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SOLUTION OF THE
LINEAR DIFFERENTIAL EQUATION

OF n-TH ORDER
WITH FOUR SINGULAR POINTS

V.E. Kruglov (Odessa, Ukraine)

Abstract. The solution of the recurrent equation of 2nd order is found

in explicit form. This allows to represent the Frobenius solution (series) of

corresponding linear differential equation through hypergeometric function

and a new special function. The structure of coefficients of the Frobenius

series is obtained in explicit form through the parameters of the differential

equation, too.

1. Introduction

One possibility of solving linear differential equations with polynomial
coefficients is the Frobenius method [1]. Its substance is to look for the solution
of differential equation in the neighbourhood of singular point t = t0 in the form
of power series

∞∑
m=0

em(t− t0)ρ+m,

where the coefficients em satisfy a certain recurrent equation.
As noted in [2, p. 551], the Frobenius method gives completely satisfactory

results for practical purposes. From our point of view the effectiveness of
Frobenius series would be much higher, if it were possible to express it in terms
of known special functions. But it requires to find the coefficients em, i.e. to
solve the corresponding recurrent equation in explicit form. In the paper we
propose a rather simple solution of recurrent equation of 2nd order.
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2. Problem statement

Let

(1)
n∑

i=0

(
Ait

2 + Bit + Ci

)
tiu(i) = 0,

where Ai, Bi, Ci are real or complex numbers, Cn 6= 0.
We look for the solution of (1) in the neighbourhood of point t = 0 in the

form

(2) u(t) = e0t
ρ + e1t

ρ+1 + . . .

Let us denote for m = 0, 1, . . .

(3)

γm = C0+(ρ+m)C1+ . . . +(ρ+m)(ρ+m−1) . . . (ρ+m−n+1)Cn,

βm = B0+(ρ+m)B1+ . . . +(ρ+m)(ρ+m−1) . . . (ρ+m−n+1)Bn,

αm = A0+(ρ+m)A1+ . . . +(ρ+m)(ρ+m−1) . . . (ρ+m−n+1)An.

Substituting (2) into (1) and equating the coefficients with zero at the
powers t, we get the trinomial recurrence equation

(4) e1 = −β0

γ1
e0, em+1 = − βm

γm+1
em − αm−1

γm+1
em−1, m = 1, 2, . . .

Here it is supposed that γm 6= 0, m = 1, 2, . . . and from the equation

(5) γ0 = C0 + ρC1 + . . . + ρ(ρ− 1) . . . (ρ− n + 1)Cn = 0

the values of parameter ρ are found. Hereinafter all the reasonings are carried
out for the known parameter ρ.

3. Solution of the recurrent equation

Now the obvious solution of equation (4) is obtained having put e0 = 1
and temporarily γm = −1, m = 1, 2, . . .. In this case the equation (4) has the
simplified form

(6) e′1 = β0, e′m+1 = βme′m + αm−1e
′
m−1, m = 1, 2, . . .
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It is easy to see that in order to find the coefficients e′m+1 the set Im+1 =
= (α0, α1, . . . , αm−1;β0, β1, . . . , βm) is used.

βm is an element of rank 1, αm an element of rank 2, m = 0, 1, . . . ,
respectively. The product of the maximal possible number of elements from
Im+1 is called a path, these elements should have different indices forming an
ascending sequence. The order of path (ord ∆) will be the sum of ranks of all
elements from the path.

Theorem 1. The arrangement of elements in the path complies with the
following hierarchy:

1. Any path starts with an element with zero index and ends either with
element αm−1 or with element βm.

2. The element βi of rank 1 is multiplied by the next element whose
index is one greater than that of βi. This element may have any rank, namely
. . . βiβi+1 . . . or . . . βiαi+1. The element αi of rank 2 is multiplied by the next
element whose rank is two units higher than the index of αi, this element may
be of any rank, namely . . . αiβi+2 . . . or . . . αiαi+2 . . ..

3. The order of any path ∆ from the set Im+1 is equal to m + 1, ord ∆ =
= m + 1.

4. The coefficient e′m+1 is equal to the sum of all the paths from the set
Im+1.

Proof. Let us prove properties 1) - 4) by induction.

m = 0, e′1 = β0, I1 = (β0), the paths - β0; ord β0 = 1;
m = 1, e′2 = β0β1 +α0, I2 = (α0; β0, β1), the paths - β0β1, α0, ord β0β1 =

= ord α0 = 2;
m = 2, e′3 = β2e

′
2 +α1e

′
1 = β0β1β2 +α0β2 +β0α1, I3 = (α0, α1;β0, β1, β2),

the paths - β0β1β2, α0β2, β0α1, the order of each path is equal to 3.

