
Annales Univ. Sci. Budapest., Sect. Comp. 31 (2009) 235-258

LEARNING OF CONSTRAINT LOGIC PROGRAMS
BY COMBINING UNFOLDING AND SLICING

TECHNIQUES 1

Gy. Szilágyi Kocsisné

(Budapest, Hungary)

Abstract. This paper discusses learning of Constraint Logic Programs
using unfolding and slicing technique. The transformation rule for unfold-
ing together with clause removal is a method for specialization of Logic
Programs. Slicing is a program analysis technique originally developed for
imperative languages. It facilitates the understanding of data flow and
debugging.
This paper formulates the semantics of a learning method of CLP pro-
grams, proves that the unfolding transformation preserves the operational
and logical semantics, and combines the defined unfolding technique by
applying slicing. A prototype learner of CLP programs which implements
the above ideas is briefly described.

1. Introduction

Inductive Constraint Logic Programming (ICLP) is a research topic on the
intersection of Constraint Logic Programming (CLP) [7, 9] and Inductive Logic
Programming (ILP) [13]. In this paper we present an ICLP algorithm based on
the specialization of Constraint Logic Programs. This paper formulates
the semantics of a specialization method of CLP programs, proves that the un-
folding transformation preserves the operational and logical semantics. An other
result is that an improved interactive version of the learning algorithm has been

1This work was supported by GVOP-3.2.2.-2004-07-0005/3.0 ELTE IKKK

236 Gy. Szilágyi Kocsisné

defined integrating an algorithmic debugging algorithm and the slicing method
with the specialization algorithm for CLP programs. A prototype tool has been
implemented for both algorithms.
An ILP method takes as its input a definite program and two sets of atoms
(positive and negative examples). The output of the algorithm is a new definite
program that covers all positive examples but no negative ones. The SPECTRE
algorithm [3] specializes clauses defining a target predicate by applying different
strategies for selecting the literal to apply unfolding upon (e.g. taking the left-
most literal, selecting randomly or using the impurity measure [2]). The main
idea behind an improved method is that the identification of a clause to be un-
folded plays a crucial role in the effectiveness of the specialization process. If a
negative example is covered by the current version of the initial program it is
supposed that there is at least one clause that is responsible for this incorrect
covering. The IMPUT system [1] (have been worked out for Logic Programs)
uses a debugging algorithm to identify a buggy clause instance which is then
unfolded and partially removed from the initial program. This solution improves
the original learning algorithm but it has one major drawback, namely that an
oracle has to answer membership questions to identify a buggy clause instance.
In our algorithm the algorithmic debugger is combined with a slicing technique.
Slicing makes it possible to reduce the number of user queries during the debug-
ging process. During the slicing a proof tree is produced for a negative example,
then a proof tree dependence graph is constructed and sliced, removing those
parts that have no influence on the visible symptom of a bug. The algorithmic
debugger traverses the sliced proof tree only, thus focusing on the suspect part
of the program.
The paper is organized as follows. Section 2 outlines and formalizes some basic
concepts which are then used to formulate and analyze the specialization meth-
ods. Section 3 presents the CLP SPEC algorithm, the associated definitions (spe-
cialization, unfolding) and theorems (operational and logical semantics preserva-
tion, correctness analysis). Section 4 discusses our main results an improved in-
teractive version of the CLP SPEC algorithm (called CLP SPEC SLICE) which
combines the unfolding technique with algorithmic debugging and slicing. Our
prototype tool is described in Section 5. Section 6 provides a comparison with
other works and suggestions for future work.

2. Preliminaries

The cornerstone of Constraint Logic Programming (CLP) [7, 9] is the
notion of a constraint. Constraint atoms are formulae constructed with some
constraint predicates with a predefined interpretation. A clause is a formula of
the form h ← b1, ..., bn, n ≥ 0 , where h, b1, . . . , bn are atomic formulae. The

Learning of constraint logic programs 237

predicates used to construct b1, . . . , bn are either constraint predicates or defined
predicates. The predicate of h is a defined predicate. A goal is a clause without h.
A fact is a clause h← c1, . . . , cn where c1, . . . , cn are constraints. A constraint
logic program is a set of clauses. The detailed definitions of the valuation,
D-interpretation, and D-model can be found in [7]. The least D-model of a set
of formula P is denoted by lm(P,ℑ). A solution to a query G is a valuation φ
such that φ(G) ⊆ lm(P,ℑ).

