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UNITARY DIVISOR PROBLEM
FOR ARITHMETIC PROGRESSIONS

V. Sitaramaiah (Pondicherry, India)
M.V. Subbarao†

Abstract. In this paper, we establish an asymptotic formula for the sum

∑
n≤x

n≡` (mod m)

τ∗(n),

where τ∗(n) is the number of unitary divisors of n, m a positive integer and

` any integer. Only the special case of this sum corresponding to ` = m = 1
has been considered before in the literature by Mertens, Eckford Cohen and

others.

1. Introduction

The classical Dirichlet divisor problem concerns the best estimate of α in

(1.1)
∑

n≤x

τ(n) = x(log x + 2γ − 1) + O(xα),

where τ(n) is the number of divisors of n and γ is the Euler constant. It is
well known that 1/4 < α < 1/3 (cf. [4], p. 272). There is a conjecture that
α = (1/4) + ε for every ε > 0. The best result that is presently known in this
direction is that the error term in (1.1) is O(x23/73(log x)315/146), which is due
to M.N. Huxely [5].

Professor M.V. Subbarao passed away on 15th February, 2006; he would
have completed 86 years by 4th May 2006.
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When one studies variations of asymptotic estimates of divisor sums as∑
n≤x

τ(n), restrictions can be placed either on the range of values of n or on

the nature of the divisors of n (or on both). The case when n is restricted to
belong to a given arithmetic progression seems to have been first considered
by S. Ramanujan ([8], result H). In 1916, he stated (without proof of course!)
that

(1.2)
∑
n≤x

n≡`(mod m)

τ(n) = αx(log x + 2γ − 1) + βx + O(x1/3 log x),

where α and β are constants depending only on ` and m, and he further
stated that the order of the remainder term is likely to be the same as that
of the remainder term occurring in the Dirichlet divisor problem. In 1929, A.
Walfisz [12] improved the order of the remainder in (1.2) to O(x27/82 log11/41 x);
unfortunately this result on the remainder term in (1.2) is not much noticed
probably because of the rather difficult accessability of the journal where it
appeared. The result of Walfisz mentioned above has further been improved
by Werner Georg Nowak [13] in 1984; he established (1.2) with error term
O(x35/108+ε). This appears to be the best result on the divisor problem in
arithmetic progressions.

In 1970, Kopetzky [5] gave a simple proof for the asymptotic result

(1.3)
∑
n≤x

n≡b(mod a)

τ(n) = ξ1(a, b)x log x + ξ2(a, b)x + O(
√

x)

and gave explicit evaluations of ξ1 and ξ2 in terms of the prime divisors of
a and of the g.c.d. (a, b) of a and b. However a careful examination of the
error term O(

√
x) shows that the constant involved in O(

√
x) is not absolute,

but depends on a and b. The error term in (1.3) has to be displayed as

O

(
√

x
a

∑
q|(a,b)

qϕ(a/q)

)
+ O(

√
x). See §2, Remark 2.1 in the sequel. Here and

elsewhere ϕ is the Euler totient function.
If a and b are relatively prime, the above O-term in (1.3) has been improved

to O(a7/3x1/3 log x) in 1988 by D.I. Tolev ([11]). It may be mentioned that in
all the results mentioned above except that of Tolev, the error estimates are
independent of the variable x only; they do depend on the other parameters.

In this paper, we study the unitary divisor problem for arithmetic pro-
gressions. A divisor d of n is called a unitary divisor if (d, n/d) = 1 (cf. [1]).
We recall that a positive integer n is called square-free if it is not divisible by
the square of any prime. A divisor d of n is called a square-free divisor if d
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is square-free. Let τ∗(n) denote the number of unitary divisors of n. Clearly,
τ∗(n) = θ(n) = 2ω(n), where θ(n) is the number of square-free divisors of n
and ω(n) is the number of distinct prime factors of n with ω(1) = 0.

