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CONJUNCTIVELY POLYNOMIAL–LIKE
BOOLEAN FUNCTIONS AND

THE MAXIMAL CLOSED CLASSES

J. Gonda (Budapest, Hungary)

Abstract. In [7] it was introduced the notion of the conjunctively

polynomial like Boolean functions. In this article it is investigated how

these functions are related to the maximal closed classes of the Boolean

functions and it is pointed out that there are bases of the Boolean functions

containing only conjunctively polynomial-like Boolean functions.

In this article disjunction and logical sum, conjunction and logical product,
exclusive or and modulo two sum, as well as complementation and negation are
used in the same sense and they are denoted respectively by +, · (or simply
without any operation sign), ⊕ and .̄ The elements of the field with two
elements and the elements of the Boolean algebra with two elements are denoted
by the same signs, namely by 0 and 1; N denotes the non-negative integers,
and N+ the positive ones.

1. Introduction

Logical functions and especially the two-valued ones have important roles
in our everyday life, so it is easy to understand why they are widely investigated.
A scope of investigations is the representations of these functions and the
transforms from one representation to another ([3], [4], [5], [8]). Another area
of the examinations is the search of special classes of the set of the functions.
Post determined the closed classes of the switching functions [9], but there are
a lot of another classes of the Boolean functions invariant with respect to some
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property. Such properties can be for example linear transforms. In [6] and
[7] it were introduced two classes of the Boolean functions invariant to some
linear transforms. These functions are called polynomial-like and conjunctively
polynomial-like. In the following article we examine the relation between the
latter type of Boolean functions and the maximal closed classes of the two-
valued logical functions.

1.1. Representations of a Boolean function

It is well-known that an arbitrary two-valued logical function of n variables
can be written in the uniquely determined canonical disjunctive normal form,
i.e. as a logical sum whose members are pairwise distinct logical products of n
factors, where all of such logical products contain every logical variable exactly
once, either negated or not negated exclusively. Clearly, there exist exactly
2n such products. Supposing that the variables are indexed by the integers
0 ≤ j < n, these products can be numbered by the numbers 0 ≤ i < 2n in
such a way that we consider the non-negative integer containing 0 in the j-th
position of its binary expansion if the j-th variable of the given product is
negated, and 1 in the other case. Of course, this is a one to one correspondence
between the 2n distinct products and the integers of the interval [0..2n − 1],

and if i =
n−1∑
j=0

a
(i)
j 2j , where a

(i)
j is either 0 or 1, then the product belonging to

it is

(1) m
(n)
i =

n−1∏

j=0

(
a
(i)
j ⊕ xj

)
.

Such a product is called minterm (of n variables).
With the numbering given above we numbered the Boolean functions of

n variables, too. A Boolean function is uniquely determined by the minterms
contained in its canonical disjunctive normal form, so a Boolean function is
uniquely determined by a 2n long series of 0-s and 1-s, where a 0 in the j-th
position (now 0 ≤ j < 2n) means that m

(n)
j does not occur in that function, and

1 means that the canonical disjunctive normal form of the function contains the
minterm of the index j (this series is the spectrum of the canonical disjunctive
normal form of the function, and similarly will be defined the spectrum with

respect to other representation of the function), i.e. for k =
2n−1∑
i=0

α
(k)
i 2i with

α
(k)
i ∈ {0, 1}
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(2) f
(n)
k =

2n−1∑

i=0

α
(k)
i m

(n)
i .

Now f
(n)
k denotes the k-th Boolean function of n variables.

Another possibility for giving a Boolean function is the so-called Zhegalkin-

polynomial. Let S
(n)
i =

n−1∏
j=0

(
a
(i)
j + xj

)
, where i =

n−1∑
j=0

a
(i)
j 2j again. This

product contains only non-negated variables, and the j-th variable is contained
in it if and only if the j-th digit is 1 in the binary expansion of i. There
exist exactly 2n such products which are pairwise distinct. Now any Boolean
function of n variables can be written as a modulo two sum of such terms, and
the members occurring in the sum are uniquely determined by the function.
That means that we can give the function by a 2n-long 0-1 series, and if the
i-th member of such a series is ki then

(3) f (n) =
2n−1⊕
i=0

kiS
(n)
i .

