
Annales Univ. Sci. Budapest., Sect. Comp. 32 (2010) 103-121

A GENERALIZED SPLINE APPROXIMATION

R. Polgár (Sopron, Hungary)

Abstract. In this paper a new method of spline approximation is given
which is continuously differentiable to second order and applicable for
robust estimators. The model computations have shown that the method
is suitable for the accurate determination of the velocity and acceleration
vectors in mechanical problems. Because of the good characteristic of
the method, e.g. fast convergence, it seems to be widely applicable in
engineering problems and time series analysis, e.g. modeling stock-market
and economical processes.
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1. Introduction

In engineering applications or during the analization of acoustic phenomena
and stock-market processes the estimation of the main parameters describing
samples with a huge number of data is of great importance. One of the simple
methods is the application of regression theory. One chooses a so-called possible
regression curve in this model based on the geometrical location of data points.
This reveals that the solution is not unique. In this problem there are N points
given by coordinates, (xi, fi), for i = 1, 2, . . . , N , and a regression function g(x).
To find the solution for g(x) one solves the equation

N∑
i=1

(fi − g(xi))2 = min
g

with the method of least squares.
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Another possible method is the application of interpolation or approximation
functions. During interpolation one reconstructs the function f from its values
f1, f2, . . . , fN given in discrete points x1, x2, . . . , xN . Again, in general, the
solution is not unique. One chooses a suitable polynomial which best approx-
imates the analyzed function on the interval [x1, xN ] in a given respect. The
classical methods are Lagrange (Newton) and Hermite interpolation. Unde-
sirable oscillations and huge computational capacity required to handle poly-
nomials with high degree are characteristics of these approximation methods
which can be avoided by the use of spline interpolation. In this case one looks
for the m times continuously differentiable function g which is the solution of
the equations

(1.1) δ(g) =

xN∫

x0

(∂mg)2dx = min
W m

2

,

and

g(xi) = f(xi) = fi, i = 1, 2, . . . , N

Here Wm
2 denotes the space of m times continuously differentiable and square-

integrable functions. When m < N the solution is unique, see the proof of
Sard [1] who uses (2m−1) degree smoothly connecting polynomials defined on
intervals.
In most cases, as in our investigations, one is dealing with the solution with
m = 2. The cubic smoothing spline of Schoenberg [8], Reinsch [9], [10], deBoor
[11], [12], Wahba [13], has become the most commonly used and analyzed spline.
When the values of f are modified by errors in the points xi one looks for the
best approximating solution in a given respect, namely with the composition
of the theory of regression and interpolation curves,

δ(g) =
xN∫
x0

(∂2g)2dx +
N∑

i=1

pi(g(xi)− fi)2 = min
W 2

2

,

where the positive weighting numbers {pi}n
i=1 are capable of smoothing the

solution when the errors are known.

2. The problem

Here we generalize the above description to the case when there are signifi-
cantly more points given than the number of spline approximation polynomials
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we choose. The weights are fixed by the method of least squares as in the case
of robust estimators and the spline approximation is obtained as a result of an
iteration process.
Let us take a subdivision a = x0 < x1 < x2 < · · · < xn = b of the interval [a, b]
of the x axis and the sample (xij

, fij
), j = 1, 2, . . . , ni be given in the intervals

(xi−1, xi), i = 1, 2, . . . , n where
n∑

i=1

ni = N . Using this notation we solve the

variation problem

(2.1) δp(g) = λ

xN∫

x0

(∂2g)2dx +
n∑

i=1

nj∑

j=1

pij
(g(xij

)− fij
)2 = min

W 2
2

,

with the generalized Lagrange multiplicator λ and positive weighting numbers
pij

.
The solution of the problem (1.1) for m = 2 results in piecewise cubic

polynomials which are continuous in zeroth, first and second order. Let us
denote this as

(2.2) g(x) =





g1(x), x0 ≤ x ≤ x1

g2(x), x1 ≤ x ≤ x2

...
...