In 1874, Mertens [7] established the following asymptotic formula (with
θ(n) in place of τ∗(n)):

(1.2)
∑

n≤x

τ∗(n) =
x

ζ(2)

(
log x− 2γ − 1− 2

ζ ′(2)
ζ(2)

)
+ O(x1/2 log x),

where γ is Euler’s constant, ζ(s) the Riemann-zeta function and ζ ′(s) its
derivative. In 1960, E. Cohen [2] gave an alternate proof of (1.2). If
∆(x) denotes the error term in (1.2), then in 1966 Gioia and Vaidya [3]
improved the error term in (1.2) to ∆(x) = O(x1/2). The best result known
on ∆(x) is due to D. Suryanarayana and V. Siva Rama Prasad (cf. [10],
Theorem 3.1, k = 2) who obtained that ∆(x) = O(x1/2δ(x)), where δ(x) =

= exp
(
−A log3/5 x(log log x)−1/5

)
, where A is a positive constant. Also, on

the assumption of the Riemann hypothesis, they (cf. [10], Theorem 3.2, k = 2)

further improved the order estimate of ∆(x) to ∆(x) = O
(
x

2−α
5−4α ω(x)

)
, where

α is the number which appears in (1.1) and ω(x) = exp
(
B log x · (log log x)−1

)
,

where B is a positive constant.
The object of the present paper is to establish an asymptotic formula for

the sum ∑
n≤x

n≡`(modm)

τ∗(n)

(see §3, Theorem) where ` is any integer and m is a positive integer.
Such a formula does not appear to have been established so far. Inciden-

tally we also obtain a minor improvement in the error term of the asymptotic
formula of the sum ∑

n≤x
n≡b(moda)

τ(n)

obtained by H.G. Kopetzky (see §2, Remark 2.1).
In §2 we prove certain preliminary results and in §3 we prove the main

result.
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2. Preliminaries

Lemma 2.1. (cf. [1], Lemma 3.4) We have

∑
m≤x

(m,n)=1

1 =
xϕ(n)

n
+ O(θ(n)),

uniformly in x and n, where ϕ is the Euler-totient function and θ(n) = 2ω(n),
ω(n) being the number of distinct prime factors of n with ω(1) = 0. As usual,
(m,n) denotes the greatest common divisor of m and n.

Lemma 2.2. (cf. [9], Lemma 2.1) We have

∑
m≤x

(m,n)=1

1
m

=
ϕ(n)

n
(log x + γ + α(n)) + O

(
θ(n)
x

)
,

uniformly in x and n, where

(2.1) α(n) = − n

ϕ(n)

∑

d|n

µ(d) log d

d
=

∑

p|n

log p

p− 1
,

µ being the Möbius function, and γ is Euler’s constant (here and throughout
this paper the letter p is reserved for primes).

Lemma 2.3. For any positive integer a and any integer b, we have for
x ≥ 2,

S ≡
∑
n≤x

n≡b(moda)

τ(n) =

(2.2)

=
x

a2
(log x + 2γ − 1)

∑

q|(a,b)

qϕ(a/q)− 2x

a2

∑

q|(a,b)

qϕ(a/q) log q+

+
2x

a2

∑

q|(a,b)

qϕ(a/q)α(a/q) + O



√

x

a

∑

q|(a,b)

qθ(a/q)


 + O(

√
x),

where α(n) is as given in (2.1) and the constants implied by the O-terms are
independent of x, a and b.
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Proof. We adopt a standard method. Clearly we have

(2.3) S =
∑
dδ≤x

dδ≡b(moda)

1 = 2S1 − S2,

where
S1 =

∑
dδ≤x

d≤√x
dδ≡b(moda)

1 and S2 =
∑
dδ≤x

d≤√x

δ≤√x
dδ≡b(moda)

1.

We have

S1 =
∑

d≤√x
(d,a)|b

∑
δ≤x/d

dδ≡b(moda)

1 =
∑

d≤√x
(d,a)|b

∑
δ≤x/d

d
(a,d)

δ≡ b
(a,d)

(
mod a

(a,d)

)
1 =

(2.4)

=
∑

d≤√x
(d,a)|b

{
x(a, d)

ad
+ O(1)

}
=

=
x

a

∑
d≤√x
(d,a)|b

(a, d)
d

+ O(
√

x).

