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A GENERALIZED
BILINEAR SPLINE APPROXIMATION

R. Polgár (Sopron, Hungary)

Abstract. In this paper a new method of spline approximation is given

which is continuous and applicable for robust estimators. The model

computations have shown that the method is suitable for cartography

problems. Because of the good characteristic of the method, e.g. fast

convergence, it seems to be widely applicable in engineering problems.

1. Introduction

The estimation of the main parameters describing samples with a huge
number of data has of great importance in engineering applications and during
the analyzation of cartography. One of the simple methods is the application
of regression theory. In this model one chooses a possible regression curve
based on the geometric location of data points which procedure implies that
the solution is not unique. There are N points (xi, yi, fi) with i = 1, 2, . . . , N ,
and a regression function g(x, y). To find the solution for g(x, y) one solves the
equation

(1)
N∑

i=1

(fi − g(xi, yi))2 = min
g

with the method of least squares.
Another possible method is the application of interpolation or approxi-

mation functions. During interpolation one reconstructs the function f(x, y)
from its values f1, f2, . . . , fN given in the discrete points (x1, y1), (x2, y2), . . . ,
(xN , yN ). Again, in general, the solution is not unique. One chooses a suitable
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polynomial which best approximates the analyzed function on the domain in
a given respect. Undesirable oscillations and huge computational capacity
required to handle polynomials with high degree are the characteristics of these
approximation methods which can be avoided by the use of spline interpolation.
In this case one looks for the l times continuously differentiable function g(x, y)
which is the solution of the equations

(2) δ(g) =
∫ ∫

T

(
∂l

xg
)2

+
(
∂l

yg
)2

dT = min
W l

2

.

Here W l
2 denotes the space of l times continuously differentiable and square-

integrable functions. When l < N the solution is unique, see the proof of
Sard [1] who uses (2l − 1) degree smoothly connected polynomials defined on
intervals. In most cases one is dealing with the solution with l = 1 or l = 2.
When the values of f(x, y) are modified by errors in the points (xi, yi) one
looks for the best approximating solution in a given respect, namely with the
composition of the theory of regression and interpolation curves,

(3) δ(g) =
∫ ∫

T

(
∂l

xg
)2

+
(
∂l

yg
)2

dT +
N∑

i=1

pi(fi − g(xi, yi))2 = min
W l

2

,

where the positive weighting numbers {pi}N
i=1 are capable of smoothing the

solution when the errors are known.

2. The problem

Here we generalize the description outlined above to the case when there
are more points given than the spline approximation polynomials we chose.
The weights are fixed by the method of least squares as in the case of robust
estimators and the spline approximation is obtained as a result of an iteration
process.

Let us consider a rectangular domain T = [X0, Xm] × [Y0, Yn] and take a
division X0 < X1 < X2 < . . . < Xm, of the x and Y0 < Y1 < Y2 < . . . < Yn of
the y axes and the sample (xijk, yijk, fijk), k = 1, 2, . . . ,Kij which are given
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in the domains [Xi−1, Xi] × [Yj−1, Yj ] for i = 1, 2, . . . , m, j = 1, 2, . . . , n and
m∑

i=1

n∑
j=1

Kij = N . Using this notation we solve the variation problem for l = 1

(4) δ(g) = λ

∫ ∫

T

(∂xg)2 + (∂yg)2 dT +
N∑

i=1

pi(fi − g(xi, yi))2 = min
W l

2

with the generalized Lagrange multiplicator λ and positive weighting numbers
pi. The solution of the variation problem results piecewise bilinear polynomials