gn(x), xn−1 ≤ x ≤ xn

where
gi(x) = ai(xi − x)3 + bi(xi − x)2 + ci(xi − x) + di

for every i = 1, 2, . . . , n. Using (2.2) the problem

Func(a1, a2, . . . , an, b1, . . . , dn, Λ1, . . . , Λn−1, ∆1, . . . , Ξn−1) =

=
n∑

i=1

nj∑
j=1

pij
(g(xij

− fij
)2 + 2

n−1∑
i=1

Λi(gi+1(xi)− gi(xi))+

+2
n−1∑
i=1

∆i(g′i+1(xi)− g′i(xi)) +
n−1∑
i=1

Ξi(g′′i+1(xi)− g′′i (xi)) ≡
≡ Func → min

(2.3)

is solved with the help of Lagrange multiplicators as an extremal value problem.
A possible solution is found by Prvan [2]. The number of unknowns ai, bi, ci, di

is 4n, and the number of multiplicators Λi, ∆i, Ξi is 3(n− 1). For the solution
we need 4n + 3(n − 1) linearly independent equations, which are determined
by the solution of the analytic maximization problem. Since the number of
unknowns equals to the number of equations of the linear system the problem
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can be solved in principle. The difficulty of (2.3) is the huge number of un-
knowns and equations (7n − 3). We show how the number of equations can
be reduced by eliminating 6n − 3 unknowns. The resulting equation system
consists of n equations and has n unknowns. The determination of the weights
pij

means additional difficulties. The system of linear equations is solved with
unit weights first, then with the help of the solutions and the application of
the methods of robust estimators the weights are redefined. These steps are
repeated until the condition of iteration holds. The solution of this problem
for n = 3 is given by Závoti (1985) [3].

3. The equations

We introduce the following notation: hi+1 = xi+1 − xi; i = 1, . . . , n − 1.
Using these quantities for the partial derivatives of the function Func by Λi,
∆i, Ξi the following relations hold

(3.1) ai+1h
3
i+1 + bi+1h

2
i+1 + ci+1hi+1 + di+1 − di = 0,

(3.2) 3ai+1h
2
i+1 + 2bi+1hi+1 + ci+1 − ci = 0,

(3.3) 3ai+1hi+1 + bi+1 − bi = 0

for every i = 1, . . . , n− 1. For a simpler notation of the partial derivatives we
use the following expressions

Φi =
nj∑

j=1

pij (fij − g(xij )),

Ψi =
nj∑

j=1

pij (fij − g(xij ))(xi − xij ),

Γi =
nj∑

j=1

pij (fij − g(xij ))(xi − xij )
2,

Θi =
nj∑

j=1

pij (fij − g(xij ))(xi − xij )
3

for i = 1, . . . , n. In this way the partial derivatives of Func by d1, . . . , dn are

(3.4) −Φ1 − Λ1 = 0,

(3.5) −Φi − Λi + Λi−1 = 0, i = 2, . . . , n− 1,
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(3.6) −Φn + Λn−1 = 0.

The partial derivatives of Func by c1, . . . . . . , cn are

(3.7) −Ψ1 −∆1 = 0,

(3.8) −Ψi −∆i + ∆i−1 + hiΛi−1 = 0, i = 2, . . . , n− 1,

(3.9) −Ψn + ∆n−1 + hnΛn−1 = 0.

The partial derivatives of Func by b1, . . . , bn are

(3.10) −Γ1 − Ξ1 = 0,

(3.11) −Γi − Ξi + Ξi−1 + 2hi∆i−1 + h2
i Λi−1 = 0, i = 2, . . . , n− 1,

(3.12) −Γn + Ξn−1 + 2hn∆n−1 + h2
nΛn−1 = 0.

The partial derivatives of Func by a1, . . . , an are

(3.13) Θ1 = 0,

(3.14) −Θi + 3hiΞi−1 + 3h2
i ∆i−1 + h3

i Λi−1 = 0, i = 2, . . . , n.