Between the first and the second representation of the same Boolean
function there is a very simple linear algebraic transform. Considering the
coefficients of the canonical disjunctive normal form of a Boolean function of
n variables and the coefficients of the Zhegalkin polynomial of a function of n
variables, respectively, as the components of an element of a 2n-dimensional
linear space over F2, the relation between the vectors belonging to the two
representations of the same Boolean function of n variables can be given by
k = A(n)α. Here k is the vector containing the components of the Zhegalkin
polynomial, α is the vector, composed of the coefficients of the disjunctive
representation of the given function, and A(n) is the matrix of the transform
in the natural basis. For the matrix of the transform it is true that

(4) A(n) =





(1) if n = 0,
(

A(n−1) 0(n−1)

A(n−1) A(n−1)

)
if n ∈ N+

(see for instance in [4]) and as a consequence that
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(5) A(n)2 = I(n),

where I(n) and 0(n) denote the 2n-dimensional identity and zero matrix,
respectively. From this follows that if k = A(n)α, then α = A(n)k. In
the special case when α = k, the corresponding function is a polynomial-like
Boolean function [6]. As A(0) = (1), so each of the two zero variable Boolean
functions is polynomial-like. Now let u = u0u1 be the spectrum of the canonical
disjunctive normal form of a Boolean function f of n + 1 variables, where n is
a nonnegative integer. Then

(6)
(

u0

u1

)
=

(
A(n) 0(n)

A(n) A(n)

)(
u0

u1

)

if and only if u0 = A(n)u0 and u1 = A(n)u0 + A(n)u1 = u0 + A(n)u1, that is f

is polynomial-like if and only if u0 = (A(n) + I(n))u1, where u1 is the spectrum
of the canonical disjunctive normal form of an arbitrary Boolean function of
n variables. As a consequence we get that the number of the n + 1 variable
polynomial-like Boolean functions is equal to 22n

. It is easy to see, too, that
the spectra of the canonical disjunctive normal forms of the polynomial-like
Boolean functions of n + 1 variables make up a 2n-dimensional subspace of
the 2n+1-dimensional linear space of the spectra of the canonical disjunctive
normal forms of all of the n + 1 variable Boolean functions.

A similar representation of a Boolean function is the canonical conjunctive
normal form of the function. Let us consider

(7) M
(n)
i =

n−1∑

j=0

(
a
(i)
j ⊕ xj

)

for 2n > i ∈ N. This function, the i-th maxterm of n variables is equal to 0
if and only if xj = a

(i)
j for every 0 ≤ j < n. By these maxterms a Boolean

function can be expressed as

(8) f (n) =
2n−1∏

i=0

(
αi + M

(n)
i

)
,
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where αi = f (n)
(
a
(i)
n−1, . . . , a

(i)
0

)
. From this last property follows that f (n) =

=
2n−1∏
i=0

(
αi + M

(n)
i

)
= f

(n)
l , where l =

2n−1∑
i=0

αi2i.

In [7] it were defined the modified maxterms by

(9) M
(n)′

i =
n−1∑

j=0

(
a
(i)
j ⊕ xj

)
.

It is easy to see that M
(n)
i = M

(n)′

2n−1−i. Now if f (n) =
2n−1∏
i=0

(
βi + M

(n)′

i

)
= f

(n)
k

then αi = f (n)
(
a
(i)
n−1, . . . , a

(i)
0

)
= β2n−1−i. This form of the function given by

the modified maxterms is the modified conjunctive normal form of the function.

For ū ⊕ v = u ⊕ v̄, so a
(i)
j ⊕ xj = a

(i)
j ⊕ xj and M

(n)′

i =
n−1∑
j=0

(
a
(i)
j ⊕ xj

)
. If

g(n) =
2n−1∏
i=0

(
βi + M

(n)
i

)
, then

(10)

f (n)(xn−1, . . . , x0) =
2n−1∏

i=0


αi +

n−1∑

j=0

(
a
(i)
j ⊕ xj

)

 =

=
2n−1∏

i=0

(
αi + M

(n)
i

)
=

2n−1∏

i=0

(
βi + M

(n)′

i

)
=

=
2n−1∏

i=0


βi +

n−1∑

j=0

(
a
(i)
j ⊕ xj

)

 =

= g(n)(xn−1, . . . , x0) = g(n)(xn−1, . . . , x0) =

= g(n)D(xn−1, . . . , x0),

where D denotes the dual of the function. As if f = gD then g = fD so g(n) is
the complement of the dual of f (n) in (10).

