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This famous mathematician was born at 19th February 1919 in Novo-
Ivanovskoye in Ukraine, in 1936 began studying physics at Moscow State
University (MSU), in 1941 he went as voluntary soldier into the Second World
War and became severely wounded yet in the same year on the Moscow front.
In 1943 he could leave the sanatorium and in 1944 continued his studies at
MSU.

There, in 1948, he defended his dissertation (investigating the influence
of perturbations of the form of the domain on the eigenvalues of the Laplace
operator) obtaining the first doctoral degree. Since 1953 he led a department at
the Institute of Applied Mathematics of the soviet academy, and, after earning
the second doctoral degree in 1957, became professor at MSU in 1958 and
academician in 1976.

Samarskij was very active in soviet and Russian scientific life, not only
as member of numerous academic and state committees, but also by founding
two departments (one at MSU, one at the Moscow Physico-Technical Institute)
and, in 1990, his own Institute of Mathematical Modelling, this in the frames
of the Russian Academy of Sciences. He stayed its director until 1998, and died
this year, at 11th February 2008 when he was nearly 89 years old.

The name of Samarskij is well-known for his achievements in numerical
mathematics and in computer-aided mathematical modelling. Some of the im-
portant monographies and textbooks written or coauthored by A.A. Samarskij,
see the not exhaustive list [1]-[15] at the end, were translated for example to
English, German, French and Chinese. Moreover, he authored or coauthored
about 450 scientific papers. These sometimes were devoted to the development
of numerical methods in general, but his speciality was the numerical solution of
partial differential equations and mathematical physics. His name is connected,
among others, with a practical stability theory for difference schemes, with
an approximation of the convection-diffusion equation, and with the locally
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one-dimensional approximation of multidimensional parabolic and hyperbolic
equations.

We give a short account of some of the listed results of Samarskij.

Let Ω ∈ IRd be a bounded domain and QT := Ω × (0, T ) where T > 0.
Then a parabolic equation is of the form

∂u

∂t
=Lu + f(x, t), (x, t) = (x1, . . . , xd, t) ∈ QT ,

Lu :=
d∑
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(
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)
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if the operator is elliptic:
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aij(x, t)ξiξj ≤ c1

d∑

i=1

ξ2
i for all (x, t) ∈ QT .

This equation is to be solved along with initial values at t = 0 and boundary
values at ST := Γ × [0, T ] where Γ := ∂Ω, say homogenous Dirichlet data at
ST :

t = 0, x ∈ Ω : u = u0(x); (x, t) ∈ ST : u = 0.

For the numerical solution of this problem we consider the two-layer
difference scheme with solution yj , j = 0, 1, . . . ,m in a real Hilbert space
H with scalar product (·, ·), where m := T/τ , for a given time step τ > 0 and
right-hand sides ϕj ∈ H:

Byt + Ayj = ϕj , j = 0, 1, . . . ,m− 1, y0 is given.

Here, yj approximates u(x, jτ) for given points x in Ω, yt := (yj+1 − yj)/τ is
an approximation of the time derivative ∂u

∂t , A approximates the operator −L.
Then, to approximate the parabolic equation it seems sufficient to choose B = I
but it turns out that this may lead to severe stability problems necessitating
very small time steps.

A better way is to add a “regularisator” R to I giving B = I + τR. The
choice of R needs experience especially in the multidimensional case where it
may be possible to take R such that B becomes factorized into one-dimensional
operators, see e.g. [16] or [1] and later books of Samarskij. One (non-factorized
but customary) choice is R = A.

Now, let us assume that the operators do not depend on t and satisfy

A = A∗ > 0, B = B∗ > 0,
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that is they are selfadjoint and positive definite: (Av, v) = (v, Av) > 0 for all
0 6= v ∈ H, etc.

Then, let
‖y‖A = (Ay, y)1/2 = ‖A1/2y‖

denote the energetical norm to az A.

Theorem 1. (see [17] or [2]) If ϕ ≡ 0 then

(Bv, v) ≥ τ

2
(Av, v) for all v ∈ H, or shortly: B ≥ τ

2
A,

is necessary and sufficient for the stability of the two-layer scheme with respect
to initial values in the norm ‖y‖A, i.e. for the estimate

‖yj‖A ≤ ‖y0‖A, j = 1, . . . , m.

It is well-known that stability with respect to initial values means also
stability with respect to right-hand sides, but possibly in a non-convenient
norm. The following theorem improves on this by showing an estimate in a
convenient norm.

Theorem 2. (see [17] or [2]) If ϕ 6≡ 0 and y0 = 0, then

B − τ

2
A ≥ εI, ε = const > 0,

is sufficient for the stability of the two-layer scheme with respect to right-hand
sides in the sense of the following estimate

‖yj‖A ≤
(

1
2ε

j−1∑

k=0

τ‖ϕk‖2
)1/2

.

The conditions of these theorems have the advantage to be simpler verified
also in the case of variable coefficients of the operator L. They are true for
a0 ≤ 0, ai ≡ 0, i = 1, . . . , d, and for B = I + στA if σ ≥ 1

2 − 1
τ‖A‖ . The

stability theories in [18] or [19] are in principle more general - but suppose the
solution of auxiliary equations and further estimates.

Among the above conditions, that on B is not necessary and can be
replaced by (Bv, v) > 0 for all v 6= 0 in the (real) Hilbert space H (i.e. B may
be nonsymmetric) - what allows handling of the case when all ai, i = 1, . . . , d,
are constant.

For three-layer difference schemes (which are of interest for parabolic and
hyperbolic equations), there are similar results like Theorems 1 and 2, by Gulin
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[20], a former student of Samarskij, and these have been further generalized in
[2].