The top-down operational semantics of constraint logic programs P can
be seen as a transition system on states, tuples ⟨A,C, S⟩ where A is a multiset
of atoms and constraints, and C and S are multisets of constraints [7]. The
constraints C and S are referred to as the constraint store. Intuitively, A is a
collection of as-yet-unseen atoms and constraints, C is a collection of constraints
playing active role (or are awake), and S is a collection of constraints playing a
passive role (or are asleep). There is also another state, denoted by fail. We will
take as given a computation rule that selects a transition type and an appropriate
element of A for each state. An initial goal G for execution is represented by
the state ⟨G, ∅, ∅⟩. Let Rj denote a clause of a P constraint logic program such
that Rj : hj ← bj1 , . . . , bjmj

, cj (j = 1, . . . , n), where hj , bj1 , . . . , bjmj
are defined

predicates, and cj denotes the conjunction of the atomic constraints appearing
in the body of Rj . The transitions in the transition system are:

1. ⟨A ∪ b, C, S⟩ →r ⟨A ∪ {bj1 , . . . , bjmj
, cj}, C, S ∪ (b = hj)⟩ if b is a defined

atom selected by the computation rule, hj ← bj1 , . . . , bjmj
, cj is a rule of P ,

renamed to new variables, and hj and b have the same predicate symbol.
The expression b = hj is an abbrevation for the conjunction of equations
between corresponding arguments of b and hj .

2. ⟨A ∪ b, C, S⟩ →r fail if b is a defined atom selected via the computation
rule, and for every rule hj ← bj1 , . . . , bjmj

, cj of P , hj and b have different

predicate symbols.

3. ⟨A∪ c, C, S⟩ →c ⟨A,C, S ∪ c⟩ if c is selected by the computation rule and c
is a constraint.

4. ⟨A,C, S⟩ →i ⟨A,C ′, S′⟩ if (C ′, S′) = infer(C,S).

5. ⟨A,C, S⟩ →s ⟨A,C, S⟩ if consistent(C).

6. ⟨A,C, S⟩ →s fail if ¬consistent(C).

The predicate consistent(C) expresses a test for the consistency of C. The func-
tion infer(C, S) computes from the current set of active constraints a new set
of active constraints C ′ and passive constraints S′. The →r transitions arise
from resolution, →c transitions introduce constraints into the constraint solver,
→s transitions test wether the active constraints are consistent, and →i transi-
tions infer more active constraints from the current collection of constraints. A
derivation is a sequence of transitions. A state which can not be rewritten is
called a final state. A derivation is successful if it is finite and the final state

238 Gy. Szilágyi Kocsisné

has the form of ⟨∅, C, S⟩. Let G be a goal with free variables X̃, which initiates a
derivation and produces a final state ⟨∅, C, S⟩, and denote ∃−X̃Q the existential

closure of the formula Q except for the variables X̃, which remain unquanti-
fied. Then ∃−X̃ C ∧ S is called the answer constraint of the derivation. We
should note that the operational semantics we are dealing with can be rewritten
as →r→i→s and →c→i→s. The computation for a goal G can be described by
a tree called SLD-tree.

Definition 1 (SLD-tree). Let P be a constraint logic program and G a goal.
An SLD-tree for P ∪ {G} is a tree which satisfies the following:

1. Each node label is a computational state ⟨A,C, S⟩ like that defined above.

2. The root node is ⟨G, ∅, ∅⟩.
3. Each node has as many children as valid transitions are associated with it.

4. Final states have no children. 5. the edges are labeled by the type of the
transition (r, c, i, s).

We note that every branch of the SLD-tree describes one derivation.

