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ARITHMETICAL FUNCTIONS
INVOLVING EXPONENTIAL DIVISORS:
NOTE ON TWO PAPERS BY L. TÓTH

Y.-F.S. Pétermann (Geneva, Switzerland)

Abstract. Asymptotic estimates of L. Tóth [5, 6] on the summatory

functions of three arithmetical functions involving exponential divisors are

improved. For two of them the improvement is on the upper bound of the

size of the remainder term (O-estimate), and is reached by appealing to

lattice points estimates using exponent pairs due to Krätzel [1], and by

having as well a closer look at the first terms of the generating Dirichlet

series. For the third one, a lower bound on the size of the remainder

term (Ω-estimate) is replaced by two-sided oscillation (Ω±-estimate), by

appealing to a method of Pétermann and Wu [2].

1. Notation and definitions

An exponential divisor (e-divisor) d = pb1
1 · · · pbr

r of n = pa1
1 · · · par

r ,
satisfies by definition bi | ai (i = 1, . . . , r). The integer n is thus called
exponentially squarefree (e-squarefree) if all the ai are squarefree. These two
notions were introduced by M.V. Subbarao [4]. Other authors further extended
the analogies with notions related to usual divisors. For instance, if n and
m have the same prime divisors, we call κ(n)(= κ(m)) := p1 · · · pr their
kernel, and then their greatest common exponential divisor (e-gcd) is defined
as (n,m)(e) :=

∏
1≤i≤r

p
(ai,bi)
i . And if (n,m)(e) = κ(n) = κ(m) we say that n

and m are exponentially-coprime (e-coprime).
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Several functions related to exponential divisors, as the number τ (e)(n)
and the sum σ(e)(n) of e-divisors of n to begin with, were studied by Subbarao
and then by several other authors: see [5] for references.

In [5] and [6], L. Tóth studied some such functions, three of which are the
subjects of this note. These are: (i) the number t(e)(n) of e-squarefree e-divisors
of n, (ii) the number φ(e)(n) of divisors d of n which are e-coprime with n (the
e-analogue of the Euler function φ), and (iii) P̃ (n) :=

∑
1≤j≤n,κ(j)=κ(n)

(j, n)(e)

(the e-analogue of the Pillai function P (n) :=
∑

1≤j≤n

(j, n) [3]).

Let ζ denote the Riemann zeta function. Let φ and µ be the Euler and
Möbius functions. For a positive integer n put as usual ω(n) for the number of
distinct prime divisors of n. For a positive integer k let 1k be the characteristic
function of the integers n of the form n = mk (where m is an integer), and
similarly let µk(n) = µ(m) if n = mk and µk(n) = 0 otherwise.

2. Results

Tóth proved the following estimates for the summatory functions of
t(e)(n), φ(e)(n) and P̃ (n).

Theorem A. We have

Et(x) :=
∑

n≤x

t(e)(n)− C1x− C2x
1/2 = O(x1/4+ε)

for every ε > 0, where C1 and C2 are constants given by

C1 =
∏
p


1 +

1
p2

+
∑

a≥6

2ω(a) − 2ω(a−1)

pa


 ,

C2 = ζ

(
1
2

) ∏
p


1 +

∑

a≥4

2ω(a) − 2ω(a−1) − 2ω(a−2) + 2ω(a−3)

pa/2


 .

Theorem B. We have

Eφ(x) :=
∑

n≤x

φ(e)(n)− C3x− C4x
1/3 = O(x1/5+ε)
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for every ε > 0, where C3 and C4 are constants given by

C3 =
∏
p


1 +

∑

a≥3

φ(a)− φ(a− 1)
pa


 ,

C4 = ζ

(
1
3

) ∏
p


1 +

∑

a≥5

φ(a)− φ(a− 1)− φ(a− 3) + φ(a− 4)
pa/3


 .

Theorem C. We have

Ep(x) :=
∑

n≤x

P̃ (n)− C5x
2 =





O(x(log x)5/3),

Ω(x log log x),

where the constant C5 is given by

C5 :=
1
2

∏
p


1 +

∑

a≥2

P̃ (pa)− pP̃ (pa−1)
p2a


 .

Notes.
(1) Theorem A is Theorem 4 in [6], which however contains two misprints: the

term 1/p2 is missing in the factor defining C1, and the rightmost exponent
in the factors defining C2 is incorrect (ω(a − 4) instead of ω(a − 3); the
same mistake is repeated in the proof on p.164). Theorem B is Theorem
1 in [5], which also contains misprints: the rightmost term in the factor
defining C4 is incorrect (−φ(a− 4) instead of +φ(a− 4)), and the product
symbol

∏
is missing. The O-estimate in Theorem C is Theorem 3 in [5],

and the Ω-estimate is a direct consequence of Theorem 4 in [5], which
states that lim sup

n→∞
P̃ (n)/(n log log n) = 6eγ/π2.

(2) The proofs of Theorems A and B make use of estimates due to Krätzel for

∆(a, b; x) :=
∑

na
1nb

2≤x

1− ζ(b/a)x1/a − ζ(a/b)x1/b

in the case where a and b are integers with 1 ≤ a < b. The elementary
Theorem 5.3 in [1] yields ∆(a, b; x) = O(x1/(2a+b)), and is applied to the
case a = 1, b = 2 for the proof of Theorem A, and to the case a = 1, b = 3
for the proof of Theorem B.
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But, from more elaborate arguments involving exponent pairs in this same
Chapter 5 of [1], we see that ∆(1, 2; x) = O(xτ ) with τ < 1/4 and ∆(1, 3;x) =
= O(xϕ) with ϕ < 1/5. This will be used in the Proof of Theorem 1 below.

