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ON INVERSIVE CONGRUENTIAL GENERATOR
WITH A VARIABLE SHIFT

FOR PSEUDORANDOM NUMBERS
WITH PRIME POWER MODULUS

P. Varbanets and S. Varbanets

(Odessa, Ukraine)

Abstract. The inversive congruential method for generating uniform

pseudorandom numbers is a particularly attractive alternative to linear

congruential generators which have many undesirable regularities. In the

present paper, a new inversive congruential generator with a variable shift

and prime-power modulus is introduced. Exponential sums on inversive

congruential pseudorandom numbers are estimated.

1. Introduction

Nonlinear methods of generating uniform pseudorandom numbers in the
interval [0, 1) have been introduced and studied during the last twenty years.
The development of this attractive field of research is described in the survey
articles ([2, 8, 11, 21, 22, 27, 28, 30, 31, 32]) and in Niederreiter’s monograph
[29]. A particularly promising approach is the inversive congruential method.
The generated sequences of pseudorandom numbers have nice equidistribution
and statistical independence (unpredictability) properties ([3, 4, 6, 24, 25]).
Four types of inversive congruential generators can be distinguished, depending
on whether the modulus is a prime ([1, 11, 27]), an odd prime power ([33, 37,
38]), a power of two ([10, 12, 15]) or a product of distinct prime numbers ([5,
7, 9, 10, 17, 19, 20]).
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In the works of Chou ([1]), Eichenauer and Lehn ([11]), Eichenauer and
Topuzoǧlu ([14]), Niederreiter ([26]) have been studied the problem of when
the sequence of pseudorandom numbers (generated by the pseudorandom gen-
erator) has the maximal period. Niederreiter and Shparlinski ([33]) considered
the special exponential sums on inversive congruential pseudorandom numbers
with prime power modulus and obtained nontrivial results concerning the
distribution of these numbers in part of the period. For surveys of results
and applications of inversive congruential numbers see [17], [29], [35].

In the case of an odd prime-power modulus the inversive congruential
generator is defined in the following way:

Let p be a prime, p ≥ 3, m be a natural number, m ≥ 2. For given a, b ∈ Z,
(a, p) = 1, b ≡ 0 (mod p), we take an initial value ω0 = ω ∈ Z, (ω, p) = 1, and
then the recurrence relation

(1.1) ωn+1 ≡ aω−1
n + b (mod pm)

generates a sequence ω0, ω1, . . ., which we call the inversive congruential se-
quence modulo pm.

It is clear that the numbers ω0
pm , ω1

pm , . . . belong to the interval [0, 1) and
form a sequence of inversive congruential pseudorandom numbers with modulus
pm.

Such method of pseudorandom number generation was introduced in [14].
In practice, one works with a large power pm of a small prime p. Surveys of
results of inversive congruential pseudorandom numbers see in [13], [18], [20],
[27], [29].

For the investigation of equidistribution and statistical independence of

the sequence
{

ωk

pm

}
, k ≥ 0, we shall apply upper and lower bounds for the

exponential sums

(1.2) S(d)(h1, . . . , hd) =
N−1∑

k=0

epm(h1ωk + · · ·+ hdωk+d−1) (d = 1, 2, . . .),

where N ≤ τ , τ is a least period length of the sequence ω0, ω1, . . . considered
modulo pm, (h1, . . . , hd) ∈ Zd, (h1, . . . , hd) 6= 0 ∈ Zd. The sums Sd(h1, . . . , hd)
are considered in [21, 25, 33, 36, 37, 38].

The present paper deals with some generalization of the inversive congru-
ential sequence from (1.1) in such sense that we substitute a fixed shift b in
(1.1) by a variable shift bk+1 = b + (k + 1)cω.
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The organization of our paper is as follows. In the second and third sections
the auxiliary results are stated and the behavior of inversive congruential
sequences is discussed. Here also we construct two representations of ωk: as
the polynomial on k and as the polynomial on ω, and obtain condition for
maximal value of a least period length of the generated sequence ωk. The main
results of the present paper are established in the fourth and fifth sections, in
which upper bounds are obtained for the exponential sums of type (1.2) and
upper and lower bounds found for the discrepancy of the sequence of the points
ωk

pm ∈ [0, 1) and the points
(

ωk

pm , ωk+1
pm

)
∈ [0, 1)2 accordingly.

Notations. The letter p denotes a prime number, p ≥ 3. For m ∈ N
the notation Rm (accordingly, R∗m) denotes the complete(accordingly, reduced)
system of residues modulo pm. We write gcd(a, b) = (a, b) to note the greatest
common divisor of a and b. For z ∈ Z, (z, p) = 1 let z−1 be the multiplicative
inverse of a modulo pm. We write νp(A) = α if pα|A, pα+1 6 |A. For real t

and natural q, the abbreviation eq(t) = e2πi t
q is used and u · v stands for the

standard inner product u, v ∈ Rd.

2. Auxiliary results

We need the following three simple statements.

Lemma 1. Let q > 1 be a natural number, a ∈ Z. Then

q−1∑
x=0

e2πi ax
q =





q if q|a,

0 if q6 |a.

Lemma 2. Let p > 3 be a prime, m ∈ N, m ≥ 2 and let f(x) = A1x +
+A2x

2+p(A3x
3+· · ·) be a polynomial over Z, moreover, (A1, A2, p) = 1. Then

∣∣∣∣∣
∑

x∈Rm

e2πi
f(x)
pm

∣∣∣∣∣ =





0 if (A1, p) = 1, p|A2,

p
m
2 if (A2, p) = 1.

These lemmas are well-known.
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Lemma 3. Let f(x) = A1x + A2x
2 + p(A3x

3 + · · ·) and g(x) = B1x +
+p(B2x

2 + · · ·) be polynomials over Z, and let νp(A2) = ν > 0, νp(Aj) ≥ ν,
j = 3, 4, . . .; (B1, p) = 1. Then for ν ≤ m, m ≥ 2, the following estimates

(2.1)

∣∣∣∣∣
∑

x∈Rm

e2πi
f(x)
pm

∣∣∣∣∣ =





p
m+ν

2 if νp(A1) ≥ ν,

0 else,

(2.2)

∣∣∣∣∣∣
∑

x∈R∗m

e2πi
f(x)+g(x−1)

pm

∣∣∣∣∣∣
≤ 4p

m
2

hold.