Let ℑ be a D-interpretation, φ a valuation and F = {a ← c} a set of facts,
where a is a defined predicate and c is a conjunction of constraint atoms. Then
[F]ℑ := {φ(a) | (a ← c) ∈ F, ℑ |= φ(c)}. The following theorem [7] describes
the connection between the top-down operational and logical semantics of a CLP
program, which is then used to prove that the unfolding transformation preserves
the logical semantics.

Theorem 1. Let ℑ be a D-interpretation and ∃−X̃Q denote the existential clo-

sure of the formula Q except for the variables X̃, which remain unquantified.
Consider a P CLP program with the constraint domain ⟨L,D⟩. The success set

SS(P) collects the answer constraints to simple goals p(X̃) with free variables X̃:

SS(P) = {p(X̃)← c | ⟨p(X̃), ∅, ∅⟩ →∗ ⟨∅, C ′, C ′′⟩,ℑ |= c←→ ∃−X̃C ′ ∧ C ′′}.
Then [SS(P)]ℑ = lm(P,ℑ) where lm(P,ℑ) is the least D-model of P .

3. Specialization of CLP programs by unfolding

3.1. The unfolding transformation

3.1.1. The definition of the unfolding transformation

The algorithm CLP SPEC specializes logic programs with respect to positive
and negative examples by applying the transformation rule unfolding together
with clause removal. The learning setting in the case of ICLP is the follow-
ing: The teacher selects a target concept and provides the learner with a finite,

Learning of constraint logic programs 239

nonempty training set of examples, each of which is correctly labeled either as
positive or negative. From this training sample and any available background
knowledge, the learner constructs a hypothesis of the concept. Examples are
ordinary atoms built over a target predicate and the background knowledge is a
finite set of constrained clauses. A hypothesis is a finite set of nonrecursive con-
strained clauses whose heads are ordinary atoms built over the target predicate
and whose bodies consist of literals built over either predicate symbols defined
in the background knowledge or constraint symbols.

We deal here with the operational and logical semantics defined by Jaffar and
Maher [7], which can be used for combining unfolding and slicing. This is the
reason for giving a direct proof of the correctness of the specialization method.

Definition 2 (The specialization problem. Given: a P Constraint Logic
Program and two disjunct sets of ground terms (E+ and E−). The aim is: to
find a P’ Constraint Logic Program (the specialization of P with respect to (E+

and E−)) such that MP ′ ⊆ MP , E+ ⊆ MP ′ and MP ′ ∩ E− = ∅, where MP

denotes a D-model of P .

We note that this definition satisfies the conditions of completeness and con-
sistency of a hypothesis since the specialized program covers all positive examples
and does not cover any negative example.

In this work we assume that every positive and negative example is an ground
instance of a target (defined) predicate G (goal). SLD-refutations of all the
examples are then included in an SLD-tree of P ∪ G (every e ∈ (E+ ∪ E−) :
e ∈ lm(P,ℑ)). This means that for each SLD-refutation of a particular example,
there is a branch in the corresponding SLD-tree leading from the root to the
empty goal.

In Figure 1, the skeleton of the SLD-tree of Example 1 is shown whose leaves
that correspond to refutations of positive and negative examples are labeled ’+’
and ’-’ respectively, and leaves that do not correspond to refutations of any
examples are left unlabeled. The broken line shows two places where the SLD-
tree can be pruned, such that all refutations of the negative examples and no
refutations of the positive examples are excluded.

Definition 3 (The unfolding transformation). Let P be a CLP program
with the rules R1, . . . , Rn, such that

Rj : hj ← bj1 , . . . , bjmj
, cj (j = 1, . . . , n),

where hj , bj1 , . . . , bjmj
are defined predicates, cj denotes the conjunction of the

atomic constraints appearing in the body of Rj. Let

R : h← b1, . . . , bm, . . . , bk, c

be a program clause in P , and R = {R1, . . . , Rq} be a set of program clauses
renamed to new variables such that the head of each Ri ∈ R (i = 1, . . . , q) and

240 Gy. Szilágyi Kocsisné

bm have the same predicate symbol, and bm is selected by some computation rule.
Then the program P ′ after unfolding is:

P ′ = Unf(P,R, bm) =

= P \ {R}
∪

(
∪

Rj∈R

h←

argument
equations︷ ︸︸ ︷
(bm = hj), b1, . . . , bm−1,

body(Rj)︷ ︸︸ ︷
bj1 , . . . , bjmj

, cj , bm+1, . . . , bk, c),

where bm = hj is an abbreviation for the conjunction of argument equations
between the corresponding argument positions of bm and hj.