The definition of the conjunctively polynomial-like Boolean functions is
similar to the definition of the polynomial-like Boolean functions. An n-
variable Boolean function f is conjunctively polynomial-like if the spectra of
its Zhegalkin polynomial and its modified conjunctive normal form are equal,
that is, if β = k = A(n)α = (A(n)P(n))β = U(n)β, where P(n) is a 2n × 2n
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matrix with 1-s in the side diagonal, and with 0-s at the other positions, that
is, P

(n)
i,j = δi,2n−1−j for 2n > i ∈ N and 2n > j ∈ N, and, consequently,

U
(n)
i,j = A

(n)
i,2n−1−j . Then, applying (4), we get that

U(n) =





(1) if n = 0,
(

0(n−1) U(n−1)

U(n−1) U(n−1)

)
if n ∈ N+.

In [7] it was stated that both of the 0-variable Boolean functions are
conjunctively polynomial-like, and the conjunctively polynomial-like Boolean
functions of n variables can be given by

(11) β =
(

Q(n)−1
R(n)

I(µn×µn)

)
u.

Here µn = 2n+2(−1)n

3 , 2n−µn is the rank of U(n)+I(n) =
(

Q(n) R(n)

S(n) T(n)

)
,Q(n)

is a 2n − µn-order quadratic regular submatrix of U(n) + I(n), and u is an
arbitrary element of the 2µn-dimensional linear space over F2.

1.2. Maximal closed classes of the Boolean functions

An n-variable Boolean function f is
• zero preserving, if f(0, . . . , 0) = 0;
• one preserving, if f(1, . . . , 1) = 1;

• self-dual, if f(u0, . . . , un−1) = f(u0, . . . , un−1) for every u ∈ Fn
2 ;

• monotone, if f(u) ≤ f(v), supposing that ui ≤ vi for every n > i ∈ N;

• affine, if f(x0, . . . , xn−1) = a +
n−1∑
i=0

aixi, where a and ai are either 0 or 1

for every n > i ∈ N, and f is linear, if it is affine and a = 0.

Let T0 , T1 , S , M and L denote the set of zero preserving, one preserving,
self-dual, monotone and affine Boolean functions, respectively (sometimes we
refer to an affine function as linear function independently of the value of the
constant term of the function). These sets are the maximal closed classes of
the set B of all of the Boolean functions, so the closure of a subset A of B is B,
if and only if A contains a not 0 preserving, a not 1 preserving, a not self-dual,
a nonmonotone and a nonlinear function (not unconditionally different from
each other) (see for instance in [11]). A not 1 preserving function is either not
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self-dual or not 0 preserving, so four functions are enough to generate each
Boolean function. If A is minimal with respect to the property generating B,
then A is a basis of B. It follows from the previous statements that a basis
contains at most four Boolean functions. If a function itself is the basis of B,
then it is a universal Boolean function. Universal Boolean functions are for
instance the Sheffer function and the Pierce function, that is the NAND and
the NOR functions.

2. New results

2.1. Zero and one preserving

Let us suppose that u is the spectrum of the modified conjunctive normal
form of a conjunctively polynomial-like Boolean function of n variables where
n is a nonnegative integer. Then

(12) u =
(
A(n)P(n)

)
u = U(n)u

and

(13) u0 =
(
U(n)u

)
0

=
2n−1∑

j=0

U
(n)
0,j uj = u2n−1.

This means that a conjunctively polynomial-like Boolean function is either zero
preserving and not one preserving or one preserving and not zero preserving,

exclusively. If U(n) + I(n) =
(

Q(n) R(n)

S(n) T(n)

)
then all of the conjunctively

polynomial-like Boolean functions of n variables can be generated by

(14) u =
(

Q(n)−1
R(n)

I(µn×µn)

)
v,

where v is an arbitrary element of the µn-dimensional Boolean space. If n = 1
then µn = 2n+2(−1)n

3 = 0 and the only conjunctively polynomial-like Boolean

function is f
(1)
0 , that is the zero function of one variable. In every other case

µn > 0 and exactly half of the vectors of the µn-dimensional space is not



56 J. Gonda

one preserving. But u2n−1 = vµn−1 and that means that exactly half of the
conjunctively polynomial-like Boolean functions is zero preserving.