Proof. The relation (2.1) is a corollary of Lemma 2. In order to prove
(2.2) we put x = y + pm−1z, y = 1, . . . , pm−1, (y, p) = 1, z = 0, 1, . . . , p − 1.
Bearing in mind that

xj ≡yj + jpm−1yj−1z (mod pm),

x−j ≡y−j − jpm−1y−j−1z (mod pm), j = 1, 2, 3, . . .

we get

f(x) + g(x−1) ≡ f(y) + f ′(y)pm−1z + g(y−1)−B1p
m−1y−2z (mod pm).

Hence, applying Lemma 1 we obtain
∣∣∣∣∣∣

∑

x∈R∗m

e2πi
f(x)+g(x−1)

pm

∣∣∣∣∣∣
= p

∣∣∣∣∣∣
∑

y∈R∗
m−1

e2πi
f(y)+g(y−1)

pm

∣∣∣∣∣∣
≤





p

{∣∣∣∣∣
∑

y∈R∗
m−2

e
2πi

f1(y)+g1(y−1)
pm−2

∣∣∣∣∣ +

∣∣∣∣∣
∑

y∈R∗
m−2

e
2πi

f2(y)+g2(y−1)
pm−2

∣∣∣∣∣

}
in the case (A),

p

∣∣∣∣∣
∑

y∈R∗
m−2

e
2πi

f3(y)+g3(y−1)
pm−2

∣∣∣∣∣ in the case (B),

0 in the case (C),

where
(A) the congruence A1 −B1y

−2 ≡ 0 (mod p) has two solutions,
(B) the congruence A1 −B1y

−2 ≡ 0 (mod p) has one solution,
(C) the congruence A1 −B1y

−2 ≡ 0 (mod p) has no solutions.
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Now, by induction on m and by the estimate of the Kloosterman sum we
obtain the assertion (2.2).

3. Preparations

Let us consider the transformation Ψk defined on R∗m:

(3.1) Ψk+1(ω) =
a

Ψk(ω)
+ b + (k + 1)c (mod pm), k = 0, 1, 2, . . . ,

where p is a prime number, m ∈ N, m ≥ 3; a, b, c ∈ Z, (a, p) = 1, b ≡ c ≡
≡ 0 (mod p), νp(b) < νp(c), ω ∈ R∗m, Ψ0(ω) = ω.

In subsequent we shall write Ψk(ω) = ωk, ω0 = ω is the initial value. The
sequence {ωk} defined by (3.1) can be considered as the generalization of the
inversive congruential sequence {uk}, was studied by H. Niederreiter and I.
Shparlinski in [33]:

(3.2) uk+1 =
a

uk
+ b (mod pm), u0 ∈ R∗m.

The parameter b is called naturally a shift of inversive congruential number
generator, which does not depend on k. But in our case ωk has a variable
shift b + (k + 1)cω. We shall say that {ωk} defined by (3.1) is the inversive
congruential sequence with variable shift. In order to show that the sequence
ωk is defined by the parameters a, b, c, ω we shall denote it as Ω(ω, a, b, c; pm).
In this section we shall obtain two representations for ωk ∈ Ω(ω, a, b, c; pm):

the representation of ωk as a polynomial on k modulo pm, ωk ≡ fω(k),

the representation of ωk as a polynomial on ω and ω−1 modulo pm, ωk ≡
≡ Fk(ω, ω−1).

Lemma 4. Let Ψk be the transformation defined by (3.1) and let cr ≡
≡ 0 (mod pm), r > 1. Then for k = 0, 1, 2, . . .

(i) the transformation is a permutation of R∗m,

(ii) Ψk(ω) := ωk ≡ A
(k)
0 + A

(k)
1 ω + · · ·+ A

(k)
r ωr

B
(k)
0 + B

(k)
1 ω + · · ·+ B

(k)
r ωr

(mod pm),
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where for r = 2 the following congruences mod pm hold:

(3.3)





Ψ2k(ω) = A
(2k)
0 +A

(2k)
1 ω

B
(2k)
0 +B

(2k)
1 ω+B

(2k)
2 ω2

,

Ψ2k+1(ω) = C
(2k+1)
0 +C

(2k+1)
1 ω+C

(2k+1)
2 ω2

D
(2k+1)
0 +D

(2k+1)
1 ω

,

(3.4)





A
(2k)
0 = kakb + A

(2k)

0 b3, A
(2k)
1 = ak + kA

(2k)

1 b2;

B
(2k)
0 = ak + B

(2k)

0 b2, B
(2k)
1 = kak−1b + B

(2k)

1 b3,

B
(2k)
2 = kak−1c;

C
(2k+1)
0 = ak+1b + C

(2k+1)

0 b2,

C
(2k+1)
1 = (k + 1)akb + C

(2k+1)

1 b3,

C
(2k+1)
2 = (k + 1)akc;

D
(2k+1)
0 = kakb + D

(2k+1)

0 b3,

D
(2k+1)
1 = ak + kakc + D

(2k+1)

1 b2.

(3.5)





A
(2k)
2`−1 ≡ 0 (mod c`), A

(2k)
2` ≡ 0 (mod bc`),

B
(2k)
2`−1 ≡ 0 (mod bc`−1), B

(2k)
2` ≡ 0 (mod c`),

A
(2k+1)
2`−1 ≡ 0 (mod bc`−1), A

(2k+1)
2` ≡ 0 (mod c`),

B
(2k+1)
` = A

(2k)
` , ` = 1, 2, . . .

Proof. The assertion (i) is obvious and, hence, the sequence
Ω(ω0, a, b, c; pm) is purely periodic with some period τ ≤ φ(pm). Further, one
can show by induction on n that A

(k)
r ≡ B

(k)
r ≡ 0 (mod c).