By Lemma 2.2, we have

(2.5)
∑

d≤√x
(d,a)|b

(a, d)
d

=

=
∑

q|(a,b)

q
∑

d≤√x
(d,a)=q

1
d

=

=
∑

q|(a,b)

∑
t≤√x/q

(t, a
q )=1

1
t

=

=
∑

q|(a,b)

{
ϕ(a/q)
(a/q)

(
1
2

log x− log q + γ + α(a/q)
)

+ O

(
q√
x

θ(a/q)
)}

=

=
(

1
2

log x + γ

) ∑

q|(a,b)

ϕ(a/q)
(a/q)

− 1
a

∑

q|(a,b)

qϕ(a/q) log q+

+
∑

q|(a,b)

ϕ(a/q)
(a/q)

α(a/q) + O


 1√

x

∑

q|(a,b)

qθ(a/q)


 .
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Substituting (2.5) into (2.4) we obtain,

(2.6)

S1 =
x

a2

(
1
2

log x + γ

) ∑

q|(a,b)

qϕ(a/q)− x

a2

∑

q|(a,b)

qϕ(a/q) log q+

+
x

a2

∑

q|(a,b)

qϕ(a/q)α(a/q) + O



√

x

a

∑

q|(a,b)

qθ(a/q)


 + O(

√
x).

We have

(2.7)

S2 =
∑

d≤√x

∑
δ≤√x

dδ≡b(moda)

1 =
∑

d≤√x
(d,a)|b

∑
δ≤√x

dδ≡b(moda)

1 =

=
∑

d≤√x
(d,a)|b

{√
x(d, a)

a
+ O(1)

}
=

=
√

x

a

∑
d≤√x
(d,a)|b

(d, a) + O(
√

x).

By Lemma 2.1 we have,

(2.8)

∑
d≤√x
(d,a)|b

(d, a) =
∑

q|(a,b)

q
∑

t≤√x/q

(t, a
q )=1

1 =

=
∑

q|(a,b)

q

{√
x

q

ϕ(a/q)
(a/q)

+ O (θ(a/q))
}

=

=
√

x

a

∑

q|(a,b)

qϕ(a/q) + O


 ∑

q|(a,b)

qθ(a/q)


 .

Putting (2.8) into (2.7), we obtain

(2.9) S2 =
x

a2

∑

q|(a,b)

qϕ(a/q) + O



√

x

a

∑

q|(a,b)

qθ(a/q)


 + O(

√
x).

Lemma 2.3 follows from (2.9), (2.6) and (2.3).

Remark 2.1. In [6], H.G. Kopetzky established formula (2.2) with error
term O(

√
x). However, this error term is not uniform in a and b; if we carefully
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follow his method in estimating the sum
∑

1≤i≤ω

δi(x) in his paper (cf. [6],

page 289) we see that the error term that can be obtained from his method is

O

(
√

x
a

∑
q|(a,b)

qϕ(a/q)

)
+ O(

√
x), which is weaker than the one in (2.2) since

∑
q|(a,b)

qθ(a/q) = O

(
∑

q|(a,b)

qϕ(a/q)

)
. It may be noted that formula (2.2) was

established by D.I. Tolev [11] in case a and b are relatively prime, with a better
error term namely O(a7/3x1/3 log x).

Remark 2.2. It is easy to see that formula (2.2) is also valid for the sum

∑
n≤x

hn≡b(moda)

τ(n), where (h, a) = 1.

Lemma 2.4. We have for any divisor M of m,

Σ1 =
∞∑

d=1
(d2,m)|M

µ(d)(d2, m)
d2

=
µ2(M)m2ϕ(M)(m1, M)
ζ(2)J2(m)Mϕ((m1, M))

,

where

J2(m) = m2
∏

p|m

(
1− 1

p2

)
,

and
m1 =

∏
pα‖m
α≥2

pα.