(5) g(x, y) = {gij(x, y), Xi−1 ≤ x ≤ Xi, Yj−1 ≤ y ≤ Yj},

which are continuous in zeroth order and

(6) gij(x, y) = aij + bij(x−Xi−1) + cij(y − Yj−1) + dij(x−Xi−1)(y − Yj−1),

where i = 1, 2, . . . , m, j = 1, 2, . . . , n.
Using this solution the problem

(7)

m∑

i=1

n∑

j=1

Kij∑

k=1

pijk(g(xijk, yijk)− fijk)2+

+ 2
m−1∑

i=1

n∑

j=1

[Γij(gij(Xi, Yj−1)− gi+1j(Xi, Yj−1))+

+ ∆ij(gij(Xi, Yj)− gi+1j(Xi, Yj))]+

+ 2
m∑

i=1

n−1∑

j=1

[Ξij(gij(Xi−1, Yj)− gij+1(Xi−1, Yj))+

+ Θij(gij(Xi, Yj)− gij+1(Xi, Yj))] ≡
≡ Func → min

is solved the help of Lagrange multiplicators as a maximization problem.
As we can see the number of unknowns aij , bij , cij , dij is 4mn, and the

number of multiplicators Γij , ∆ij , Ξij , Θij is 2(m − 1)n + 2m(n − 1). For
the solution we need 8mn − 2m − 2n linearly independent equations, which
are determined by the solution of the analytic maximization problem. Since
the number of unknowns equals with the number of equations of the linear
system the problem can be solved in principle. The difficulty in finding the
solution is that we have 8mn − 2m − 2n unknowns. As we will see later
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those can be determined as the solution of a system of linear equations. The
computation of the weights pijk means additional difficulties. The system of
linear equations is solved with unit weights first, then with the help of the
solutions and the application of the methods of robust estimators the weights
are redefined. These steps are repeated until the condition of iteration holds.

3. The equations

For further convenience we introduce h1i = xi − xi−1 and h2j = yj −
yj−1. Using these quantities for the partial derivatives of the function Func
by Γij , ∆ij , Ξij , and Θij the following relations hold

(8) aij + h1ibij − ai+1j = 0,

(9) aij + h1ibij + h2jcij + h1ih2jdij − ai+1j − h2jci+1j = 0

for every i = 1, 2, . . . , m− 1; j = 1, 2, . . . , n and

(10) aij + h2jcij − aij+1 = 0,

(11) aij + h1ibij + h2jcij + h1ih2jdij − aij+1 − h1ibij+1 = 0

for every i = 1, 2, . . . , m; j = 1, 2, . . . , n − 1. For a simpler notation of the
partial derivatives we use the following quantities

(12) Uijst =
Kij∑

k=1

pijk(xijk −Xi−1)s(yijk − Yj−1)t,

(13) Vijst =
Kij∑

k=1

pijkfijk(xijk −Xi−1)q(yijk − Yj−1)r

for i = 1, 2, . . . , m; j = 1, 2, . . . , n and s, t = 0, 1, 2; q, r = 0, 1. Moreover

(14) Φijst = Uijstaij + Uijs+1tbij + Uijst+1cij + Uijs+1t+1dij − Vijst

for i = 1, 2, . . . , m; j = 1, 2, . . . , n and s, t = 0, 1.
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In this way the partial derivatives of Func by aij , bij , cij and dij are

Φ1100 + Γ11 + Ξ11 = 0,(15)

Φi100 + Γi1 − Γi−11 + Ξi1 = 0,(16)

Φm100 − Γm−11 + Ξm1 = 0,(17)

Φ1j00 + Γ1j + Ξ1j − Ξ1j−1 = 0,(18)

Φij00 + Γij − Γi−1j + Ξij − Ξij−1 = 0,(19)

Φmj00 − Γm−1j + Ξmj − Ξmj−1 = 0,(20)

Φ1n00 + Γ1n − Ξ1n−1 = 0,(21)

Φin00 + Γin − Γi−1n − Ξin−1 = 0,(22)

Φmn00 − Γm−1n − Ξmn−1 = 0(23)

for i = 2, . . . ,m− 1; j = 2, . . . , n− 1 and

Φi110 + h1iΓi1 + Θi1 = 0,(24)

Φm110 + Θm1 = 0,(25)

Φij10 + h1iΓij + Θij −Θij−1 = 0,(26)