Let the properties 1) - 4) be true for m = k, i.e. for the paths made
up of the elements of the set Ik = (α0, . . . , αk−2; β0, . . . , βk−1). Conse-
quently, they are valid for any path made up of the elements of Ik−1 =
= (α0, . . . , αk−3; β0, . . . , βk−2) ⊂ Ik. We show that these properties are valid
for m = k + 1. The maximum possible filling of path and the hierarchy of
elements in it mean that all the paths made up of the elements from Ik are
finished by αk−2 or βk−1, and that from the elements of Ik−1 by αk−3 or βk−2.

Since e′k is the sum of all the paths of the order k, from (6) at m = k each
path made up of the element of set Ik is multiplied by βk. Therefore, element
βk is added to the set Ik, so the order of new paths is increased by one and
becomes equal to k +1; all obtained paths are finished by the products βk−1βk

or αk−2βk, this does not destroy the hierarchy of elements in the path.
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Further, as e′k−1 is the sum of all the paths of order k − 1 made up of
the elements of Ik−1, from (6) at m = k each such path is multiplied by αk−1.
Therefore, the element αk−1 is added to the set Ik−1 which completes the
formation of the set Ik+1 = (α0, . . . , αk−1;β0, . . . , βk). The order of obtained
paths is increased by two units and becomes equal to k+1, they all are finished
by the products βk−2αk−1 or αk−3αk−1, this does not destroy the hierarchy of
elements in the path.

From (6) it is clear that the multiplication by βk and αk−1 does not affect
the initial element of paths, it preserves the index zero.

Thus e′m+1 is the sum of all possible paths of order m + 1 made up of
the elements of the set Im+1 = (α0, α1, . . . , αm−1; β0, β1, . . . , βm) with the
specified hierarchy of elements in the paths.

The solution e′m of equation (6) is defined by the formula

(7) e′m =
[m/2]∑
s=0

,

m−2s∑

i1=0

m−2s+2∑

i2=i1+2

. . .

m−2∑

is=is−1+2

∆′(i1, i2, . . . , is),

where

(8) ∆′(i1, i2, . . . , is) = β0 . . . βi1−1αi1βi1+2 . . . βis−1αisβis+2 . . . βm−1,

and the first term in the sum (7) (i.e. at s = 0) is equal to β0β1 . . . βm−1; if
s = [m/2], then (7) finishes at m = 2k with α0α2 . . . α2k−2, at m = 2k +1 with
α0α2 . . . α2k−2β2k and β0α1α3 . . . α2k−1, respectively.

Now we shall cancel the restriction γm = −1,m = 1, 2, . . .. From (4) it is
easy to see that elements βm and αm−1 always go in pair with −γm+1, i.e. they
are −βm /γm+1 and −αm−1/ γm+1. It means that considering a path of order
m+1 one can construct a fraction: in the numerator there will be the path, in
the denominator the product of corresponding elements γi, respectively. The
quantity of multipliers in the denominator is the same as the number of element
in the numerator. The indices of multipliers in the denominator are established
as follows: if in the numerator appears element βi, then in the denominator
there will necessarily be the multiplier γi+1, if in the numerator there is the
element αi, in the denominator there will necessarily be the element γi+2.

Finally, let us establish the sign of fractions. For the path β0β1 . . . βm−1

the sign is (−1)m. Further, each element αi of rank 2 eliminates two elements
of rank 1 from the path, namely βiβi+1, since the hierarchy of elements in this
path is βi−1αiβi+2. Hence, each element αi of rank 2 reduces the quantity of
multipliers in the path by one, so the sign of fraction with path containing s
elements of rank 2, is (−1)m−s.
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Thus, the solution of equation (4) is finally given by

(9) em =
[m/2]∑
s=0

m−2s∑

i1=0

m−2s+2∑

i2=i1+2

. . .

m−2∑

is=is−1+2

(−1)m−s∆(i1, i2, . . . , is),

where
(10)

∆(i1, i2, . . . , is) = ∆′(i1, i2, . . . , is)/[γ1 . . . γi1γi1+2 . . . γisγis+2γis+3 . . . γm].