[For the best known values of τ and ϕ: Theorem 5.11 p.223 yields
∆(1, 2; x) = O(x37/167+ε) (x →∞) for every ε > 0 (see the Note on Section 5.3
on p.230), and Theorem 5.12 p.227 yields ∆(1, 3; x) = O(x0.175(log x)2) (x →
→∞) with the exponent pair (1/14, 11/14) (as indicated in the small table at
the bottom of page 227)].

There are two objects to this note. The first one is to refine the argument
yielding Theorems A and B, and to prove

Theorem 1. We have Et(x) = O(x1/4) and Eφ(x) = O(x1/5 log x).
The other object is to replace the Ω-estimate in Theorem C by an

oscillation estimate.

Theorem 2. We have

EP (x) = Ω±(x log log x).

3. Proofs

Proof of Theorem 1. We begin with Et. The proof of Theorem A in [6]
exploits the expression

T (s) :=
∑

n≥1

t(e)(n)
ns

= ζ(s)ζ(2s)V (s) (σ > 1),

where, for v(pa) := 2ω(a) − 2ω(a−1) − 2ω(a−2) + 2ω(a−3) (a ≥ 4) and v(pa) =
= 0 (1 ≤ a ≤ 3), the series

V (s) :=
∑

n≥1

v(n)
ns

=
∏
p


1− 1

p4s
+

∑

a≥5

v(pa)
pas




is absolutely convergent for σ > 1/4.
A closer look thus easily shows that V (s) = H(s)/ζ(4s), with
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H(s) :=
∑

n≥1

h(n)
ns

=
∏
p


1 +

2
p6s

+
∑

a≥7

h(pa)
pas


 .

Since |h(pa)| = |(14 ∗ v)(pa)| ≤ ∑
i≤a

2ω(i) = O(a2), we see that H(s) converges

absolutely for σ > 1/6.
Now if H0(s) := ζ(s)ζ(2s)/ζ(4s) =:

∑
n≥1

h0(n)n−s, we have h0 = 1∗12∗µ4,

whence by using the fact that ∆(1, 2; x) = O(xτ ) for some τ < 1/4 (see Note
(2) above) we have

∑

n≤x

h0(n) =
∑

n=n1n2
2N4≤x

µ(N) =

=
∑

N≤x1/4

µ(N)
(

ζ(2)
x

N4
+ ζ

(
1
2

)
x1/2

N2
+ O

(
xτ

N4τ

))
.

From the prime number theorem under the form
∑

n≥y

µ(n)/n = o(1) (y → ∞)

it follows that, if ` > 1,
∑

n<y
µ(n)/n` = 1/ζ(`) + o(y1−`), whence

∑

n≤x

h0(n) =
ζ(2)
ζ(4)

x +
ζ(1/2)
ζ(2)

x1/2 + O(x1/4).

Finally, with t(e) = h ∗ h0, we see that

∑

n≤x

t(e)(n) =
ζ(2)
ζ(4)

H(1)x +
ζ(1/2)
ζ(2)

H(1/2)x1/2 + O(x1/4).

.
The proof of Eφ(x) = O(x1/5) is similar. Instead of considering as in [5]

the expression

Φ(s) :=
∑

n≥1

φ(e)(n)
ns

= ζ(s)ζ(3s)U(s) =

= ζ(s)ζ(3s)
∏
p


1 +

2
p5s

+
∑

a≥6

u(pa)
pas


 (σ > 1),
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where the Dirichlet series for U(s) converges absolutely for σ > 1/5, we note
that

U(s) = (ζ(5s))2J(s) = (ζ(5s))2
∏
p


1− 3

p6s
+

∑

a≥7

j(pa)
pas


 ,

where the Dirichlet series for J(s) converges absolutely for σ > 1/6. Indeed
j = µ5 ∗µ5 ∗u where u(pa) = φ(a)−φ(a− 1)−φ(a− 3) + φ(a− 4) (a ≥ 5) and
u(pa) = 0 (1 ≤ a ≤ 4), whence j(pa) = O(a) (more precisely, |j(pa)| ≤ 8a).
Thus by using the fact that ∆(1, 3; x) = O(xϕ) for some ϕ < 1/5 we obtain,
similarly as before,

∑

n≤x

φ(e)(n) = ζ(3)(ζ(5))2J(1)x + ζ(1/3)(ζ(5/3))2J(1/3)x1/3 + O(x1/5 log x).

Proof of Theorem 2. We leave this proof to the reader, whom we refer
to the proof of Theorem 3 in [2], since the argument there may be very closely
followed with only minor adaptations. Indeed the latter theorem establishes
that

∑
n≤x

σ(e)(n) = Dx2 + Ω±(x log log x) for some constant D by exploiting

the expression
∑
n≥1

σ(e)(n)n−s = ζ(s− 1)ζ(2s− 1)(ζ(3s− 2)−1K(s), where the

Dirichlet series for K(s) absolutely converges for σ > 3/4; and similarly we
have (see Lemma 3 of [5])

∑
n≥1

P̃ (n)n−s = ζ(s− 1)ζ(2s− 1)(ζ(3s− 2)−1W (s),

where the Dirichlet series for W (s) absolutely converges for σ > 3/4.
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