We note that only defined predicate can be unfolded and no constraint predi-
cates. In the formalization of the CLP SPEC algorithm we will use the following
set:

Res(P,R, b) :=

:=
∪

Rj∈R

(h←

argument
equations︷ ︸︸ ︷
(bm = hj), b1, . . . , bm−1,

body(Rj)︷ ︸︸ ︷
bj1 , . . . , bjmj

, cj , bm+1, . . . , bk, c).

This set can be viewed as the set of ”resolvents” of R.

In Example 1 an unfolding step with respect to main(M,J) in clause 1 is
shown.

3.1.2. The operational semantics preservation of the unfolding transformation

In the following we will show that the unfolding transformation preserves
the operational semantics. To do this we first define the notion of operational
equivalence.

Definition 4. (Operational equivalence). Let P be a CLP program with

the constraint domain ⟨D,L⟩, ⟨∅, C ′, C ′′⟩ and ⟨∅, C ′
, C

′′⟩ two final states of an

SLD-tree for P ∪ {p(X̃)}, where p(X̃) is a goal with free variables X̃. Let ℑ
denote a D-interpretation. Two states ⟨∅, C ′, C ′′⟩ and ⟨∅, C ′

, C
′′⟩ are equivalent

iff ℑ |= ∃−X̃C ′ ∧ C ′′ ⇔ ℑ |= ∃−X̃C
′ ∧ C

′′
.

Theorem 2. Let P be a CLP program with the rules R1, . . . , Rn, such that

Rj : hj ← bj1 , . . . , bjmj
, cj , (j = 1, . . . , n),

Learning of constraint logic programs 241

where hj , bj1 , . . . , bjmj
are defined predicates and cj denotes the conjunction of

the atomic constraints appearing in the body of Rj. For every SLD-tree (P ∪
{G} where G = p(X̃)), for every clause R ∈ P and for every bm ∈ body(R)
defined predicate SS(P) = SS(P ′), where P ′ = Unf(P,R, bm) and SS(P) collects

the answer constraints to simple goals p(X̃) (see Theorem 1). So an unfolding
transformation preserves the operational semantics (we deal now only with success
refutations).

Proof. Recall that this theorem says that applying an unfolding step on an
SLD-tree does not affect the set of answer constraints for a goal.

SS(P) = {p(X̃)← c | ⟨p(X̃), ∅, ∅⟩ →∗ ⟨∅, C ′, C ′′⟩,ℑ |= c←→ ∃−X̃C ′ ∧ C ′′}.

Hence to prove that SS(P) = SS(P ′) it is enough to show that for every branch

of the SLD-tree P ∪{p(X̃)} (i.e. for a given derivation ⟨p(X̃), ∅, ∅⟩ →∗ ⟨∅, C ′, C ′′⟩
) there exists exactly one branch of the SLD-tree P ′ ∪ {p(X̃)} whose final state

is equivalent to ⟨∅, C ′, C ′′⟩ and P ′ ∪ {p(X̃)} has no additional branches. To this

end let us consider a branch of the SLD-tree P ∪ {p(X̃)} and examine the effect
of an unfolding step for this branch. Suppose that bm in

R : h← b1, . . . , bm︸︷︷︸ , . . . bk, c was ”unified” with

Rj :
︷︸︸︷
hj ← bj1 , . . . , bjmj

, cj (j = 1, . . . , n).