For the sake of clarity and simplicity, we shall assume that r = 2. And
now, taking into account that c2 ≡ 0 (mod pm), we can obtain (ii), by using
induction on k.

In order to prove the congruences (3.3)-(3.5) we consider the matrices

(3.6)
A =

(
a + b2 ab

b a

)
, A1 =

(
a−1b2 b
a−1b 0

)
,

B =
(

2bc ac
c 0

)
, C =

(
bc 0
c 0

)
.
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We have

(3.7)
A = a(E + A1), As

1 ≡ 0 (mod pνs

),

E =
(

1 0
0 1

)
, s = 1, 2, . . . ; ν = νp(b).

Moreover,

(3.8) Ak ≡ ak(E + kA1 +
k(k − 1)

2
A2

1 + · · ·) (mod pm).

Calculating Ψk+1(ω), Ψk+2(ω) from the expression for Ψk(ω) we obtain the
relations

(3.9)





A
(k+2)
0 = (a + b2)A(k)

0 + abB
(k)
0 ,

A
(k+2)
` = (a + b2)A(k)

` + abB
(k)
` +

+ac(k + 2)B(k)
`−1 + bc(2k + 3)A(k)

`−1, 1 ≤ ` ≤ r,

{
B

(k+2)
0 = aB

(k)
0 + bA

(k)
0 ,

B
(k+1)
` = aB

(k)
` + bA

(k)
` + c(k + 1)A(k)

`−1, 1 ≤ ` ≤ r.

Straightforward calculations show that

A
(0)
0 = 0, B

(0)
0 = 1, A

(0)
1 = 1, B

(0)
1 = 0, A

(0)
2 = B

(0)
2 = 0,

A
(1)
0 = a, B

(1)
0 = 0, A

(1)
1 = b, B

(1)
1 = 1, A

(1)
2 = c, B

(1)
2 = 0.

Let k = 2k1 + t, where

t =

{ 0 if k is even,

1 if k is odd.

Thus from (3.9),(3.10) and (3.6)-(3.8) we obtain for even k:

(
A

(k)
0

B
(k)
0

)
≡ Ak1

(
A

(t)
0

B
(t)
0

)
,
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(
A

(k)
1

B
(k)
1

)
≡Ak1

(
A

(0)
1

B
(0)
1

)
+

+




k1−1∑

j=0

(k − 2j)AjBAk1−j−1 −
k1−1∑

j=0

AjCAk1−j−1




(
A`

0

B`
0

)
≡

≡
(

ak1

(
E + k1A1 +

k1(k1 − 1)
2

A2
1 + · · ·

))(
A

(0)
1

B
(0)
1

)
+

+


2

k1−1∑

j=0

(k1 − j)ak1−1

(
E + jA1 +

j(j − 1)
2

A2
1 + · · ·

)
BA′ −

−
k1−1∑

j=0

ak1−1

(
E + jA1 +

j(j − 1)
2

A2
1 + · · ·

)
CA′′+

+ ak1−1b3ckD1(k)

] (
A

(0)
0

B
(0)
0

)
,

where

A′ =
(

E + (k1 − j − 1)A1 +
(k1 − j − 1)(k1 − j − 2)

2
A2

1 + · · ·
)

,

A′′ =
(

E + (k1 − j − 1)A1 +
(k1 − j − 1)(k1 − j − 2)

2
A2

1 + · · ·
)

.

Analogously,

(
A

(k)
2

B
(k)
2

)
≡Ak1

(
A

(0)
2

B
(0)
2

)
+

+


2ak1−1

k1−1∑

j=0

(k1 − j) (E + jA1 + · · ·)BA′ −

− ak1−1
k1−1∑

j=0

(E + jA1 + · · ·) CA′′+

+ ak1−1b3ckD2(k)

] (
A

(0)
1

B
(0)
1

)
,

where D1(k), D2(k) ∈ M2 (Zpm [k]).
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From this for k = 2k1 we at once obtain the formulas (3.3)-(3.4) in
formulation of lemma. The formulas (3.5) follow from the representation
Ψk+1(ω): Ψk+1(ω) through Ψk(ω) bearing in mind the formulas (3.3)-(3.4).

Lemma 5. Let p be a prime, p ≥ 5, and let m ∈ N, m ≥ 3; a, b, c ∈ Z,
gcd(a, p) = 1, b ≡ c ≡ 0 (mod p), ν = νp(b), µ = νp(c), ν < µ, and let {ωk}
be the sequence from (1). Then for any y0 ∈ R∗n and k = 0, 1, 2, . . . we have

ω2k =(kb− 2−1k(k2 − 1)a−1b3 + G0(k))+

+ (1 + k(k + 1)a−1c + G1(k))ω+

+ (−ka−1b− (k3c + k2(k + 1)a−1)bc+

+ (2−13k3 − 2k2 + 2−1k)a−2b3 + G2(k))ω2+

+ (k2a−2b2 − k2a−1c + G3(k))ω3 + G4(k, ω)ω4;

ω2k+1 =((k + 1)b− k2a−1c + k(k − 1)a−1b3 + H0(k))+

+ ((2k+)c + H1(k))ω + (a− k2c− 2k2b2 + H−1(k))ω−1+

+ (−kab + 2−13k2(k + 1)b3 + 4−1k2(k2 − 1)a−1b3+

+ H−2(k))ω−2 + ω−3H3(k, ω−1),

where

Gi(k) ∈ Z[k], Gi(0) = 0, Gi(k) ≡ 0 (mod pmin (2ν+µ,4ν)), i = 0, 1, 2, 3;

Hi(k) ∈ Z[k], Hi(0) = 0, Hi(k) ≡ 0 (mod pmin (2ν+µ,4ν)), i = −2,±1, 0;

G4(k, u), H3(k, u) are polynomials on k, u, moreover,

G4(0, u) = H3(0, u) = 0, G4(k, u) ≡ H3(k, u) (mod pmin (2ν+µ,4ν)).

Proof. An application of Lemma 4 and straightforward computations give
the assertion of lemma at once.