To obtain the solution of the system of linear equations (3.4)-(3.14) we eliminate
the Λi, ∆i, Ξi, i = 1, . . . , n− 1 factors first. The sum of Eqs. (3.4)-(3.6) gives

(3.15)
n∑

i=1

Φi = 0,

and

(3.16)

Λ1 = −Φ1,

Λj = −
j∑

i=1

Φi, j = 2, . . . , n− 1,

Λn−1 = Φn.

From the sum of Eqs. (3.7)-(3.9) there follows

n∑
i=1

Ψi =
n∑

i=2

hiΛi−1.
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Using Eqs. (3.15) and (3.16) and the definition of hi the resummation of
n∑

i=2

hiΛi−1 gives

n∑
i=2

hiΛi−1 = −
n∑

i=2

(
hi

i−1∑
j=1

Φj

)
= −

n−1∑
i=1

(
Φi

n∑
j=i+1

hj

)
=

= −
n−1∑
i=1

(
Φi(xn − xi)

)
= −

n∑
i=1

(
Φi(xn − xi)

)
=

= −xn

n∑
i=1

Φi +
n∑

i=1

xiΦi =
n∑

i=1

xiΦi,

which can be written as

(3.17)
n∑

i=1

(Ψi − xiΦi) = 0,

and

(3.18)

∆1 = −Ψ1,

∆j = −
j∑

i=1

Ψi −
j−1∑
i=1

(Φi(xj − xi)), j = 2, . . . , n− 1,

∆n−1 = Ψn − hnΦn.

The sum of Eqs. (3.10)-(3.12) is

n∑
i=1

Γi =
n∑

i=2

h2
i Λi−1 + 2

n∑
i=2

hi∆i−1.

Substituting (3.16) and (3.18) into this equation, gives

n∑

i=1

Γi = −2
n∑

i=2

(
hi

i−1∑

j=1

Ψj

)
−

n∑

i=2

(
h2

i

i−1∑

j=1

Φj

)
− 2

n∑

i=3

(
hi

i−1∑

j=2

(
hj

j−1∑

k=1

Φk

))
.

With the use of Eq. (3.17) the term containing Φ can be reformulated as

−
n∑

i=2

(
hi

i−1∑
j=1

Ψj

)
= −

n−1∑
i=1

(
Ψi

n∑
j=i+1

hj

)
= −

n−1∑
i=1

Ψi(xn − xi) =

= −
n∑

i=1

Ψi(xn − xi) = −xn

n∑
i=1

Ψi +
n∑

i=1

xiΨi =

= −xn

n∑
i=1

xiΨi +
n∑

i=1

xiΦi,
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The remaining terms on the right-hand side are

−
n∑

i=2

(
h2

i

i−1∑
j=1

Φj

)
− 2

n∑
i=3

(
hi

i−1∑
j=2

(
hj

j−1∑
k=1

Φk

))
= −

n−1∑
i=1

(
Φi

( n∑
j=2

hj

)2)
=

= −
n−1∑
i=1

Φi(xn − xi)2 = −
n∑

i=1

Φi(xn − xi)2 =

= −x2
n

n∑
i=1

Φi + 2xn

n∑
i=1

xiΦi −
n∑

i=1

x2
i Φi =

= 2xn

n∑
i=1

xiΦi −
n∑

i=1

x2
i Φi

using Eq. (3.15). Finally we have

n∑
i=1

Γi = −2xn

n∑
i=1

xiΦi + 2
n∑

i=1

xiΨi + 2xn

n∑
i=1

xiΦi −
n∑

i=1

x2
i Φi,

or equivalently

(3.19)
n∑

i=1

(Γi − 2xiΨi + x2
i Φi) = 0.

Moreover, we obtain
(3.20)

Ξ1 = −Γ1,

Ξj = −
j∑

i=1

Γi −
j−1∑
i=1

Ψi(xj − xi)−
j−1∑
i=1

Φi(xj − xi)2, j = 2, . . . , n− 1,

Ξn−1 = Γn − 2hnΨn + h2
nΦn.