4. Classification of paths

Let us present the series (2) in a more usable form. For this purpose we
carry out the classification of paths which is equivalent to the regrouping of
terms in the power series (2).

In the basic path the last two elements are of different ranks, i.e. it is
finished by either βkαk+1 or αkβk+2. In the non-basic path at least the two
last elements have identical ranks. We note if the non-basic path ends with
elements of rank 2, then the indices of these elements have identical parity.
This follows from the hierarchy of elements in the path. β0, α0, β0α1 are the
trivial basic paths.

Let us consider more closely the structure of paths of order m. All of
them are divided into basic and non-basic ones. Basic paths end in pairs either
βm−3αm−2 or αm−3βm−1. We act with the non-basic path as follows: we
discard elements of the same rank while there appears either the first pair of
elements of different ranks, or one of trivial paths, i.e. we exclude elements till
the appearance of basic path. It is obvious that such basic path has order less
than m. Inversely, having a basic path with order less than m and multiplying
it (taking into account the hierarchy) by elements of the same rank as the one
of last element in the basic path we get a non-basic path of order m, generated
by this basic path.

The basic path and the generated by it non-basic ones belong to the same
path class.

We unite the different basic paths of order m ending with the same pair
of elements of different ranks into a sheaf of basic paths. Thus, the paths of
order m contain two sheaves of basic paths. The sheaf of basic paths contains
not less than one basic path. Each basic path from the sheaf generates its own
class of paths. These classes do not overlap as they are generated by different
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basic paths from the sheaf. Thus, each path of order m is either a basic path
of order m which generates a class of paths of order not smaller than m, or a
non-basic path which belongs to a class of paths generated by some basic path
of order smaller than m. Hence, each path of order m belongs to one and only
one class.

As example we mention all the paths of orders 4 and 5. Paths of order 4
are β0β1β2β3, α0β2β3, β0α1β3, β0β1α2, α0α2. Here the basic paths are β0α1β3,
β0β1α2; non-basic paths are all the rest: the first path refers to a class generated
by the trivial basic path β0, the second path is related to a class generated by
the basic path α0β2, the last path refers to a class generated by the trivial basic
path α0.

Basic paths of order 5 are β0β1β2β3β4, α0β2β3β4, β0α1β3β4, β0β1α2β4,
β0β1β2α3, α0α2β4, α0β2α3, β0α1α3.

Basic paths are β0β1α2β4, α0α2β4, β0β1β2α3, α0β2α3, here the first two
and the last two ones form sheaves.

All the other paths are non-basic: the first path relates to a class generated
by the trivial basic path β0, the second path is related to a class generated by
the basic path α0β2, the third path is referred to a class generated by the basic
path β0α1β3, the last path refers to a class generated by the trivial basic path
β0α1.

Multiplying the basic path unlimitedly by elements of the same rank as
the last element of this path, we obtain the expanded class of paths generated
by the given basic path.

5. Solution formula of equation (1)

Now we shall rearrange the terms of power series (2) concerning the
expanded classes of paths. Let us assume that e0 = 1.

The expanded class of paths generated by the trivial basic path β0, i.e.
β0, β0β1, . . ., β0β1 . . . βk, . . ., defines the function

(11) F0(t) = 1− β0

γ1
t +

β0β1

γ1γ2
t2 − . . . + (−1)k β0 . . . βk−1

γ1 . . . γk
tk + . . .

The expanded class of paths generated by the trivial basic path α0, i.e.
α0, α0α2, . . . , α0α2 . . . α2k, . . . , defines the function

(12) F1(t) = −α0

γ2
t2 +

α0α2

γ2γ4
t4 − . . . + (−1)k α0α2 . . . α2k−2

γ2γ4 . . . γ2k
t2k + . . .
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The expanded class of paths generated by the trivial basic path β0α1, i.e.
β0α1, β0α1α3, . . . , β0α1α3 . . . α2k+1, . . . , defines the function

(13)
β0t

γ1
F1/2(t) =

= −β0t

γ1

[
−α1

γ3
t2 +

α1α3

γ3γ5
t4− . . . +(−1)k α1α3 . . . α2k−1

γ3γ5 . . . γ2k+1
t2k + . . .

]
.

The meaning of index 1/2 will be explained below.