Corollary 1. For k = 0, 1, 2, . . . we have

ω2k =ω + k(b(1− a−1ω2) + 2a−1b3(a + ω2) + a−1cω + C1(ω))+

+ k2(−a−1b2ω + a−1cω(1− ω2) + C2(ω)) + k3C3(k, ω),

ω2k+1 =(b + cω + aω−1) + k(b(1− aω−2) + 2cω + D1(ω, ω−1))+

+ k2(c(a−1 − ω−1) + D2(ω, ω−1)) + k3D3(k, ω, ω−1),
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where C1(ω) ≡ C2(ω) ≡ C3(k, ω) ≡ 0 (mod pmin (ν+µ,3ν)), D1(ω, ω−1) ≡
≡ D2(ω, ω−1) ≡ D3(k, ω, ω−1) ≡ 0 (mod pmin (ν+µ,3ν)) for every ω, ω−1 ∈ R∗m,
k ∈ Z.

Corollary 2. Let τ be the period length of Ω(ω, a, b, c; pm) and νp(b) = ν,
νp(c) = µ > ν.
(A) If a 6≡ ω2 (mod p), then τ = 2pm−ν ,
(B) If νp(a− ω2) = δ < min (3ν, µ), then τ = 2pm−ν−δ.

(C) In other cases: τ ≤ 2pm−ν−min (3ν,µ).

4. Exponential sums on the inversive congruential sequence

Well-known that we can make the conclusion on a character of distribution
of arbitrary sequence {xn}, xn ∈ [0, 1) by an estimation of the exponential sum

(4.1)
N−1∑
n=0

e2πimxn (N →∞),

where m is any non-zero integer.

For the periodic sequence xn, xn ∈ [0, 1) is usually studied the exponential
sum over part of the period (i.e. N < τ). R.G. Stoneham [36], H. Niederreiter
[21] investigated the exponential sum over part of the period τ for the linear
congruential sequences {xn}, where xn = yn

m and yn are generated by the linear
congruential recursion

(4.2) xn+1 ≡ axn + b (mod m),

where a, b, m, x0 ∈ Z, a ≥ 1, m > 1, b, x0 ≥ 0, (a,m) = 1.
Similarly, H. Niederreiter and I. Shparlinski [33, 34] studied the sum (4.1)

for the inversive congruential sequences with fixed shift.

These results permitted to make the conclusion that the congruential

sequences
{

ωk

pm

}
, k ≥ 0, are pseudorandom sequences (see D. Knuth [16]).

The sequences of pseudorandom numbers have various applications in the
numerical analysis and the cryptography. But for cryptographic purposes the
requirement of statistical independence (unpredictability) of elements of the
sequence is very important. The testing on unpredictability also can be realize
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by the estimates of special exponential sums over the elements of the given
sequence.

In this section we obtain the estimates of certain exponential sums over
the inversive congruential sequence with a variable shift which was defined in
(3.1).

For h1, h2 ∈ Z we denote

(4.3) σk,`(h1, h2) :=
∑

ω∈R∗m

epm(h1ωk + h2ω`).

Here we consider ωk, ω` as a function at ω generated by (3.1).

Theorem 1. Let (h1, h2, p
m) = ps, s ≤ m, h1 = h0

1p
s, h2 = h0

2p
s,

(h0
1, h

0
2, p) = 1, (h1 + h2, p

m) = t ≥ s, (h0
1k + h0

2`, p
m−s) = κ. The following

estimates

|σk,`(h1, h2)| ≤





0 if t 6= κ + ν, min (t, κ + ν) < m− s− ν,

2
m
2 p

m+ν+s+t
2 if t = κ + ν and m− ν − s− t > 0,

φ(pm) if min (t, κ + ν) ≥ m− s− ν.

hold, where φ(m) is Euler’s function.

Proof. First, let k, ` be non-negative integers of different parity, for
example, k := 2k, ` := 2` + 1. By Lemma 5 we obtain
(4.5)

h1ω2k + h2ω2`+1 =ps
[(

A0 + A1ω + A2ω
2 + A3ω

3 + b3ω4H(ω)
)
+

+
(
A−1ω

−1 + A−2ω
−2 + A−3ω

−3 + b3ω−4G(ω−1)
)]

=

=psF (ω, ω−1),

where

(4.6)

A1 ≡ h0
1 (mod pν), A2 ≡ −kba−1h0

1 (mod pν+1),

A−1 ≡ ah0
2 (mod pν), A−2 ≡ h0

2a`b (mod pν+1),

A3 ≡ A−3 ≡ 0 (mod pν+1).

We put ω = u + pm−1−sz, u ∈ R∗m−s−1, z ∈ R1. Then we have

ω−1 ≡ u−1 − pm−1u−2z (mod pm),

ωj ≡ uj + jpm−1uj−1z (mod pm),

ω−j ≡ u−j − jpm−1u−j−1z (mod pm).
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Therefore we can write

(4.7) p−s (h1ω2k + h2ω2`+1) ≡

≡ (
F

(
u, u−1

)
+

(
h0

1 − h0
2au−2

)
pm−s−1z

)
(mod pm−s).

Hence, from (4.3), (4.7) and Lemma 1 we get

(4.8)

|σk,`(h1, h2)| = ps+1

∣∣∣∣∣∣∣∣∣

∑
u∈R∗

m−s−1
h0
1

u2≡h0
2

a (mod p)

epm−s

(
F

(
u, u−1

))

∣∣∣∣∣∣∣∣∣
≤

≤ 2ps+1

∣∣∣∣∣∣
∑

e∈R∗
m−s−2

epm−s−2

(
F1

(
u, u−1

))
∣∣∣∣∣∣
,

where F1(u, u−1) is a polynomial of the same type as F (u, u−1).
Continuing we obtain the assertion of the Lemma 3 for k 6≡ ` (mod 2).