Compare an →r transition (3.1) with an unfolding step (3.2):

(3.1) ⟨A ∪ bm, C, S⟩ →r ⟨A ∪ {bj1 , . . . , bjmj
, cj︸ ︷︷ ︸

body(Rj)

}, C, S ∪ (bm = hj)︸ ︷︷ ︸
argument
equations

⟩

(3.2) Rnewj : h←

argument
equations︷ ︸︸ ︷
(bm = hj), b1, . . . , bm−1,

body(Rj)︷ ︸︸ ︷
bj1 , . . . , bjmj

, cj , bm+1, . . . , bk, c

One →r transition can be viewed as an operation when, instead of bm, the body
predicates of the ”unified” clause instance are inserted and the corresponding
argument equations are added to the set of constraints. Applying an unfolding
step, the body atoms of the ”unified” clause and the argument equations are
added to the actual clause. We will show that an unfolding step simulates the
→r transition. Since the unfolding transformation involves all ”unifiable” clauses,
an unfolding step can be viewed as an operation which moves a subtree closer
to the root (a node of an SLD-tree may have more then one children only if the
following applied transition is an →r transition).

242 Gy. Szilágyi Kocsisné

More precisely: If there is a derivation of P ∪ {G} (G = p(X̃)) in which R (the
clause has been unfolded upon) is not used as an input clause, this is then also a
refutation in P ′ ∪ {G}. But suppose R is used as an input clause in a refutation

⟨p(X̃), ∅, ∅⟩ →∗ ⟨∅, C ′, C ′′⟩ of P ∪{G}. We will prove that from such a refutation

an ⟨p(X̃), ∅, ∅⟩ →∗ ⟨∅, C ′
, C

′′⟩ refutation of P ′∪{G} can be constructed such that

⟨∅, C ′, C ′′⟩ and ⟨∅, C ′
, C

′′⟩ are equivalent.

Derivation R shows a part of the refutation when R is utilized as an input clause.

Derivation Res(R) shows when Res(P,R, bm) is used instead of R as an input
clause (we suppose now that Res(P,R, bm) contains only one element). The
sets of the variables of the clauses (vars(c) where c is a clause) are disjunct.
Since, the SLD resolution uses clauses instances, in our proof we deal with a
substitution, denoted by σ, which creates an instance of R, Rj and Rnewj . There
exists such a substitution because vars(R) ∩ vars(Rj) = ∅ and vars(Rnewj) =
vars(R) ∪ vars(Rj).

Derivation R:

1. . . . ⟨b,GRem;C1⟩ ⊢r
2. ⟨b1σ, . . . , bm−1σ, bmσ, bm+1σ, . . . , bkσ, cσ,GRem;C1 ∧ (b = hσ)⟩ ⊢(r∪c)∗

3. ⟨bm−1σ, bmσ, bm+1σ, . . . , bkσ, cσ,GRem;C2⟩ ⊢(r∪c)∗

4. ⟨bmσ, bm+1σ, . . . , bkσ, cσ,GRem;C3⟩ ⊢r
5. ⟨bj1σ, . . . , bjmj

σ, cjσ, bm+1σ, . . . , bkσ, cσ,GRem;C3 ∧ (bmσ = hjσ)⟩ ⊢r . . .

Derivation Res(R):

1. . . . ⟨b,GRem;C1⟩ ⊢r
2. ⟨b1σ, . . . , bm−1σ, (bm = hj)σ, bj1σ, . . . , bjmj

σ, cjσ, bm+1σ, . . . , bkσ, cσ,GRem;

C1 ∧ (b = hσ)⟩ ⊢(r∪c)∗

3. ⟨bm−1σ, (bm = hj)σ, bj1σ, . . . , bjmj
σ, cjσ, bm+1σ, . . . , bkσ, cσ,GRem;C2⟩ ⊢(r∪c)∗

4. ⟨(bm = hj)σ, bj1σ, . . . , bjmj
σ, cjσ, bm+1σ, . . . , bkσ, cσ,GRem;C3⟩ ⊢c

5. ⟨bj1σ, . . . , bjmj
σ, cjσ, bm+1σ, . . . , bkσ, cσ,GRem;C3 ∧ ((bm = hj)σ)⟩ ⊢r . . .

For these derivations we employ the following notational conventions:

1. We did not picture the i and s transitions, we only denoted that an r or
c transition was applied (since the content of the constraint store in the
corresponding nodes is the same, the result of the i an s transitions are
also the same).