Proof. The series is absolutely convergent and the general term of the
series is a multiplicative function of d. Hence we can expand the given series
as an Euler-infinite product (cf. [4], Theorem 285, page 249). We obtain

Σ1 =
∏

(p2,m)|M

(
1− (p2, m)

p2

)
=

∏

p|m

(
1− 1

p2

) ∏

p2 6|m
p|M

(
1− 1

p

) ∏

p2|M
(1− 1) =

=
1

ζ(2)
· m2

J2(m)
·

∏
p|M

(
1− 1

p

)

∏
p2|m
p|M

(
1− 1

p

) ·
∏

p2|M
(1− 1) =
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=
1

ζ(2)
· m2

J2(m)
· ϕ(M)

M
·

∏
p|m1
p|M

(
1− 1

p

)−1 ∏

p2|M

(
1− 1

p

)−1

=

=





1
ζ(2)

m2

J2(m)
ϕ(M)

M
(m1,M)

ϕ(m1,M) if M is square-free,

0 otherwise.

Hence Lemma 2.4 follows.

Lemma 2.5. We have

Σ2 ≡
∑
d≤x

(d2,m)|`

µ(d)(d2,m)2

d2

∑

q| (m,`)
(d2,m)

qϕ

(
m

q(d2,m)

)
=

=
m3

ζ(2)J2(m)

∑

q|(m,`)

∑

t|m
q

µ(t)
t

f(m, `, t, q)+

+ O


m(m, `)

x

∑

q|(m,`)

θ

(
m

q

)
 ,

where

f(m, `, t, q) =
µ2

(
(m

tq , `
q )

)
ϕ

(
(m

tq , `
q )

)(
m1, (m

tq , `
q )

)
(

m
tq , `

q

)
ϕ

(
(m1, (m1, (m

tq , `
q )))

) .

Proof. We have

Σ2 =
∑

q|(m,`)

q
∑
d≤x

(d2,m)

∣∣ (m,`)
q

µ(d)(d2,m)2

d2
ϕ

(
m

q(d2,m)

)
=

= m
∑

q|(m,`)

∑
d≤x

(d2,m)

∣∣ (m,`)
q

µ(d)(d2, m)2

d2

∑

t
∣∣ m

q(d2,m)

µ(t)
t

=

= m
∑

q|(m,`)

∑

t|m
q

µ(t)
t

∑
d≤x

(d2,m)

∣∣( m
tq

, `
q )

µ(d)(d2, m)
d2

=
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= m
∑

q|(m,`)

∑

t|m
q

µ(t)
t





∑
d=1

(d2,m)|( m
tq

, `
q
)

µ(d)(d2,m)
d2

+ O


 (m, `)

q

∑

d≥x

1
d2








=

= m
∑

q|(m,`)

∑

t|m
q

µ(t)
t

m2

ζ(2)J2(m)

µ2
(
(m

tq , `
q )

)
ϕ

(
(m

tq , `
q )

) (
m1, (m

tq , `
q )

)
(

m
tq , `

q

)
ϕ

((
m1,

(
m
tq , `

q

))) +

+ O


m(m, `)

x

∑

q|(m,`)

1
q

∑

t|m
q

µ2(t)
t


 =

=
m3

ζ(2)J2(m)

∑

q|(m,`)

∑

t|m
q

µ(t)
t

f(m, `, t, q) + O


m(m, `)

x

∑

q|(m,`)

θ

(
m

q

)
 .

Hence Lemma 2.5 follows.

Lemma 2.6. Let M |m. We have

Σ3 =
∑
n≤x

(n2,m)|M

µ(n)(n2,m) log n

n2
=

−m2

Mζ(2)J2(m)
×

×





∑
p|M
p2 6|m

p log p

p− 1
G(M/p)µ2(M/p) + G(M)

∑

p6|m

p log p

(p2 − 1)(p− 1)
+

+
∑

p2|M
p2 log pG(M/p2)H(M/p2)



 + O

(
M log x

x

)
,

where

G(t) =
ϕ(t)(m1, t)
ϕ((m1, t))

,

and H(M/p2) as given in (2.13).

Proof. If Λ(n) denotes Vongoldt’s function defined by

Λ(n) =





log p if n = pk, k ≥ 1,

0 otherwise,
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it is well-known (cf. [4], Theorem 296) that
∑

d|n
Λ(d) = log n.