We can write Eq. (3.14) for i = n by Eqs. (3.16), (3.18) and (3.20) as

(3.21) Θn − 3hnΓn + 3h2
nΨn − h3

nΦn = 0,

since we have

−Θn + 3hnΞn−1 + 3h2
n∆n−1 + h3

nΛn−1 =

= −Θn + 3hn(Γn − 2hnΨn + h2
nΦn) + 3h2

n(Ψn − hnΦn) + h3
nΦn =

= −Θn + 3hnΓn − 3h2
nΨn + h3

nΦn.

After inserting Eqs. (3.16), (3.18) and (3.20) into Eq. (3.14) for i = 2, . . . , n−1
there follows

(3.22)
Θi + 3

i−1∑
j=1

(
Γj(xi − xi−1) + Ψj

[
(xi − xj)2 − (xi−1 − xj)2

])
+

+
i−1∑
j=1

Φj

[
(xi − xj)3 − (xi−1 − xj)3

]
= 0.
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Note that we have an equation equivalent to Eq. (3.22). This equivalent
equation arises if we add (3.13) to (3.14) and then in the resulting new equation
we add the terms up to the index i. This gives

(3.23) Θi +
i−1∑

j=1

(
Θj +3Γj

i∑

k=j+1

hk +3Ψj

( i∑

k=j+1

hk

)2

+Φj

( i∑

k=j+1

hk

)3)
= 0,

for i = 2, . . . , n− 1.

So far we have eliminated the variables Λi, ∆i and Ξi from the equations.
The remaining unknowns are a1, . . . , an, b1, . . . , dn, the determination of which
is our task, since Θi, Γi, Ψi and Φi are depending on these variables, too.

Now we turn to our equations expressed in terms of the unknown variables
a1, . . . , dn. For the sake of simplicity we introduce the notation

(3.24) Xik =
ni∑

j=1

pij
(xi − xij

)k, k = 0, 1, . . . , 6,

and

(3.25) Fik =
ni∑

j=1

pij
fij

(xi − xij
)k, k = 0, 1, 2, 3.

In terms of these expressions the equations containing Φi, Ψi, Γi, and Θi have
the following form.
From Eq. (3.13) we have

ni∑

j=1

pij

(
fij − aij (xi − xij )

3 − bij (xi − xij )
2 − cij (xi − xij )− dij

)
= 0,

which is

(3.26) Xik+3ai + Xik+2bi + Xik+1ci + Xikdi = Fik,

for i = 1, . . . , n and k = 0, 1, 2, 3.
To obtain a more compact form of Eq. (3.21) let us denote

(3.27)
ξk = Xnk+3 − 3hnXnk+2 + 3h2

nXnk+1 − h3
nXnk, k = 0, 1, 2, 3,

ξ4 = Fn3 − 3hnFn2 + 3h2
nFn1 − h3

nFn0.

Using these quantities we have

(3.28) ξ3an + ξ2bn + ξ1cn + ξ0dn = ξ4.
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For a simple form of Eq. (3.22) let be

(3.29)
Yijk = 3Xjk+2(xi − xi−1) + 3Xjk+1

(
(xi − xj)2 − (xi−1 − xj)2

)
+

+Xjk

(
(xi − xj)3 − (xi−1 − xj)3

)
,

where k = 0, 1, 2, 3.
In this case we have
(3.30)

Xi6ai + Xi5bi + Xi4ci + Xi3di+

+
i−1∑
j=1

(
Yij3aj + Yij2bj + Yij1cj + Yij0dj

)
=

= Fi3 +
i−1∑
j=1

(
Fj2(xi − xi−1) + 3Fj1

(
(xi − xj)2 − (xi−1 − xj)2

)
+

+Fj0

(
(xi − xj)3 − (xi−1 − xj)3

))

for i = 2, . . . , n− 1.
Inserting Eqs. (3.24) and (3.25) into Eqs. (3.15), (3.17) and (3.19) we get the
following expressions