Now, let k and ` be integers of identical parity. Then for k := 2k, ` := 2`,
we have modulo pm−s

(4.9) p−s(h1ω2k + h2ω2`) ≡ B0 + B1ω + B2ω
2 + B3ω

3 + ω4B4(ω) := F (ω),

where
B1 = h0

1 + h0
2 + pB′

1,

B2 = a−1b(h0
1k + h0

2`) + p2νB′
2,

B3 = (a−2b2 − a−1c)(h0
1k

2 + h0
2`

2) + p3νB′
3,

B4 = (ω) = p2ν+µB′
4(ω),

moreover the coefficients of B′
4(ω) (as a polynomial on ω) contain multipliers

of type h1k
j + h2`

j , i ≥ 0, and B′
1, B′

2, B′
3 consist out of the summand of type

c · (h1k
j + h2`

j
)
, c ∈ Z.

It will be observed that h0
1k

j +h0
2`

j ≡ 0 (mod pt), j = 2, 3, . . . , if νp(h0
1 +

+h0
2) = νp(h0

1k + h0
2`) = t. (Indeed, we have

h0
1k

j + h0
2`

j = (h0
1k

j−1 + h0
2`

j−1)(k + `)− k`(h1k
j−2 + h0

2`
j−2),

and then we apply an induction over j).

Now, as above we infer

p−s (h1ω2k + h2ω2`) ≡ F (u) + pm−s−1z(B1 + 2B2u) (mod pm−s).
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Hence, by Lemma 1 and Lemma 3 we obtain easily

|σ2k,2`(h1, h2)| ≤





0 if t 6= κ + ν, min (t, κ + ν) < m− s− ν,

2p
m+ν+s+t

2 if t = κ + ν and m− ν − s− t > 0,

φ (pm) if min (t, κ + ν) ≥ m− s− ν.

For k ≡ ` ≡ 1 (mod 2) we have the analogous estimates.

Let h be integer, (h, pm) = ps, 0 ≤ s < n, and let τ be a least period
length of the sequence {ωk} , k = 0, 1, 2, . . ., defined in (3.1). For 1 ≤ N ≤ τ
we denote

(4.10) SN (h, ω) =
N−1∑

k=0

epm(hωk).

We shall obtain the bound for SN (h, ω). By Corollary from Theorem 7 we can
write

(4.11)
ω2k = ω + A1(ω)k + A2(ω)k2 + A3(ω, k)k3 := F (k),

ω2k+1 = (aω−1 + b + cω) + B1(ω)k + B2(ω)k2 + B3(ω, k)k3 := G(k),

where
A1(ω) ≡ b(1− a−1ω2) (mod pβ),

A2(ω) ≡ −a−1b2ω + acω(1− ω2) (mod pβ),

A3(ω, k) ≡ 0 (mod pγ),

B1(ω) ≡ b(1− aω−2) + 2cω − cω−1 (mod pβ),

B2(ω) ≡ c(ω − ω−1) (mod pγ),

B3(ω, k) ≡ 0 (mod pγ),

β = min (3ν, µ), γ = min (3ν, ν + µ).

We recall that (a, p) = 1, b = b0p
ν , c = c0p

µ, h = h0p
s, (b0, p) = (c0, p) =

= (h0, p) = 1.

Theorem 2. Let the inversive congruential sequence {ωk} has the maxi-
mal period τ , τ = 2pm−ν and let 2ν < µ. Then the following bound

(4.12) |Sτ (h, ω)| =
∣∣∣∣∣
τ−1∑

k=0

epm(hωk)

∣∣∣∣∣ ≤
{ 0 if ν + s < n,

τ if ν + s ≥ n,
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holds.

Proof. By Corollary 2 from Lemma 5 we conclude that (a − ω2, p) =
= (1− aω−2, p) = 1. Then from (4.11) we easily obtain

(4.13)

|Sτ (h, ω)| =

∣∣∣∣∣∣∣

pm−ν−1∑
k1=0

k=2k1

+
pm−ν−1∑

k1=0
k=2k1+1

∣∣∣∣∣∣∣
≤

≤
∣∣∣∣∣∣

pm−ν−1∑

k1=0

epm(hF (k1))

∣∣∣∣∣∣
+

∣∣∣∣∣∣

pm−ν−1∑

k1=0

epm(hG(k1))

∣∣∣∣∣∣
=

= 2ps

{
0 if ν + s < n
pm−ν−s if ν + s ≥ n

=
{

0 if ν + s < m,
τ if ν + s ≥ m.

Theorem 3. Let {ωk} be the sequence generated by the recurrent formula
(3.1) and let 0 < νp(a − ω2) < min (3ν, µ), 2ν < µ. Then the sequence {ωk}
has a least period τ < 2pm−ν , and the following bound

(4.14) |Sτ (h, ω)| ≤





0 if 0 < νp(a− ω2) < ν,
and νp(a− ω2) < n− ν − s,

τ if 0 < νp(a− ω2) < ν,
and νp(a− ω2) ≥ n− ν − s,

4p
n+s+2ν

2 if νp(a− ω2) ≥ ν and 2ν + s < n,

τ if νp(a− ω2) ≥ ν and 2ν + s ≥ n

holds.

Proof. The proof of this assertion can be obtained similarly as Theorem
2 by Lemma 3.

Corollary. Let {ωk} be the sequence generator by recurrent formula (3.1)
with a least period length τ and let 0 ≤ νp(a − ω2) < ν, 2ν < µ, νp(h) = s.
Then for 0 < N ≤ τ we have

|SN (h, ω)| ≤




N always,

2p
m+s+ν

2

(
N
τ + log τ

p

)
if ν + s < m.
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Proof. We shall estimate SN (h, ω) by using an estimate for uncomplete
sums through an estimate of complete sum. We have

(4.15)

|SN (h, ω)| =
∣∣∣∣∣
N−1∑

`=0

1
τ

τ−1∑

k=0

τ−1∑
x=0

epm(hωk)eτ (x(k − `))

∣∣∣∣∣ ≤

≤N

τ

∣∣∣∣∣
τ−1∑

k=0

epm(hωk)

∣∣∣∣∣ +
τ−1∑
x=1

1
min (x, τ − x)