Φmj10 + Θmj −Θmj−1 = 0,(27)

Φin10 + h1iΓin −Θin−1 = 0,(28)

Φmn10 −Θmn−1 = 0(29)

for i = 1, 2, . . . , m− 1; j = 2, . . . , n− 1 and



42 R. Polgár

Φ1j01 + ∆1j + h2jΞ1j = 0,(30)

Φij01 + ∆ij −∆i−1j + h2jΞij = 0,(31)

Φmj01 −∆m−1j + h2jΞmj = 0,(32)

Φ1n01 + ∆1n = 0,(33)

Φin01 + ∆in −∆i−1n = 0,(34)

Φmn01 −∆m−1n = 0(35)

for i = 2, . . . ,m− 1; j = 1, 2, . . . , n− 1 and

Φij11 + h1i∆ij + h2jΘij = 0,(36)

Φmj11 + h2jΘmj = 0,(37)

Φin11 + h1i∆in = 0,(38)

Φmn11 = 0(39)

for i = 1, . . . ,m− 1; j = 1, 2, . . . , n− 1.

3.1. The elimination of the muliplicators Γij , ∆ij , Ξij , Θij

From the sum of Eqs. (15)-(23) we have

(40)
m∑

s=1

n∑
t=1

Φst00 = 0.

From the sum of Eqs. (25), (27) and (29)

(41)
n∑

t=1

Φmt10 = 0,
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and from the sum of Eqs. (33)-(35)

(42)
m∑

s=1

Φsn01 = 0.

From the sum of Eqs. (24), (26) and (28)

(43) h1i

n∑
t=1

Γit +
n∑

t=1

Φit10 = 0, i = 1, . . . , m− 1,

and from the sum of Eqs. (15), (16), (18), (19), (21), (22)

(44)
n∑

t=1

Γit +
i∑

s=1

n∑
t=1

Φst10 = 0, i = 1, . . . , m− 1.

From the difference of Eqs. (43) and (44)

(45)
n∑

t=1

(
Φit10 − h1i

i∑
s=1

Φst00

)
= 0, i = 1, . . . , m− 1.

Similarly the sum of Eqs. (15)-(20) and (30)-(32) results

(46)
m∑

s=1

(
Φsj01 − h2j

j∑
t=1

Φst00

)
= 0, j = 1, . . . , n− 1.

From the sum of Eqs. (25), (27)

(47) Θmj +
j∑

t=1

Φmt10 = 0, j = 1, . . . , n− 1.

From the difference of Eqs. (37) and (47)

(48) Φmj11 − h2j

j∑
t=1

Φmt10 = 0, j = 1, . . . , n− 1.

Similarly from the sum of Eqs. (33), (34) and (38) results

(49) Φin11 − h1i

i∑
s=1

Φsn01 = 0, j = 1, . . . , m− 1.
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From the sum of Eqs. (15), (16), (18), (19) we have

(50)
j∑

t=1

Γit +
i∑

s=1

Ξit +
i∑

s=1

j∑
t=1

Φst00 = 0,

and from the sum of Eqs. (24), (26)

(51) Θij + h1i

j∑
t=1

Γit +
j∑

t=1

Φit10 = 0,

and from the sum of Eqs. (30), (31)

(52) ∆ij + h2j

i∑
s=1

Ξsj +
i∑

s=1

Φsj10 = 0

for every i = 1, . . . , m − 1; j = 1, . . . , n − 1. The sum of Eqs. (36), (50), (51)
and (52) results

(53) Φij11 − h1i

i∑
s=1

Φsj01 − h2j

j∑
t=1

Φit10 + h1ih2j

i∑
s=1

j∑
t=1

Φst00 = 0

for i = 1, . . . ,m− 1; j = 1, . . . , n− 1.

4. The algorithm

The main steps of the iteration are:

1. Choose suitable values for the initial weights pijk, i = 1, . . . , m; j =
= 1, . . . , n; k = 1, . . . , Kij . At first use unit weights.