(3.31)
n∑

i=1

(Xi3ai + Xi2bi + Xi1ci + Xi0di) =
n∑

i=1

Fi0,

(3.32)

n∑
i=1

(
(Xi4 − xiXi3)ai + (Xi3 − xiXi2)bi+

+(Xi2 − xiXi1)ci + (Xi1 − xiXi0)di

)
=

=
n∑

i=1

(Fi1 − xiFi0),

(3.33)
n∑

i=1

(
(Xi5 − 2xiXi4 + x2

i Xi3)ai + (Xi4 − 2xiXi3 + x2
i Xi2)bi+

+(Xi3 − 2xiXi2 + x2
i Xi1)ci + (Xi2 − 2xiXi1 + x2

i Xi0)di

)
=

=
n∑

i=1

(Fi2 − 2xiFi1 + x2
i Fi0).

Matrix representation

With the help of the equations derived in the previous section we determine
the quantities a1, . . . , dn.
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From Eq. (3.3) we have

(3.34) ai+1 =
1

3hi+1
(bi − bi+1), i = 1, . . . , n− 1.

We multiply Eq. (3.2) by hi+1, subtract Eq. (3.1) and then we subtract Eq.
(3.34) from this:

(3.35) ci =
hi+1

3
(2bi + bi+1) +

1
hi+1

(di − di+1), i = 1, . . . , n− 1.

Substituting Eq. (3.34) into Eq. (3.1) we have

(3.36) ci+1 = −hi+1

3
(bi + 2bi+1) +

1
hi+1

(di − di+1), i = 1, . . . , n− 1.

We express c1 from Eq. (3.35) and insert it into Eq. (3.26),

(3.37)
a1 = − 1

X1,6

((−X1,5 − 2h2

3
X1,4

)
b1 +

(− h2

3
X1,4

)
b2+

+
(−X1,3 − 1

h2
X1,4

)
d1 +

( 1
h2

X1,4

)
d2 + F1,3

)
,

which is expressed as

(3.38) a1 = α1b1 + α2b2 + α3d1 + α4d2 + α5.

Let be

a = (a1, . . . , an)T , b = (b1, . . . , bn)T , c = (c1, . . . , cn)T , d = (d1, . . . , dn)T .

This way Eqs. (3.34) and (3.37) can be written in matrix form as

(3.39) a = Abb + Add + va,

where we have

(3.40)

Ab =




α1 α2
1

3h2
− 1

3h2

. . . . . .
1

3hn
− 1

3hn


 ,

Ad =




α3 α4


 , va =




α5



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and we have also introduced the following notation: for matrices and vectors
the elements, which are not specified, are 0.
Substituting an from Eq. (3.34) into Eq. (3.28) we have

(3.41) cn =
1
ξ1

((− 1
3hn

ξ3

)
bn−1 +

( 1
3hn

ξ3 − ξ2

)
bn + (−ξ0)dn + ξ4

)

which is written as

(3.42) cn = β1bn−1 + β2bn + β3dn + β4.

With the help of Eqs. (3.35) and (3.41) the matrix equation for c is

(3.43) c = C∗b b + C∗dd + c∗,

where

(3.44)

C∗b =




2h2
3

h2
3
. . . . . .

2hn

3
hn

3
β1 β2


 ,

C∗d =




1
h2

− 1
h2

. . . . . .
1

hn
− 1

hn

β3


 , c∗v =




β4


 .

We substitute a1, a2 from Eq. (3.39) and c2 from Eq. (3.36) into Eq. (3.30) if
i = 2. This way we obtain

(3.45)

c1 =
1

Y2,1,1

((− α1Y2,1,3 − Y2,1,2 − X2,6

3h2
+

h2X2,4

3
)
b1+

+
(− α2Y2,1,3 +

X2,6

3h2
−X2,5 +

2h2

3
X2,4

)
b2+

+
(− α3Y2,1,3 − Y2,1,0 − X2,4

h2

)
d1+

+
(− α4Y2,1,3 +

X2,4

h2
−X2,3

)
d2+

+
(
F2,3 + 3h2F1,2 + 3h2

2F1,1 + h3
2F1,0

))

which is written as

(3.46) c1 = γ1b1 + γ2b2 + γ3d1 + γ4d2 + γ5.
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We have a matrix equation obtained from Eqs. (3.36) and (3.45)

(3.47) c = Cbb + Cdd + cv,

where

(3.48)

Cb =




γ1 γ2

−h2
3 − 2h2

3
. . . . . .