Let us introduce the functions

(14) F
(m)
0 (t) = 1− β0

γ1
t− . . . + (−1)m β0 . . . βm−1

γ1 . . . γm
tm,

(15) F
(m)
1 (t) = −α0

γ2
t2 +

α0α2

γ2γ4
t4 − . . . + (−1)m α0α2 . . . α2m−2

γ2γ4 . . . γ2m
t2m,

(16) F
(m)
1/2 (t) =

[
−α1

γ3
t2 +

α1α3

γ3γ5
t4 − . . . + (−1)m α1α3 . . . α2m−1

γ3γ5 . . . γ2m+1
t2m

]
.

Since the order of each path in e′m is equal to m and all the basic
paths for the coefficient e′m end with the factors βm−3αm−2 or αm−3βm−1,
all the previous multipliers in these paths form some path of order m − 3.
Thus, in e′m there are only two sheaves of basic paths: e′m−3βm−3αm−2 and
e′m−3αm−3βm−1. The hierarchy of arrangement of elements remains in each of
these paths, since the last elements in all the paths of order m− 3 in e′m−3 are
either αm−5 or βm−4.

Both sheaves of basic paths generate the expanded classes of paths

(17) e′m−3αm−3βm−1, e′m−3αm−3βm−1βm, . . . ,

(18) e′m−3βm−3αm−2, e′m−3βm−3αm−2αm, . . .

The function corresponding to the expanded class of paths (17) is deter-
mined by the series

(19) −em−3αm−3

γm−1

[
−βm−1

γm
tm +

βm−1βm

γmγm+1
tm+1 − . . .

]
.
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Let us transform the expression in brackets:

[. . .] =
(−1)m−1γ1. . .γm−1

β0. . .βm−2
×

×
[
(−1)m β0. . .βm−1

γ1. . .γm
tm+(−1)m+1 β0. . .βm

γ1. . .γm+1
tm+1 + . . .

]
=

=
(−1)m−1γ1 . . . γm−1

β0 . . . βm−2

[
F0(t)− F

(m−1)
0 (t)

]
,

this way (19) results in the form

(−1)m em−3γ1 . . . γm−2αm−3

β0β1 . . . βm−2

[
F0(t)− F

(m−1)
0 (t)

]
.

Taking into account that the elementary basic path in our case is α0β2,
for the basic paths of order m (m = 3, 4, . . .) ending with the pair of elements
αm−3βm−1, we finally obtain the function

(20)
∞∑

m=3

Rm

[
F0(t)− F

(m−1)
0 (t)

]
,

where

(21) Rm = (−1)m em−3γ1 . . . γm−2αm−3

β0β1 . . . βm−2
.

The function corresponding to the expanded class of paths (18) is given
by the series

(22) −em−3βm−3

γm−2

[
−αm−2

γm
tm +

αm−2αm

γmγm+2
tm+2 − . . .

]
.

For the simplification of this formula it is necessary to distinguish the
cases: m = 2k and m = 2k + 1.

Let m = 2k. Then the expression in brackets from (22) may be rewritten
as

(−1)k−1γ2 . . . γ2k−2

α0 . . . α2k−4
×

×
[
(−1)k α0 . . . α2k−2

γ2 . . . γ2k
t2k + (−1)k+1 α0 . . . α2k

γ2 . . . γ2k+2
t2k+2 + . . .

]
=
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=
(−1)k−1γ2 . . . γ2k−2

α0 . . . α2k−4

[
F1(t)− F

(k−1)
1 (t)

]
,

and, finally, (22) will have the form

(−1)k e2k−3β2k−3γ2 . . . γ2k−2

α0α2 . . . α2k−4

[
F1(t)− F

(k−1)
1 (t)

]
.

Taking into account that the elementary basic path in the actual case
is β0β1α2, for the basic path of any order ending with the pair β2k−3α2k−2,
k = 2, 3, . . . we obtain the function

(23)
∞∑

k=2

Pk

[
F1(t)− F

(k−1)
1 (t)

]
,

where

(24) Pk =
(−1)ke2k−3β2k−3γ2 . . . γ2k−2

α0α2 . . . α2k−4
.

Let m = 2k + 1. Then we can rewrite the brackets in (22) as follows

(−1)k−1γ3γ5. . .γ2k−1

α1α3. . .α2k−3
×

×
[
(−1)k α1α3. . .α2k−1

γ3γ5. . .γ2k+1
t2k+1+(−1)k+1 α1. . .α2k+1

γ3. . .γ2k+3
t2k+3+. . .