∣∣∣∣∣
τ−1∑
x=0

e
2πi

(
hωk
pm + kx

τ

)∣∣∣∣∣ ≤

≤N

τ
|SN (h, ω)|+

τ−1∑
x=1

1
min (x, τ − x)

∣∣∣∣∣∣

1∑

j=0

τ−1∑

k=0

e
2πi

Φj(k)

pm−ν

∣∣∣∣∣∣
,

where

(4.16)

Φj(k) = A
(j)
1 k + A

(j)
2 k2 + · · · , j = 0, 1; h = h0p

s, (h0, p) = 1;

A
(0)
1 (x) ≡ hb0(1− a−1ω2)− d

(0)
1 x (mod pν+s),

A
(1)
1 (x) ≡ hb0(1− aω−2)− d

(1)
1 x (mod pν+s),

A
(j)
2 ≡ (−1)j+1h0a

−2b2
0ω

3pν+s (mod p2ν+s), j = 0, 1;

Aj
i ≡ 0 (mod p2ν+s), i = 3, 4, . . . ; j = 0, 1.

From (4.16) and Lemma 3 we conclude that the sums

τ−1∑

k=0

e
2πi

Φj(k)

pm−ν (j = 0, 1),

allow nontrivial estimate only in the case when

(4.17) A
(0)
1 (x) ≡ 0 (pν) or A

(1)
1 (x) ≡ 0 (mod pν).

It may occur only if x ≡ 0 (mod ps). Therefore, from (4.15)-(4.17), Lemma 3
and Theorems 1-2 we derive

|SN (h, ω)| = N if m ≤ ν + s;

|SN (h, ω)| ≤ N

τ
|Sτ (h, ω)|+ 4

1
2 N∑
x=1

1
xps

p
m+ν+s

2 if ν + s < m.

This completes the proof of corollary.
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In the following theorem we obtain an upper bound for the average value
of the sum SN (h, ω) of the initial value ω ∈ R∗m.

Theorem 4. Let a, b, c be parameters of the inversive congruential
sequence (3.1) which satisfy the conditions

(a, p) = 1, 0 > ν = νp(b), 2ν < µ = νp(c).

Then the average value of the SN (h, ω) over ω ∈ R∗m satisfies

SN (h) =
1

φ(pm)

∑

ω∈R∗m

|SN (h, ω)| ≤ 3Np−
−m−s−ν

4 .

Proof. By the Cauchy-Schwarz inequality we obtain

|SN (h)|2 ≤ 1
φ(pm)

∑

ω∈R∗m

|SN (h, ω)|2 =

=
1

φ(pm)

N−1∑

k,`=0

∑

ω∈R∗m

epm(h(ωk − ω`)) ≤

≤ 1
φ(pm)

m∑
r=0

N−1∑
k,`=0

k≡`(mod pr)

|σk,`(h)|.

Hence, by Theorem 1 we have (with h1 = 1,h2 = −1)

|SN |2 ≤

≤ 1
φ(pm)




m−ν−s−1∑
t=0

p
m+ν+s+t

2

∑
k,`≤N

k≡`(mod pt)

1 +
m∑

t=m−ν−s

pm
∑

k,`≤N

k≡`(mod pt)

1


 ≤

≤ N2

φ(pm)

( ∑
t=m−ν−s−1

p
m+ν+s−t

2 +
m∑

t=m−ν−s

pm−t

)
≤ 4

N2

pm

(
p

m+s+ν
2 + pν+s

)
.

From this we obtain for any N ≤ 2pm−ν

SN (h) ≤ 2N
(
p−

m−s−ν
4 + p−

m−s−ν
2

)
≤ 3Np−

m−s−ν
4 .
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5. Discrepancy bounds

Equidistribution and statistical independence properties (unpredictability)
of the pseudorandom numbers can be analyzed based of the discrepancy of
certain point sets in [0, 1)d. For N arbitrary points t0, t1, . . . , tN−1 ∈ [0, 1)d,
the discrepancy is defined by

(5.1) D(t0, t1, . . . , tN−1) = sup
I

∣∣∣∣
AN (I)

N
− |I|

∣∣∣∣ ,

where the supremum is extended over all subintervals I of [0, 1)d, AN (I) is
the number of points among t0, t1, . . . , tN−1 falling into I, and |I| denotes the
d-dimensional volume I.

For study the discrepancy of points one usually uses the following lemmas.

For integers q ≥ 2 and d ≥ 1, let Cq(d) denote the set of all nonzero lattice
points (h1, . . . , hd) ∈ Zd with − q

2 < hj ≤ q
2 , 1 ≤ j ≤ d. We define

r(h, q) =





q sin π|h|
q if h ∈ C1(q),

1 if h = 0

and

r(h, q) =
d∏

j=1

r(hj , q) for h = (h1, . . . , hq) ∈ Cd(q).

Lemma 6. Let N ≥ 1 and q ≥ 2 be integers. For N arbitrary points
t0, t1, . . . , tN−1 ∈ [0, 1)d, the discrepancy D(t0, t1, . . . , tN−1) satisfies

DN (t0, t1, . . . , tN−1) ≤ d

q
+

1
N

∑

h∈Cd(q)

1
r(h, q)

∣∣∣∣∣
N−1∑
n=0

e(h · tn)

∣∣∣∣∣ .

(Proof see in [29]).

Lemma 7. Let {yk}, yk ∈ {0, 1, . . . , q− 1}d, is a purely periodic sequence
with a period τ . Then for the discrepancy of the points tk = yk

q ∈ [0, 1)d,
k = 0, 1, . . . , N − 1; N ≤ τ , the following estimate

DN (t0, t1, . . . , tN−1) ≤ d

q
+

1
N

∑

h∈Cd(q)

∑

h0∈(− τ
2 , τ

2 ]
r−1(h, q)r−1(h0, τ) · |S|
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holds, where

S :=
τ−1∑

k=0

e

(
h · tk +

kh0

τ

)
.

This assertion follows from Lemma 1 and from an estimate of uncomplete
exponential sum through complete exponential sum.