2.2. Self-duality

The Boolean function f (n) of n variables is self-dual if and only if

(15) f (n)(cn−1, . . . , c0) = f (n)(cn−1, . . . , c0)

for any value of the variables, and, as a special case, only if

(16)
f (n)(1, . . . , 1) = f (n)(0, . . . , 0) =

= f (n)(0, . . . , 0) = f (n)(0, . . . , 0).

If u is the spectrum of the modified conjunctive normal form of the function and
this condition is fulfilled then u0 = f (n)(0, . . . , 0) = f (n)(1, . . . , 1) = u2n−1 and
this is impossible if f (n) is a conjunctively polynomial-like Boolean function
(see 2.1), that is there is no self-dual conjunctively polynomial-like Boolean
function.

2.3. Monotonicity

f (n) is monotone if

(17) f (n) = (an−1, . . . , b0) ≤ f (n)(bn−1, . . . , b0)

in all cases when ai ≤ bi for every indices n > i ∈ N. This is true if f (n)

is the zero function or the one function, so the zero function of n variables
for an arbitrary nonnegative integer n and the one function of zero variables
are monotone conjunctively polynomial-like Boolean functions. If f (n) is not
constant and u is the spectrum of the modified conjunctive normal form of the

function then there exist such a 2n > i =
n−1∑
k=0

a
(i)
k 2k ∈ N and a 2n > j =

=
n−1∑
k=0

a
(j)
k 2k ∈ N that ui = 0 and uj = 1. Now let us suppose that f (n) is a

conjunctively polynomial-like Boolean function, then either u0 = 0 = u2n−1 or
u0 = 1 = u2n−1. In the first case
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(18)
f (n)

(
a
(j)
n−1, . . . , a

(j)
0

)
= uj = 1 6≤
6≤ 0 = u2n−1 = f (n)(1, . . . , 1)

and in the second case

(19)
f (n)(0, . . . , 0) = u0 = 1 6≤

6≤ 0 = ui = f (n)
(
a
(i)
n−1, . . . , a

(i)
0

)

so a nonconstant conjunctively polynomial-like Boolean function is always
nonmonotone.

(20)




0 . . . 0 0 0 . . . 0 1
...

...
...

...
...

...
...

...
...

...
...

...
0 . . . 0 1 U2n−1−r,r+1 . . . U2n−1−r,2n−2 1
...

...
...

...
...

...
1 . . . 1 1 1 . . . 1 1







u0
...

ur

0
...
...
0




2.4. Linearity

The zero function and the one function of zero variables are conjunctively
polynomial-like and affine functions, even more the former one is linear. From
now on let the functions we deal with be of n variables where n is equal to at
least 1. If ui = 0 for every 2n > i ∈ N greater than a given 2n > r ∈ N, then
all of the components of U(n)u belonging to the indices less than 2n−1− r are
equal to 0 and (U(n)u)2n−1−r = ur (see (20)). In the Zhegalkin polynomial
of an affine Boolean function all of the coefficients are equal to 0 with the
exceptions of maybe some of those belonging to the index 0 or to the indices
equal to a power of 2 with nonnegative exponents less than n and if there exists
such an index then it is less than or equal to 2n−1. Let u be the spectrum of the
modified conjunctive normal form of a conjunctively polynomial-like Boolean
function. Then u is the spectrum of the Zhegalkin polynomial of the function,
too, and then every component of u with an index greater than 2n−1 is equal
to 0. From this follows by the previous results that all of the components of u
belonging to the indices less than 2n − 1 − 2n−1 = 2n−1 − 1 are equal to zero
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and u2n−1−1 = (U(n)u)2n−1−1 = u2n−1 . If u2n−1 = 0 then u2n−1−1 = 0 and the
components belonging to the indices less than 2n−1 − 1 or greater than 2n−1

are equal to zero, too, so u = 0, that is u is the spectrum of the zero function.
Let now u2n−1 = 1. Then u2n−1−1 = 1 and all of the other components of
u are equal to zero. As the function is affine so either 2n−1 − 1 = 2t with a
nonnegative integer less than n − 1 or 2n−1 − 1 = 0. In the latter case n = 1
and uT = 11, but this function is not a conjunctively polynomial-like Boolean
function as

(21) U(1)u =
(

0 1
1 1

)(
1
1

)
=

(
1
0

)
6=

(
1
1

)
= u.