2. Every node has the following form: ⟨goals, C⟩, where goals contains the
actual list of goals and C is the constraint store.

3. R is the clause and bm is the literal in R to be unfolded upon.

4. The first node is ⟨b,GRes, C1⟩, where b is ”unified” with the head of R in
the next derivation step, GRem is the remainder of the actual list of goals,
and C1 is the constraint store.

Learning of constraint logic programs 243

5. We pictured only one refutation, so if bm can be ”unified” with more clauses
then this map of nodes can be applied to every other branch of the SLD-tree
which correspond to these clauses.

Node 1 in Derivation R and Derivation Res(R) is the first node. The first goal
b is ”unified” with Rσ / Rnewjσ.

Node 2 shows when the body predicates of Rσ (Derivation R) / Rnewjσ (Deriva-
tion Res(R)) are added to the actual list of goals, and the corresponding node
equations (b = hσ) are added to the constraint store C1.

Node 3 shows the state after the derivations of the subgoals b1σ, . . . , bm−2σ. The
content of the constraint store C2 is the same in both derivations (SLD-trees)
since the content of the constraint store in Node 2 were the same and the same
subgoals were derived in both cases.

In Node 4 the set of constraints C3 is also the same in both derivations since
the subgoal bm−1σ was derived. But the next step is different: in Derivation R
the next actual goal is bmσ while in Derivation Res(R) (bm = hj)σ. As can be
seen in

Node 5, after applying an r transition for bmσ in Derivation R the resulting node
has the same label as when we apply a c transition for (bm = hj)σ in Derivation
Res(R) because (bmσ = hjσ) = ((bm = hj)σ). Hence from Node 5 the derivation
continues with the same list of goals and with the same content of the constraint
store (see the comparison of r transition (1) and unfolding (2)), so finally the
result constraint set is the same, which of course means that the final state of
the derivations is equivalent.

3.1.3. The logical semantics preservation of the unfolding transformation

Theorem 3. The unfolding transformation preserves the logical semantics
(D-semantics) of CLP programs.

Proof. We use here the notes of Theorem 2. Let ℑ be a D-interpretation.
From Theorem 1: [SS(P)]ℑ = lm(P,ℑ) and [SS(P ′)]ℑ = lm(P ′,ℑ).
From Theorem 2: SS(P) = SS(P ′).
So, lm(P,ℑ) = [SS(P)]ℑ = [SS(P ′)]ℑ = lm(P ′,ℑ).
From which: lm(P,ℑ) = lm(P ′,ℑ).

3.2. The CLP SPEC algorithm

3.2.1. The definition of CLP SPEC algorithm

The aim of the learning process is to find a CLP program that does not cover
any negative examples. During the learning process it is checked whether or not

244 Gy. Szilágyi Kocsisné

a clause covers any positive examples. If it covers no positive examples, it is
then removed (otherwise it is unfolded). Removing a clause which covers only
negative examples corresponds to pruning SLD-trees such that all refutations of
negative examples and no refutations of positive examples are excluded.

The CLP SPEC algorithm consists of one main loop that continues until
no negative examples are covered. When a clause is found that covers a negative
example, and no positive examples, it is removed. When a clause is found that
covers both a negative and a positive example, it is unfolded. The choice of which
literal to unfold upon is made using the computation rule, which uses different
strategies [2].

The input of the algorithm: An initial constraint logic program program P , back-

ground knowledge B ⊆ P (a set of clauses that does not change during the learning

process and which clauses does not take part in the refutations of negative examples),

sets of ground atoms E+, E− (the positive and negative examples which are ground

instances of a target predicate).

The output of the algorithm: Series of programs P ′(0), P ′(1), . . . , P ′(n)(P ′(0) = P),

where P ′(i+1) = Ũnf(P ′(i)) (0 ≥ i ≥ n), and Ũnf is the unfolding operator extended

with clause removal.

THE CLP SPEC ALGORITHM

1. if the program P does not terminate on all e+ ∈ E+

2. then stop ”Initial program should cover all positive examples.”