Hence we have

(2.10)

Σ3 = −
∑
pδ≤x

(p2,m)(δ2,m)|M
(p,δ)=1

µ(δ)(p2,m)(δ2,m) log p

p2δ2
=

= −
∑
p≤x

(p2,m)|M

(p2,m) log p

p2

∑
δ≤x/p
(δ,p)=1

(δ2,m)

∣∣ M
(p2,m)

µ(δ)(δ2,m)
δ2

.

Letting Σ31 denote the inner sum in (2.10), we have

(2.11)

Σ31 =
∞∑

δ=1
(δ,p)=1

(δ2,m)

∣∣ M
(p2,m)

µ(δ)(δ2,m)
δ2

+ O

(
pM

x(p2,m)

)
=

= Σ32 + O

(
pM

x(p2,m)

)
,

say. Expanding Σ32 as an Euler-infinite product, we obtain (in what follows
we temporarily designate q to be a prime number)
(2.12)

Σ32 =
∏
q 6=p

(q2,m)

∣∣ M
(p2,m)

(
1− (q2,m)

q2

)
=

=
∏
q 6=p
q 6|m

(
1− 1

q2

) ∏
q 6=p

q2 6|m

q

∣∣ M
(p2,m)

(
1− 1

q

) ∏
q 6=p

q2
∣∣ M
(p2,m)

(1− 1) =

=





m2p2ϕ(M/p)(m1,M/p)µ2(M/p)
Mζ(2)J2(m)(p− 1)ϕ((m1,M/p))

if p|M and p2 6 |m,

m2p3ϕ(M)(m1,M)µ2(M)
Mζ(2)J2(m)ϕ((m1,M))(p2 − 1)(p− 1)

if p 6 |m,

m2p2ϕ(M/p2)(m1,M/p2)
Mζ(2)ϕ((m1, M/p2))

H(M/p2), if p2|M ,
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where m1 is as given in Lemma 2.4 and

(2.13) H

(
M

p2

)
=

{
0 if M/p2 is divisible by a prime 6= p,

1 otherwise.

Substituting (2.11) into (2.10), we obtain
(2.14)

Σ3 = −
∑
p≤x

(p2,m)|M

(p2,m) log p

p2
Σ32 + O


M

x

∑

p≤x

log p

p


 =

= −
∑
p≤x

(p2,m)|M

(p2,m) log p

p2
Σ32 + O

(
M log x

x

)
=

= −
∑

(p2,m)|M

(p2,m) log p

p2
Σ32 + O

(
M

∑
p>x

log p

p2

)
+ O

(
M log x

x

)
=

= −
∑

(p2,m)|M

(p2,m) log p

p2
Σ32 + O

(
M log x

x

)
,

where we used the results
∑
p≤x

log p
p = O(log x) and

∑
p>x

log p
p2 = O

(
log x

x

)
. From

(2.12), we have

(2.15)
∑

(p2,m)|M

(p2, m) log p

p2
Σ32 =

=
∑
p|M
p2 6|m

log p

p

(
m2p2ϕ(M/p)(m1,M/p)µ2(M/p)
Mζ(2)J2(m)(p− 1)ϕ((m1,M/p))

)
+

+
∑

p 6|m

log p

p

(
m2p3ϕ(M)(m1,M)µ2(M)

Mζ(2)J2(m)ϕ((m1,M))(p2 − 1)(p− 1)

)
+

+
∑

p2|M
log p

(
m2p2ϕ(M/p2)(m1,M/p2)H(M/p2)

Mζ(2)ϕ((m1,M/p2))

)
=
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=
m2

Mζ(2)J2(m)





∑
p|M
p2 6|m

p log p

(p− 1)
· ϕ(M/p)(m1,m/p)

ϕ((m1, M/p))
µ2(M/p)+

+
ϕ(M)(m1, M)µ2(M)

ϕ((m1,M))

∑

p6|m

p log p

(p2 − 1)(p− 1)
+

+
∑

p2|M

p2 log pϕ(M/p2)(m1,M/p2)H(M/p2)
ϕ((m1,M/p2))



 .