Lemma 8. The discrepancy of N arbitrary points t0, t1, . . . , tN−1 ∈ [0, 1)d

satisfies

DN (t0, t1, . . . , tN−1) ≥ π

2N((π + 1)` − 1)
d∏

j=1

max (1, |hj |)

∣∣∣∣∣
N−1∑
n=0

e(h · tn)

∣∣∣∣∣

for any nonzero lattice point h = (h1, . . . , hd) ∈ Zd, where ` denotes the number
of nonzero coordinates of h.

(Proof see [28], Lemma 1).

Lemma 9. ([7], Lemma 3) Let q ≥ 2 be an integer. Then

∑
h∈Cd(q)

h≡0(mod v)

1
r(h, q)

≤ 1
v

(
2
π

log q +
7
5

)d

for any divisor v of q with 1 ≤ v < q.

Theorem 5. Let p > 2 be a prime number and m, a, b, c and ω be
integers, m ≥ 3, (a, p) = (ω, p) = 1, 0 < νp(b) < νp(c), a 6≡ ω2 (mod p). Then
for the sequence {xk}, xk = ωk

pm , k = 0, 1, . . ., where ωk defined by the recursion
(3.1), we have

(5.2) DN (x0, x1, . . . , xN−1) ≤ 1
pm

+
2pm−ν2

N

(
1
p

(
2
π

log pm +
7
5

)2

+ 1

)
,

where 1 ≤ N ≤ τ , and τ is the least period length for {ωk}.
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Proof. Since a 6≡ ω2 (mod p) and 0 < 2νp(b) < νp(c) we get that the
sequence {ωk}, k = 0, 1, . . ., has the period τ , τ = 2pm−ν , ν = νp(b). Let
DN := DN (x0, x1, . . . , xN−1). Hence, by Lemma 7 (for d = 1) we have

DN ≤ 1
pm−ν

+
1
N

∑

0<|h|< 1
2 pm−ν

∑

|h0|≤ 1
2 τ

(
r

(
h,

1
2
pm−ν

)
r (h0, τ)

)−1

×

×
∣∣∣∣∣
τ−1∑

k=0

e
2πi

(
hxk
pm +

kh0
τ

)∣∣∣∣∣ ≤

≤ 1
pm−ν

+
1
N

∑

h,h0

(
r

(
h,

1
2
pm−ν

)
r (h0, τ)

)−1

×

×



∣∣∣∣∣∣

pm−ν−1∑

k=0

e
2πi

(
hω2k
pm +

kh0
pm−ν

)∣∣∣∣∣∣
+

∣∣∣∣∣∣

pm−ν−1∑

k=0

e
2πi

(hω2k+1
pm +

kh0
pm−ν

)∣∣∣∣∣∣


 .

Applying Corollary 1 from Lemma 5 and Lemma 3 we obtain easily that

(5.3) DN (x0, x1, . . . , xN−1) ≤ 1
pm−ν

+
2p

m−ν
2

N

(
1
p

(
2
π

log pm +
7
5

)2

+ 1

)
.

Consider the inversive congruential sequence {ωk} with the conditions of
Theorem 5 and organize the new sequence {yk}, where yk ∈ Zd, d ∈ N, yk =
= (ωk, ωk+1, . . . , ωd−1).

The statistical independence properties of the sequence are analyzed by
means of the d-dimensional serial tests (d = 2, 3, . . .) which employ the
discrepancy of d-dimensional vectors tk, where tk = yk

pm , k = 0, 1, . . ..

We shall consider only the cases d = 2 or 3. Let D
(d)
τ denote the

discrepancy of points t0, t1, . . . , tτ−1.

Theorem 6. The discrepancy D
(2)
τ of the points constructed by inversive

congruential sequence (3.1) with the least period length τ = 2pm−ν , satisfies

D(2)
τ ≤ 1

pm−ν
+

√
p√

p− 1
p−

m−2ν
2

(
1
π

log pm−ν +
3
5

)2

.
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Proof. In order to apply Lemma 6 we must have an estimate for the sum

τ−1∑

k=0

epm(h1ωk + h2ωk+1) =
pm−ν−1∑

k=0

epm(h1ω2k + h2ω2k+1)+

+
pm−ν−1∑

k=0

epm(h1ω2k+1 + h2ω2k+2) =
∑

1
+

∑
2
,

say. By Corollary 1 of Lemma 5 we get

h1ω2k + h2ω2k+1 ≡
≡ (

h1ω + h2(b + cω + aω−1)
)
+

+ k(h1(b(1− a−1ω2) + a−1cω) + h2(b(1− aω−2) + 2cω))+

+ k2(h1(a−2b2ω3 + a−1cω) + h2(−a−1c− ω−1c)) (mod pδ+`),

where δ = min (3ν, µ), ` = νp((h1, h2, p
m)).

Since the congruences

h1(b(1− a−1ω2) + a−1cω) + h2(b(1− aω−2) + 2cω) ≡ 0 (mod p`+ν+1),

h1(a−2b2ω3 + a−1cω) + h2(−a−1c− ω−1c) ≡ 0 (mod p`+ν+1)

cannot hold simultaneously (taking into account that 1− a−1ω2 6≡ 0 (mod p)),
we obtain (by Lemma 2):

∣∣∣
∑

1

∣∣∣ =





p
m−`

2 if νp(h1) = νp(h2) = `, h1 − aω−2h2 ≡ 0 (mod pν),

0 else.

Similarly, we have

∣∣∣
∑

2

∣∣∣ =





p
m−`

2 if νp(h1) = νp(h2) = `, h1 − aω−2h2 ≡ 0 (mod pν),

0 else.

Now, Lemmas 6 and 9 give for q = 2pm−ν

D(2)
τ ≤ 1

pm−ν
+

1

p
m−2ν

2

m−ν−1∑

`=0

p−
`
2




∑

h∈C1(pm−ν )
νp(h)=`

1
r(h, pm−ν)




2

≤

≤
√

p√
p− 1

· p−m−2ν
2

(
1
π

log pm−ν +
3
5

)2

+
1

pm−ν
.
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Theorem 7. The discrepancy D
(3)
τ which is constructed by the inversive

congruential sequence (3.1) with maximal period length τ = 2pm−ν satisfies

D(3)
τ ≤

√
p√

p− 1
p−

m
2 +ν

(
1
π

log pm−ν +
3
5

)3

+
3
2
p−m+ν .