3. let i=0

4. while there is a clause R in P ′ that covers an atom in E−

or (no more unfolding steps can be applied *) do

5. begin

6. if R does not cover any atom in E+ then remove R from P ′(i)

7. else

begin

8. - unfold upon the literal b in R that is selected by the computation rule

P ′(i+1) := Unf(P ′(i), R, b)

9. - Let D Res(P ′(i), R, b) := Res(P ′(i), R, b) \ { those clauses that do not

occur in refutations of positive examples }

Learning of constraint logic programs 245

10. - P ′(i+1) := P ′(i+1) \D Res(P ′(i), R, b) /*to find the most specific theory*/

11. end /*else*/

12. let i := i+ 1

13. end /*while*/

We note that this algorithm produces the most specific theory, removing as
many clauses as possible (i.e. it removes all clauses that do not cover positive
example) (see program lines 9 and 10).

3.2.2. The correctness of the CLP SPEC algorithm

Theorem 4 (The correctness of the CLP SPEC algorithm). The
output P ′(n) of the CPL SPEC algorithm is a specialization of P with respect to
E+ and E− if the reason of the termination of the algorithm is not (*) above.
This also means that P ′(n) is complete and consistent (i.e. it covers all positive
examples and does not cover any negative examples).

Proof. According to Definition 2 we have to satisfy the following three
conditions:

1. MP ′ ∩ E− = ∅
We assume that the clauses of the background knowledge B does not take part
in the refutations of negative examples. If the main loop in program line 4 termi-
nates because there are no more program clauses which cover negative examples,
then P ′(n) does not cover any negative examples. If it terminates because no
more unfolding step can be performed (*) and P ′(n) still covers negative exam-
ple(s), then our algorithm could not find a consistent hypothesis (the percentage
of the covered negative examples is provided). In this case new and more precise
constraints have to be introduced into the program. One aim of our future work
is to combine this algorithm with a constraint inferring method [5, 10, 14].

2. E+ ⊆MP ′

We prove this state for MP ′ = lm(P,ℑ).
From program line 1: E+ ⊆MP ′(0) .
For every i = 1, . . . , n

2.a. The unfolding step in program line 8 does not change lm(P ′(i),ℑ) (see
Theorem 3).

2.b. The clause removal in program line 6 and 10 does not remove clauses that
cover positive examples.

3. MP ′ ⊆MP

We prove this state for MP ′ = lm(P,ℑ) in two steps. For every i = 1, . . . , n:

3.a. The unfolding step in program line 8 does not change lm(P ′(i),ℑ) (see
Theorem 3).

246 Gy. Szilágyi Kocsisné

3.b. The clause removal in program line 6 and 10 does not extend lm(P ′(i),ℑ).

The clause removal cuts branches of the SLD-tree, so reduces or does not change
the success set of the answer constraints (SS(P ′(i))) as well as lm(P ′(i),ℑ) (see
Theorem 1). From which,

MP ′(i+1) ⊆MP ′(i) for i = 0, . . . , n, so MP ′ = MP ′(n) ⊆MP ′(0) = MP .

The complexity of the algorithm depends on the number of iterations i (the
number of unfoldings). During the running process the number of the clauses
increases when unfolding is applied, so the number of iteration should be kept
as low as possible. To do this different computation rules can be employed (for
more details see [3, 2]).

3.2.3. An example to illustrate the specialization algorithm

Example 1. A simple example has been chosen to simplify the illustration of
the specialization algorithm. Given the definition of a fish-meal as consisting
of an appetizer, a main meal and a dessert and a database of foods and their
calorific values we wish to construct light fish-meals i.e. fish-meals whose sum of
calorific values does not exceed 10. This program needs to be specialized since it
doesn’t just cover fish-meals.

P ′(0) has the following form:

1. fishlightmeal(A,M) : - {I + J ≤ 10}, appetizer(A,I), main(M,J).

2. appetizer(A, I) : - cheese(A, I), {I > 0}. 6. fish(sole, 2).

3. appetizer(A, I) : - pasta(A, I), {I > 0}. 7. fish(tuna, 4).