Substituting (2.15) into (2.14), we obtain Lemma 2.6.

Lemma 2.7. We have

Σ4 =
∑
d≤x

(d2,m)|`

µ(d)(d2,m)2 log d

d2

∑

q
∣∣ (m,`)
(d2,m)

qϕ

(
m

q(d2,m)

)
=

= −m3A(m, `)
ζ(2)J2(m)

+ O


m(m, `) log x

x

∑

q|(m,`)

θ

(
m

q

)
 ,

where

A(m, `) =
∑

q|(m,`)

∑

t|m
q

µ(t)
t
· 1(

m
tq , `

q

)×

×





∑
p|M
p2 6|m

p log p

p− 1
G(M/p)µ2(M/p) + G(M)

∑

p6|m

p log p

(p2 − 1)(p− 1)
+

+
∑

p2|M
p2 log pG(M/p2)H(M/p2)



 ,

and

M =
(

m

tq
,
`

q

)
.

Proof. We have

Σ4 = m
∑

q|(m,`)

∑

t|m
q

µ(t)
t

∑
d≤x

(d2,m)

∣∣( m
tq

, `
q )

µ(d)(d2,m) log d

d2
.
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Now Lemma 2.7 follows from Lemma 2.6.

Lemma 2.8.We have

Σ5 =
∑
d≤x

(d2,m)|`

µ(d)(d2,m)2

d2

∑

q
∣∣ (m,`)
(d2,m)

qϕ

(
m

q(d2,m)

)
α

(
m

q(d2,m)

)
=

=
−m3

ζ(2)J2(m)

∑

q|(m,`)

∑

t|m
q

µ(t)
t

log t f(m, `, t, q)+

+ O


m(m, `)

x

∑

q|(m,`)

θ

(
m

q

)
 ,

where f(m, `, t, q) is as given in Lemma 2.5.

Proof. From (2.1), we have

−α(n)ϕ(n)
n

=
∑

t|n

µ(t) log t

t
.

Using this, it can be shown that

Σ5 = −m
∑

q|(m,`)

∑

t|m
q

µ(t) log t

t

∑
d≤x

(d2,m)

∣∣( m
tq

, `
q )

µ(d)(d2, m)
d2

=

= −m
∑

q|(m,`)

∑

t|m
q

µ(t) log t

t

∞∑
d=1

(d2,m)

∣∣( m
tq

, `
q )

µ(d)(d2, m)
d2

+

+ O


m(m, `)

x

∑

q|(m,`)

θ

(
m

q

)
 .

Now, Lemma 2.8 follows from Lemma 2.4 and the definition of f(m, `, t, q) is
given in Lemma 2.4.

Lemma 2.9.We have

Σ6 =
∑
d≤x

(d2,m)|`

µ(d)(d2,m)2

d2

∑

q
∣∣ (m,`)
(d2,m)

qϕ

(
m

q(d2,m)

)
log q =

=
m3

ζ(2)J2(m)

∑

q|(m,`)

log q
∑

t|m
q

µ(t)
t

f(m, `, t, q)+
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+O


m(m, `)

x
·

∑

q|(m,`)

θ

(
m

q

)
 .

Proof. We have

Σ6 = m
∑

q|(m,`)

log q
∑

t|m
q

µ(t)
t

∑
d≤x

(d2,m)

∣∣( m
tq

, `
q )

µ(d)(d2, m)
d2

=

= m
∑

q|(m,`)

log q
∑

t|m
q

µ(t)
t

∞∑
d=1

(d2,m)

∣∣( m
tq

, `
q )

µ(d)(d2, m)
d2

+

+ O


m(m, `)

x
·

∑

q|(m,`)

θ

(
m

q

)
 .

Lemma 2.9 follows from Lemma 2.4 and the definition of f(m, `, t, q) is given
in Lemma 2.5.

Lemma 2.10.We have

Σ7 ≡
∑

d≤x

(d2,m)
d

∑

q
∣∣ (m,`)
(d2,m)

qθ

(
m

q(d2,m)

)
=

= O


(m, `)

∑

q|(m,`)

θ

(
m

q

)
· log x


 .