]
=

=
(−1)k−1γ3 . . . γ2k−1t

α1 . . . α2k−3

[
F1/2(t)− F

(k−1)
1/2 (t)

]
.

It means the series (22) will be transformed to the function

(−1)ke2k−2β2k−2γ3 . . . γ2k−3t

α1α3 . . . α2k−3

[
F1/2(t)− F

(k−1)
1/2 (t)

]
.

Since the elementary basic path in this case is β0β1β2α3, for the basic
paths of any order ending with the pair of elements β2k−2α2k−1, k = 2, 3, ., we
obtain the function

(25) t

∞∑

k=2

Sk

[
F1/2(t)− F

(k−1)
1/2 (t)

]
,
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where

(26) Sk =
(−1)ke2k−2β2k−2γ3γ5 . . . γ2k−3

α1α3 . . . α2k−3
,

but S2 = e2β2
α1

.

Thus, the solution of equation (1) can be found in the form

u(t) = tρ

{
F0(t)− β0

γ1
tF1/2(t) + F1(t) +

∞∑

k=2

[
Rk+1(F0(t)− F

(k)
0 (t))+

+Pk(F1(t)− F
(k−1)
1 (t)) + Skt

(
F1/2(t)− F

(k−1)
1/2 (t)

)]}
.

Let us rewrite functions F0(t), F1(t) and F1/2(t) in other forms using
the numbers αm, βm and γm in product forms.

Let

αm = An(m + p1) . . . (m + pn), βm = Bn(m + q1) . . . (m + qn), m = 0, 1, . . .

Since γ0 = 0, we obtain

C0 = −(ρ + m)C1 − . . .− (ρ + m) . . . (ρ + m− n + 1)Cn,

and, hence γm = Cnm(m + r1) . . . (m + rn−1), m = 1, 2, . . ..
Then

F0(t)=
∞∑

k=0

(q1)k. . .(qn)k

(1)k(r1)k. . .(rn−1)k

(−1)kBk
n

Ck
n

tk =

= F

(
q1, . . ., qn; 1, r1, . . ., rn−1;

−Bnt

Cn

)
,

where F0(t) is the generalized hypergeometric function nFn−1 and

(a)k = a(a + 1) . . . (a + k − 1); (1)k = k!

F1(t) =
∞∑

k=1

(
p1
2

)
k
. . .

(
pn

2

)
k

(1)k

(
1 + r1

2

)
k
. . .

(
1 + rn−1

2

)
k

(−1)k Ak
n

Ck
n

t2k =

= F
(p1

2
, . . . ,

pn

2
; 1, 1 +

r1

2
, . . . , 1 +

rn−1

2
;−Ant2/Cn

)
− 1.
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Let us introduce the function

F1/2(a1, . . ., an; 1, b1, . . ., bn−1; t) =

= F

(
a1+

1
2
, . . . , an+

1
2
; 1+

1
2
, b1+

1
2
, . . . , bn−1+

1
2
; t

)
=

=
∞∑

k=0

(
a1 + 1

2

)
k
. . .

(
an + 1

2

)
k(

1 + 1
2

)
k

(
b1 + 1

2

)
k
. . .

(
bn−1 + 1

2

)
k

tk.

We call it the generalized hypergeometric function of half-order. Then

F1/2(t) = F1/2

(
p1

2
, . . .

pn

2
; 1, 1 +

r1

2
, . . . , 1 +

rn−1

2
;− An

Cnt2

)
− 1.

In particular, at n = 2 γm = mC2(m + σ − 1), where σ = 2ρ + C1/C2.

F0(t) = F
(
q1, q2; 1, σ;−B2

C2
t
)

is a hypergeometric function.

F1(t) = F

(
p1

2
,
p2

2
; 1,

σ + 1
2

;−A2

C2
t2

)
− 1,

F1/2(t) = F1/2

(
p1

2
,
p2

2
; 1,

σ + 1
2

;−A2

C2
t2

)
− 1 =

=
∞∑

k=1

(−1)k Ak
2

Ck
2

(1+p1)(3+p1) . . . (2k−1+p1)(1+p2)(3+p2) . . . (2k−1+p2)
3 · 5 · . . . · (2k+1)(σ+2)(σ+4) . . . (σ+2k)

t2k.

If B2 = 0, then the confluent hypergeometric function is F0(t), if A2 = 0,
then the confluent hypergeometric function is F1(t).