Proof. As above we have

τ−1∑

k=0

epm(h1ωk + h2ωk+1 + h3ωk+2) =

=
pm−ν−1∑

k=0

epm(h1ω2k + h2ω2k+1 + h3ωk+2)+

+
pm−ν−1∑

k=0

epm(h1ω2k+1 + h2ω2k+2 + h3ω2k+3) :=
∑

1
+

∑
2
.

Corollary 1 from Lemma 5 gives

(5.4)

h1ω2k + h2ω2k+1 + h3ω2k+2 = A0(h1, h2, h3)+

+ k((h1 + h3)(1− a−1ω2)b + h2b(1− aω−2) + A1(h1, h2, h3))+

+ k2((h1 + h3)a−2ω3b2 + A2(h1, h2, h3))

and also

(5.5)

h1ω2k+1 + h2ω2k+2 + h3ω2k+3 = B0(h1, h2, h3)+

+ k((h1 + h3)(1− aω−2)b + h2b(1− a−1ω2) + B1(h1, h2, h3))+

+ k2(h2a
−2ω3b2 + B2(h1, h2, h3)),

where 



A1(h1, h2, h3) ≡ B1(h1, h2, h3) ≡ 0 (mod p2ν+`),

A2(h1, h2, h3) ≡ B2(h1, h2, h3) ≡ 0 (mod pδ+`),

` = νp((h1, h2, p
m)) δ = min (3ν, µ).

Thus, by Lemma 2 we obtain

∣∣∣
∑

1

∣∣∣ =





0 if νp((h1 + h2)− aω−2h2) < νp((h1 + h3)b) ≤ m,

pm−ν if m− ν ≤ νp((h1 + h3)b) ≤ νp((h1 + h3)b− aω−2h2b),

p
m+`

2 if m− ν > νp((h1 + h3)b) ≥ νp((h1 + h3)b− aω−2h2b),
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where `1 = νp(h1 + h3 − h2a
−1y2

0). An analogous estimate holds for the sum∑
2.

Hence, from Lemmas 6 and 9 we obtain

D(3)
τ ≤

√
p√

p− 1
p−

m
2 +ν

(
1
π

log pm−ν +
3
5

)3

+
3
2
p−m+ν .

In conclusion we prove the lower bound for D
(2)
τ .

Theorem 8. Let p be a prime and m, a, b, c and ω be integers with
m ≥ 3. Suppose that (a, p) = 1, 0 < 2νp(b) < νp(c), and a 6≡ ω2 (mod p),
a 6≡ −ω2 (mod pν). Then

D(2)
τ ≥ 1

4(π + 2)
p−

m
2 +νh−1

∗ ,

where h∗ = |h1h2h3| under condition h1, h2, h3 ∈ C1(pm), h1h2h3 6= 0,
(h1, h2, h3) = 1, h1 + h2 ≡ h∗aω−2 (mod pν).

Proof. By the Lemma 8 for d = 2, N = 2pm−ν , we have
(5.6)

D(2)
τ ≥ 1

4(π + 2)pm−ν

∣∣∣∣∣∣

pm−ν−1∑

k=0

epm(h1ωk + h2ωk+1)

∣∣∣∣∣∣
=

=
1

4(π + 2)pm−ν

∣∣∣∣∣∣

pm−ν−1∑

k=0

epm(h1ω2k + h2ω2k+1) +

+
pm−ν−1∑

k=0

epm(h1ω2k+1 + h2ω2k+2)

∣∣∣∣∣∣
=

1
4(π + 2)pm−ν

∣∣∣
∑

1
+

∑
2

∣∣∣ ,

say.
Let (h1, h2, p

m) = p`, h = p`h0
1, h2 = h0

2p
`, (h0

1, h
0
2) = 1. From (5.4)–(5.5)

we can see easily that the congruences

(h0
1 + h0

3)(1− aω−2) + h−2 (1− a−1ω2) ≡ 0 (mod pν),

(h0
1 + h0

3)(1− a−1ω2) + h−2 (1− aω−2) ≡ 0 (mod pν)

cannot be satisfied simultaneously if a 6≡ ω2 (mod p), a 6≡ −ω2 (mod pν).
We select h1, h2, h3 so that (h1, h2, h3) = 1, h1 + h3 − h2aω−2 ≡ 0 (mod pν),
(h1 + h3, p) = 1. Then Lemma 2 gives

(5.7)
∣∣∣
∑

1

∣∣∣ = p
m+ν

2 ,
∣∣∣
∑

2

∣∣∣ = 0.
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Hence, from (5.6)-(5.7) we infer

D(2)
τ ≥ 1

4(π + 2)
p−

m
2 +νh−1

∗ ,

where
h∗ = min

h1,h2,h3∈C1(pm)
h1h2h3 6=0

(h1,h2,h3)=1
h1+h3≡h2aω−2 (mod pν )

|h1h2h3|.

Remark. Theorems 7 and 8 show that, in general, the upper bound is
the best possible up to the logarithmic factor for any inversive congruential
sequence {(xk, xk+1)}, k = 0, 1, . . . (defined by the recursion (3.1)), since there
exists inversive congruential sequence {(xk, xk+1)} with D

(2)
τ ≥ 1

8(π+2)p
−m

2 +ν .

(Example, if aω−2 ≡ 2 (mod pν), h1 = h2 = h3 = 1).

Hence, on the average discrepancy D
(2)
τ has an order of magnitude between

p−(m
2 −ν) and p−(m

2 −ν) log2 pm. An analogous statement can be proved for
D

(3)
τ . Thus we can conclude that the inversive congruential sequences pass the

test on unpredictability if the parameters a, b, c, ω satisfy conditions

(a, p) = 1, 0 < 2νp(b) < νp(c), a 6≡ ω2 (mod p).
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