The above results in their application to the parabolic equation suggest
that the case ai 6= 0 for some i may generate difficulties for the stability and
numerical solution (even when these parts of L from a theoretical point of view
are not essential). This is indeed the case. In 1965, Samarskij [21] proposed
an approximation for the one-dimensional parabolic equation (d = 1) which
guarantees that the “discrete” maximum principle (or “monotonicity”, see e.g.
[1], etc.) can be applied unconditionally (and then stability also follows). In
short, Samarskij’s approximation for the case of a constant coefficient ordinary
boundary value problem

au′′ + bu′ + f(x) = 0, 0 < x < 1, u(0) = u(1) = 0, a > 0,

looks as follows (where yi ≈ u(xi) and xi = ih, h = 1/N being the steplength
of the grid):

aρ(q)
yi+1 − 2yi + yi−1

h2
+ b

yi+1 − yi−1

2h
+ f(xi) = 0,

1 ≤ i ≤ N − 1, y0 = yN = 0,

where, instead of ρ(q) ≡ 1 which does not assure unconditional monotonicity,
Samarskij takes

ρ(q) = 1 +
q2

1 + |q| , q :=
bh

2a
.

That is, for small h (and q) we have ρ(q) = 1 + O(h2), whereas for large |q|
there holds ρ(q) ≤ 1 + |q|, both properties being necessary for second order
approximation in h and for unconditional monotonicity.

Later, other approximations have been proposed which guarantee even
convergence uniformly in a - but this does not carry over to higher dimensions.
The approximation of Samarskij is nowadays modified for “upwinding” finite
element approximations of multidimensional Navier-Stokes equations.

Somewhat controversial is the relation of Samarskij to finite elements and
the multigrid algorithms, both well-known components of successful theoretical
approaches and effective programs for the solution of boundary value problems.
When deriving difference schemes, he and his school used several means, not
just replacing derivatives in the equation by difference quotients. So, in joint
papers with Tychonov like [22], the general question was considered which
functionals of the coefficients of the differential equation

(k(x)u′)′ − q(x)u + f(x) = 0, 0 < x < 1,
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u(0) = u(1) = 0, k(x) ≥ M1, q ≥ 0

lead to convergent discrete solutions of a general three-point difference scheme
(which includes the finite element method with so-called “hat functions”), and
best such functionals were obtained. When k and q are allowed to possess
jumps, the optimal functionals are not referring to the finite element method.

To construct difference schemes for variable coefficient partial differential
equations in general domains, the finite volume technique (“balance equation
method”) was used in Samarskij’s school. But finite element approximations
were termed “variational-difference schemes” and considered a complicated
nonstandard way to obtain a difference scheme.

Similarly, the multigrid algorithm and the basic papers by Fedorenko [23],
[24] and the apparently final result of Bakhvalov [25] were known at the end of
the 60’s, but the opinion was that this method is - though optimal - but too
complicated (“and used only by Fedorenko”).

In other words, it was not recognized that there was a lot of possible and
necessary scientific work yet, like selection of diverse interpolation and restric-
tion operators, of appropriate smoothing iterations and optimal parameters,
other convergence proofs etc., a work that then remained to A. Brandt [26],
[27] and W. Hackbusch [28], [29] and many more in the Western world, where
soon multigrid became a whole “industry”.

In the Samarskij school, all the basic knowledge was present to do this
themself (see the book [5]), but even at the end of the 80’s when Shaidurov
prepared the first Russian multigrid book [30] (Bakhvalov being the lector), he
experienced difficulties to bring it through.

The above scientific details are only one side of the activities of Samarskij.
For him, a research was not finished when a convergence proof was found and
published in a good journal. The methods considered had to be progammed,
their real accuracy tested; computing time and memory needed were important
issues.

Even more, a problem was tackled since it was of importance for society,
outside of mathematics, and the outcome of research had to be evaluated and
applied there. He and his collaborators were working on industrial projects
and able to discuss the mathematical models used, let this be in elasticity, gas
dynamics, or transfer of mass and heat.

What became known to a broader auditory only after the soviet system
change is that from 1948 until 1953 Samarskij was involved into the scientific
part first of the Soviet atombomb project and later of the H-bomb project where
his task was among others to estimate numerically the intensity of explosion.

Later he devoted much time to the magneto-hydrodynamic equations, the
modelling of lasers and of the thermonuclear synthesis.



8 G. Stoyan

Finally, in his joint book with Mikhailov [15] there appear financial and
market problems.

Samarskij founded and led a huge scientific school: more than 100 of his
students reached the first doctoral degree (“candidate of sciences”), more than
40 the second doctoral degree (“doctor of sciences”), and to him came not only
students from Soviet Union resp. Russia, but also from countries of the socialist
community like Eastern Germany, Hungary, Bulgaria, and, somewhat earlier
also from China.

At the Department of Numerical Analysis of Eötvös University Budapest,
several of his former students were or are working. Samarskij organized 3
joint summer schools with the forerunner of this department and the former
Computing Center of the university and himself held lectures, too. These,
earlier mostly were connected to the iterative solution of multidimensional
difference schemes, but in the 80’s often showed a developed scheme of the
way of mathematical modelling remembering of interconnected biochemical
reaction cycles.

To held a lecture in his seminar at MSU was a honour, and long queues
formed of people waiting for this possibility. For an average student, he
had about ten minutes per week and therefore a system of “microchiefs” was
customary, that is according to the topic on which a student was working, one
of Samarskij’s already doctorated collaborators was appointed as tutor.

He himself devoted much time and influence to support his students in
their later work and position, was interested in their personal life and their
further scientific achievements.
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