At n = 2 and A2 = 1, A1 = a + b + 1, A0 = ab; B2 = −(τ + 1),
B1 = d− a− b− 1− (c + d)τ , B0 = −λ, C2 = τ , C1 = cτ , C0 = 0 the equation
(1) transfers to the Heun differential equation [3, p.129].

6. Structure of coefficient em

We write the formula (10) in the form

(27) ∆(i1, i2, . . . , is) = ∆′(i1, i2, . . . , is)γi1+1 . . . γis+1/(γ1γ2 . . . γm).
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We shall define the product β0β1 . . . βm−1 taking into account the formulas
(3) (we assume that ρ 6= 0, since the case ρ = 0 is resulted in simpler formulas
without complications).

β0β1 . . . βm−1 =

(28) =
n∑

k=0

fk(ρ, m)Bm
k +

∑
j0+j1+...+jn=m

0≤ji≤m−1

Bj0
0 Bj1

1 . . .Bjn
n fj0,j1,...,jn

(ρ, m).

Here f0(ρ,m) ≡ 1, and
fk(ρ,m) =

= (ρ− k + 1)(ρ− k + 2)2 . . . (ρ− 1)k−1ρk . . . (ρ + m− k)k

×(ρ + m− k + 1)k+1(ρ+m−k+2)k−2 . . . (ρ+m−1) =

= ρkm+ . . . +(−1)k−1ρk2!3! . . . (k−1)!(m−k)! . . . (m−1)!

fj0,j1,...,jn(ρ,m) is a polynomial of degree smaller than km (concerning ρ), and
the ratio of each of its coefficients to the maximal coefficient among polynomials
fk(ρ,m) tends to zero as m →∞.

At ρ = 0 fk(ρ,m) = (m− k)!(m− k + 1)! . . . (m− 1).
In the formula (28) we call the first sum as body, and the second sum will be

called an additional part of product β0β1 . . . βm−1. Note that the exponential
factors of additional part are easily constructed by exhibitors of the body.

From formulas (3) we can see that the coefficients at parameters Ai, Bi,
Ci are invariant concerning these parameters (for example the replacement
of all the parameters Bi to the corresponding parameters Ai or Ci does
not change the coefficients of these parameters). Therefore, replacing in the
product β0β1 . . . βm−1 the pair βiβi+1 to αiγi+1, the coefficients fk(ρ,m) and
fj0,j1,...,jn(ρ,m) are also invariant concerning such replacement.

Hence, at such a replacement in formula (28) only the exponential part
will change, and it is necessary to take into account the number of pairs
αiγi+1 which can be put in the product β0β1 . . . βm−1. For example the body

of product β0 . . . βi1−1αi1γi1+1βi1+2 . . . βm−1 is
n∑

k=0

fk(ρ,m)Bm−2
k AkCk and it

means that the body of the sum
(29)

m−2∑

i1=0

β0 . . . βi1−1αi1γi1+1βi1+2 . . . βm−1 =
(

m−1
1

) n∑

k=0

fk(ρ,m)Bm−2
k AkCk,

where
(
m−1

1

)
= m− 1.
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In the remaining part of this sum indices of parameters Bi vary from 0 to
m− 3 and the products AlCp, l 6= p, l, p = 0, . . . , n are added to the products
of degrees of these parameters.

Taking into account (9) and (27) for the coefficients em we obtain

(30) em =

n∑
k=0

fk(ρ,m)
[m

2 ]∑
s=0

(−1)m−s
(
m−s

s

)
Bm−2s

k As
kCs

k + additional part

n∑
k=0

gk(ρ,m)Cm
k + additional part

,

where
(
m−s

s

)
is a binomial coefficient and

gk(ρ,m) =

= (ρ−k+2)(ρ−k+3)2 . . . (ρ)k−1(ρ+1)k . . . (ρ+m−k+1)k(ρ+m−k+2)k−1×
×(ρ + m) = ρkm + . . . + (−1)kρk−12!3! . . . (k − 1)!(m− k + 1)! . . . (m− 1)!m!

Since the fraction
(
m−s

s

)
fk(ρ,m)/gk(ρ,m) concerning ρ is the ratio of

polynomials of identical degrees equal to mk and concerning m it is also some
polynomial, consequently the asymptotic form of em as m →∞ is determined
by exponents whose bases are the parameters Ai, Bi, Ci.
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