Proof. We have

Σ7 =
∑

q|(m,`)

q
∑
d≤x

(d2,m)

∣∣ (m,`)
q

1
d
θ

(
m

q(d2,m)

)
(d2,m) ≤

≤ (m, `)
∑

q|(m,`)

θ

(
m

q

) ∑

d≤x

1
d

=

= O


(m, `)

∑

q|(m,`)

θ

(
m

q

)
· log x


 .
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3. The main result

We are now in a position to prove the following

Theorem.We have for any positive integers m and `,
(3.1)
T ∗ =

∑
n≤x

n≡`(modm)

τ∗(n) =

=
m

ζ(2)J2(m)



x log x

∑

q|(m,`)

∑

t|m
q

µ(t)
t

f(m, `, t, q)+

+x


2A(m, `) +

∑

q|(m,`)

∑

t|m
q

µ(t)
t

f(m, `, t, q)(2γ − 1− 2 log t− 2 log q)






+

+ O


√x log x

(m, `)
m

∑

q|(m,`)

θ

(
m

q

)
 + O(

√
x log x),

uniformly in x, m and `, where f(m, `, t, q) is as given in Lemma 2.5 and
A(m, `) as in Lemma 2.7.

Proof. Since τ∗(n) =
∑

d2δ=n

µ(d)τ(δ), we have by Lemma 2.3 and Remark

2.2,

(3.2)

T ∗ =
∑

d≤√x

µ(d)
∑

δ≤x/d2

d2δ≡`(modm)

τ(δ) =

=
∑

d≤√x

(d2,m)|`

µ(d)
∑

δ≤x/d2

d2
(d2,m)

δ≡ `
(d2,m)

mod
(

m
(d2,m)

)
τ(δ) =

=
∑

d≤√x

(d2,m)|`

µ(d)





x

d2

(d2,m)2

m2
(log x− 2 log d + 2γ − 1)

∑

q
∣∣ (m,`)
(d2,m)

qϕ

(
m

q(d2,m)

)
−

− 2x

d2
· (d2,m)2

m2

∑

q
∣∣ (m,`)
(d2,m)

qϕ

(
m

q(d2,m)

)
log q+
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+
2x

d2
· (d2,m)2

m2

∑

q
∣∣ (m,`)
(d2,m)

qϕ

(
m

q(d2,m)

)
α

(
m

q(d2,m)

)
+

+O



√

x

d

(d2,m)
m

∑

q
∣∣ (m,`)
(d2,m)

qθ

(
m

q(d2,m)

)

 + O

(√
x

d

)




=

=
x

m2
(log x + 2γ − 1)

∑
d≤√x

(d2,m)|`

µ(d)(d2,m)2

d2

∑

q
∣∣ (m,`)
(d2,m)

qϕ

(
m

q(d2,m)

)
−

− 2x

m2

∑
d≤√x

(d2,m)|`

µ(d)(d2,m)2 log d

d2

∑

q
∣∣ (m,`)
(d2,m)

qϕ

(
m

q(d2,m)

)
−

− 2x

m2

∑
d≤√x

(d2,m)|`

µ(d)(d2,m)2

d2

∑

q
∣∣ (m,`)
(d2,m)

qϕ

(
m

q(d2,m)

)
log q+

+
2x

m2

∑
d≤√x

(d2,m)|`

µ(d)(d2,m)2

d2

∑

q
∣∣ (m,`)
(d2,m)

qϕ

(
m

q(d2,m)

)
α

(
m

q(d2,m)

)
+

+ O



√

x

m

∑
d≤√x

(d2,m)|`

(d2,m)
m

∑

q
∣∣ (m,`)
(d2,m)

qθ

(
m

q(d2,m)

)

+

+ O(
√

x log x).

Now the formula (3.1) follows from (3.2), Lemma 2.5, 2.7, 2.8, 2.9 and 2.10.

Remark 3.1. We believe that the order of the remainder term in (3.1)
can be improved.
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