−hn

3 − 2hn

3


 ,

Cd =




γ3 γ4
1
h2

− 1
h2

. . . . . .
1

hn
− 1

hn


 , cv =




γ5

 .

With the use of the matrix equations (3.39), (3.43) and (3.47) we have expressed
the vectors a and c in terms of b and d. To determine the relation between b
and d it is enough to subtract Eq. (3.47) form Eq. (3.43)

(3.49) (C∗b − Cb)b + (C∗d − Cd)d + c∗v − cv = 0,

which is written as

(3.50) Bb + Dd + v = 0,
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where
(3.51)

B =




2h2
3 − γ1

h2
3 − γ2

h2
3 − 2(h2+h3)

3
h3
3

. . . . . . . . .
hn−1

3 − 2(hn−1+hn)
3

hn

3

β1 + hn

3 β2 + 2hn

3




,

D =




1
h2
− γ3 − 1

h2
− γ4

1
h2

1
h2

+ 1
h3

− 1
h3

. . . . . . . . .
− 1

hn−1

1
hn−1

+ 1
hn

− 1
hn

− 1
hn

β3 + 1
hn




,

v =




−γ5

β4




.

From Eq. (3.50) there follows

(3.52) Dd = −Bb− v,

and finally d can be expressed in terms of b as

(3.53) d = −D−1Bb−D−1v.

As a consequence of the above result, with the use of Eq. (3.53) a and c can
also be expressed in terms of b in Eqs. (3.39) and (3.47). We note that to
obtain Eq. (3.53) one has to compute the inverse D−1, which can be done by
Gaussian elimination, since D is tridiagonal (see e.g. [4], p. 71.).
From Eq. (3.30) for i = 3, . . . , n − 1 and Eqs. (3.31)-(3.33) we construct the
following equation:

(3.54) M3a + M2b + M1c + M0d = mv,

where

Mk =




Y3,1,k Y3,2,k X3,k+3

...
...

. . . . . .
Yn−1,1,k Yn−1,2,k · · · Yn−1,n−2,k Xn−1,k+3

X1,k X2,k · · · Xn,k

X∗
1,k X∗

2,k · · · X∗
n,k

X∗∗
1,k X∗∗

2,k · · · X∗∗
n,k




,



116 R. Polgár

X∗
i,k = Xi,k+1 − xiXi,k and X∗∗

i,k = Xi,k+2 − 2xiXi,k+1 + x2
i Xi,k,

for i = 1, ..., n, l = 0, 1, 2, 3 and

m =




F3,3 +
2∑

j=1

2∑
k=0

(
3
k

)
Fj,k

(
(x3 − xj)3−k − (x2 − xj)3−k

)

...

Fn−1,3 +
n−2∑
j=1

2∑
k=0

(
3
k

)
Fj,k

(
(xn−1 − xj)3−k − (xn−2 − xj)3−k

)

n∑
i=1

Fi,0

n∑
i=1

(Fi,1 − xiFi,0)
n∑

i=1

(
Fi,2 − 2xiFi,1 + x2

i Fi,0

)




.

Inserting Eqs. (3.39) and (3.47) into Eq. (3.54) we have

M3(Abb + Add + av) + M2b + M1(Cbb + Cdd + cv) = mv,

that is

(M3Ab + M2 + M1Cb)b + (M3Ad + M0 + M1Cd)d + M3av + M1cv = mv,

into which we insert Eq. (3.53):

(M3Ab + M2 + M1Cb)b + (M3Ad + M0 + M1Cd)(−D−1)(Bb− v) =

= mv −M3av −M1cv,

which equals to

(3.55)
(M3Ab + M2 + M1Cb − (M3Ad + M0 + M1Cd)D−1B)b =

= mv −M3av −M1cv + (M3Ad + M0 + M1Cd)D−1v,

and is written as

(3.56) Lb = w,

where L is not a sparse matrix, yet.
To determine the coefficients of the spline functions we have to solve Eq. (3.56)
for b, then Eq. (3.53) for d, and finally Eqs. (3.39) and (3.47) for a and c.

