm+1 = 0
we get that α2|zm . . . Whilst zm is divisible by an arbitrary power of α, thus
zm = 0, so we got a finite expansion of (z, n) with digits from A.

Theorem 6. (−2 + i,−2, {0, 1, . . . , 9}) is a simultaneous number system.

Proof. We shall prove that no nontrivial periodic element exists. If
(z, n) 6= (0, 0) is a periodic element, then the following inequalities hold:

|z| ≤ 9√
5− 1

,

|n| ≤ 9
2− 1

.

We can prove by simple computation, that such (z, n) does not exist.
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