In the other case 2n−1 = 2t +1 ≥ 2, so n ≥ 2 and then 2n−1 is an even number.
From this follows that 2t = 2n−1 − 1 is an odd integer. But the only 2-power
which is an odd integer 1, so 2t = 1 and 2n−1 = 2t +1 = 1+1 = 2, that implies
that n = 2. Then u1 = u2n−1−1 = 1 = u2n−1 = u2 and u0 = 0 = u3, that is,
uT = 0110 and this is the spectrum of the modified conjunctive normal form of
a conjunctively polynomial-like Boolean function of two variables, indeed, as

(22) U(2)u =




0 0 0 1
0 0 1 1
0 1 0 1
1 1 1 1







0
1
1
0


 =




0
1
1
0


 = u.

2.5. Conjunctively polynomial-like bases of the space of the
Boolean functions

With the previous results the closure of the set of the conjunctively
polynomial-like Boolean functions is the whole set of the Boolean functions.
Really, all of the zero preserving conjunctively polynomial-like Boolean func-
tions different from the zero function and the exclusive or function of two
variables are not one preserving, not self-dual, nonmonotone and nonlinear,
so every set of the one function of zero variables and of any zero preserving
conjunctively polynomial like Boolean function not equal to the zero function
and to the exclusive or function of two variables is a basis of the space of the
Boolean functions.

The only conjunctively polynomial-like Boolean function of one variable
is the zero function. There are altogether four conjunctively polynomial-like
Boolean functions of two variables and among them there are exactly two which
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are zero preserving, namely the zero function and the exclusive or function
of two variables, so with these functions we do not get a basis. The first
conjunctively polynomial-like Boolean function of three variables not equal to
the zero function is f

(3)
126 as 12610 = 011111102 and

(23)




0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 1
0 0 0 0 1 1 1 1
0 0 0 1 0 0 0 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1







0
1
1
1
1
1
1
0




=




0
1
1
1
1
1
1
0




.

This function is zero preserving (and this is the only zero preserving conjunc-
tively polynomial-like Boolean function of three variables not equal to the zero

function), so
{

f
(0)
1 , f

(3)
126

}
is a basis of the set of all of the Boolean functions.

Really,

(24)
f

(3)
126(x2, x1, x0) = M

(3)
0 M

(3)
7 =

= (x2 + x1 + x0)(x2 + x1 + x0).

Let g(x1, x0) = f
(3)
126(1, x1, x0). Then

g(x1, x0) = f
(3)
126

(
f

(0)
1 (), x1, x0

)
=

=
(
f

(0)
1 () + x1 + x0

)(
f

(0)
1 () + x1 + x0

)
=

= (1 + x1 + x0)(1 + x1 + x0) =

= (0 + x1 + x0)(1 + x1 + x0) =

= (x1 + x0) · 1 = x1 + x0 = x1x0 = x1|x0,

where | denotes the Sheffer function, that is, the NAND-operation which is a
universal Boolean function.
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3. Conclusion

In the article above we examined some properties, namely the zero and one
preserving characteristic, the self-duality, the linearity and the monotonicity of
the so-called conjunctively polynomial-like Boolean functions, defined in [7].
The properties examined are those characterizing a set of Boolean functions
making up a basis of the switching functions. It is well-known that a basis
consists of at most four Boolean functions, and there are bases containing only
one Boolean function. Now it was proven that there exist bases consisting only
of two Boolean functions of which one is the constant 1 function and the other
is a conjunctively polynomial-like Boolean function, too. As these functions
are invariant with respect to a linear transform, the construction of a given
Boolean function on the base of these functions can be more flexible in some
aspects than in the case of the use of the functions of other bases.
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