The Algorithm

The main steps of the iteration are:
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1. choose suitable values for the initial weights pij
, i = 1, . . . , n, j = 1, . . . , ni.

At start use unit weights;
2. compute the values of the auxiliary variables (3.24), (3.25), (3.27),

(3.29), (3.37), α1, α2, α3, α4, α5, (3.41), β1, β2, β3, β4, (3.45), γ1, γ2, γ3,
γ4, γ5;

3. initialize the matrices Ab, Ad, Cb, Cd, B,D, M0,M1,M2,M3 and vectors
av, cv, v, mv;

4. from Eq. (3.52) compute the form of d as given in Eq. (3.53).
5. initialize L and w figuring in Eqs. (3.55) and (3.56);
6. solve the system of linear equations Lb = w;
7. with the solution b calculate d from Eq. (3.53), then a and c from Eqs.

(3.39) and (3.47);
8. stop if the stop condition is satisfied. Otherwise with the use of the spline

function g calculate the weights pij and repeat from step 2.

Remarks on step 8:

• one of the possible stop condition is the following: compute the summed
square of the difference of the samples and the approximating spline func-
tion (at the kth iteration step it is denoted by Sk). At startup set ε > 0

and compare ε with the value of
|Sk−1 − Sk|

Sk−1
.

• the larger the difference between point (xij , fij ) and the spline function
the smaller the value of pij

is advisable to choose, e.g.:

pij
=





1
|fij

− gi(xij
)| ha |fij

− gi(xij
)| > ε′,

1
ε′ ha |fij − gi(xij )| ≤ ε′,

where the number ε′ > 0 is sufficiently small.

4. Example

We check the applicability of the solution with the so-called stochastic sim-
ulation method: a known solution is polluted with a random variable of normal
or Cauchy distribution. The method is then applied to the polluted sample.
In the first example (Figure 1) we have modified the values of the function
f(x) = x3 − 2x2 + x with a random variable of Cauchy distribution. The in-
terval [0, 1] is divided into 1000 equal parts and the data are collected into 10
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groups with equal size. The iteration is done with the help of the Maple V
Rel. 5 computer algebra system according to the algorithm presented in the
previous section.

Figure 1:
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(a) The initial sample (b) Iteration, step 1
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(c) Iteration, step 2 (d) End of iteration, step 8

A discontinuity example is f(x) := 0, if 0 ≤ x < 1/2 and 1, if 1/2 ≤ x ≤ 1.
The interval [0, 1] is divided into 300 equal parts and the data are collected
into 10 groups (Figure 2).
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Figure 2:
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–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

y

0.2 0.4 0.6 0.8 1
x

0

0.2

0.4

0.6

0.8

1

1.2

1.4

y

0.2 0.4 0.6 0.8 1
x

(c) End of iteration, step 8 (d) End of iteration, step 9

5. Conclusion

We have modeled a function approximating a large number of samples with
piecewise third-degree spline polynomials. The solution is a twice continuously
differentiable spline function which gives the minimum of the variational prob-
lem according to the method of least squares and approximates the data in a
similar manner as robust estimators.
The novelty of the method is that it makes global equalization with piecewise
approximation on a large number of samples. Contrary to the current spline ap-
proximation methods, where a third-order polynomial is defined between every
point, in this treatment the points are grouped together. After that we search
for curves which approximate these groups well according to specific conditions
and, moreover, give a good approximation of the data points globally.
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The method can be applied to analyze dynamical properties and determine the
velocity and acceleration vectors with the use of the location of the bodies as
data points. In the model calculations fast convergence is apparent and large
oscillations, known in the Newtonian interpolation method, do not appear.
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