2. Compute the coefficients bij , cij and dij .

In the first step compute

(54) bij =
1

h1i
(ai+1j − aij) and dij =

1
h1i

(ci+1j − cij)

for i = 1, . . . ,m− 1; j = 1, . . . , n;

(55) cij =
1

h2j
(aij+1 − aij) and dij =

1
h2j

(bij+1 − bij)
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for i = 1, . . . ,m; j = 1, . . . , n− 1;

(56) dij =
1

h1ih2j
(ai+1j+1 − ai+1j − aij+1 + aij)

for i = 1, . . . ,m− 1; j = 1, . . . , n− 1;

(57) din =
1

h1i
(ci+1n − cin)

for i = 1, . . . ,m− 1;

(58) dmj =
1

h2j
(bmj+1 − bmj)

for j = 1, . . . , n− 1 from (8)-(11).

In the second step from (39) we have

(59)
dmn = dmn(amn, bmn, cmn) =

=
1

Umn22
(Vmn11 − Umn11amn − Umn21bmn − Umn12cmn).

In the third step from (41)

(60) bmn = bmn(am1, . . . , amn)

and from (42)

(61) cmn = cmn(a1n, . . . , amn)

and then

(62) dmn = dmn(a1n, . . . , amn, . . . , am1).

In the fourth step from (48)

(63) bmj = bmj(am1, . . . , amn), j = 1, . . . , n− 1,

and from (49)

(64) cin = cin(a1n, . . . , amn), i = 1, . . . ,m− 1.

3. Compute the coefficient aij .
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From (53)

(65) ai+1j+1 = ai+1j+1(a11, . . . , ai1, a12, . . . , aij)

for i = 1, . . . ,m− 1; j = 1, . . . , n− 1.
From (45)

(66) ai+1n = ai+1n(a11), i = 1, . . . ,m− 1.

From (44)

(67) amj+1 = amj+1(a11), j = 1, . . . , n− 1.

Finally, from (42) we compute a11.
4. When the stop condition is not satisfied calculate the weights pijk with

the use of the spline function g(x, y) and repeat from step 2.

Remarks on step 4:
• One of the possible stop conditions is the following: compute the summed

square of the difference of the samples and the approximating spline
function (at the k-th iteration step it is denoted by Sk). At startup set
ε > 0 and compare ε with the value of |Sk−1−Sk|

Sk−1
.

• The larger the difference between fijk and the value of the spline function
in the point (xijk, yijk) the smaller the value of pijk is advised to choose,
e.g.:

(68) pijk =





1
|fijk − g(xijk, yijk)| if |fijk − g(xijk, yijk)| > ε′,

1
ε′

if |fijk − g(xijk, yijk)| ≤ ε′,

where the number ε′ > 0 is small enough.

5. Examples

We check the applicability of the solution with the so-called stochastic
simulation method: a known solution is polluted with a random variable of
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normal or Cauchy distribution. The method is then applied to the polluted
sample.

In the example we have modified the values of the function f(x, y) with a
random variable of Cauchy distribution. The rectangular domain T = [0, 1]×
[0, 1] is divided into m = n = 8 equal parts. The iteration is done with the help
of the Maple V Rel. 5 computer algebra system according to the algorithm
presented in the previous section. In the second example we use data of Nagy
et al. [2].

6. Conclusion

We have modeled a function approximating a large number of samples
with subdomain bilinear spline polynomials. The solution results a continuous
spline function which gives the minimum of the variational problem according
to the method of least squares and approximates the data in a similar manner
as robust estimators.

The novelty of the method is that it makes global equalization with
subdomain approximation on a large number of samples. Contrary to the
current spline approximation methods, where a polynomial is defined between
every point, in this treatment the points are grouped together. After that
we search for surfaces which approximate these groups well according to
specific conditions and, moreover, give a good approximation of the data points
globally.

In the model calculations fast convergence is apparent and large oscillations
do not appear.
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