4. main(M, J) : - fish(M, J), {J > 0}. 8. meat(beef, 5).

5. main(M, J) : - meat(M, J), {J > 0}. 9. meat(chicken, 4).

10. pasta(general, 1). 11. cheese(camamber, 2).

The set of positive examples: E+ := {fishlightmeal(A, sole), fishlightmeal(A, tuna)}
The set of negative examples: E− := {fishlightmeal(A, beef), fishlightmeal(A, pork)}
The goal for the SLD-tree which contains all the examples is: fishlightmeal(A,M).

Figure 1 shows the skeleton of the SLD-tree of P ′(0) for the goal fishlightmeal(A,M).

Choose the first clause and the main(M,J) predicate for unfolding.

Instead of adding the argument equations we have made use of the same (corresponding)

variable names. The two new clauses (1+4 and 1+5) are the following:

1.4 fishlightmeal(A,M):-{I + J ≤ 10},appetizer(A,I),fish(M,J),{J > 0}.
1.5 fishlightmeal(A,M):-{I + J ≤ 10},appetizer(A,I),meat(M,J),{J > 0}.
The clauses 1.5, 4, 5, 8 and 9 do not take part in the refutation of positive examples,

so they can be removed. The removing of clause 1.5 cuts the corresponding branch of

the SLD-tree (which contains only negative examples).

Learning of constraint logic programs 247

Finally, P ′(1) has the following form:

1.4 fishlightmeal(A,M):-{I + J ≤ 10},appetizer(A,I),fish(M,J),{J > 0}.
2. appetizer(A,I) : - cheese(A,I) , {I > 0}. 4. fish(sole,2).

3. appetizer(A,I) : - pasta(A,I), {I > 0}. 5. fish(tuna,4).

6. pasta(general,1). 7. cheese(camamber,2).

One iteration was enough to obtain the specialized program that covers only positive

examples.

<fishlightmeal(A,M)>

<appetiser(A,I), main(M,J)>

<cheese(A,I), main(M,J)> <pasta(A,I), main(M,J)>

[A=camambert, I=2,
I+J=<10, I>0, J>0]

[A=camambert, I=2,

I+J=<10, I>0, J>0]

[A=general, I=1, [A=general, I=1,
I+J=<10, I>0, J>0] I+J=<10, I>0, J>0]

[I+j=<10, I>0] [I+j=<10, I>0]

[M=sole
J=2]

[M=tuna [M=chicken
J=4]

[M=tuna
J=4]

[M=chicken
J=4]

<fish(M,J)> <meat(M,J)> <fish(M,J)> <meat(M,J)>

+−

<main(M,J)> <main(M,J)>

[A=camambert, I=2,
I+J=<10, I>0]

− + −+

J=4]
[M=beef
J=5]

[M=sole
J=2]

[M=beef
J=5]

[A=general, I=1,

I+J=<10, I>0]

+ −

[the previous and] [the previous and] [the previous and] [the previous and]

[I+J=<10]

Figure 1. The skeleton of the SLD-tree of P ′(0) for the goal fishlightmeal(A,M)

248 Gy. Szilágyi Kocsisné

4. Improving the CLP SPEC Algorithm by Slicing

4.1. The skeleton of a CLP program

The algorithm CLP SPEC specializes clauses defining a target predicate by
using different strategies for selecting the literal to apply unfolding upon. The
identification of a clause to be unfolded is of crucial importance in the effective-
ness of the specialization process [1]. The number of applications of unfolding
should be kept as low as possible, since the number of clauses increases when
unfolding is applied. If a negative example is covered by the current version of
the initial program there is supposedly at least one clause which is responsible for
this incorrect covering. In our algorithm CLP SPEC SLICE a debugging system
combined with slicing technique is used to find the clause to be unfolded.

Slicing is a program analysis technique originally developed for imperative
languages [22]. It facilitates the understanding of data flow and debugging. As
slicing concerns computations we now introduce some relevant notions. Ab-
stractly, a computation of a CLP program can be seen as the construction of a
tree (skeleton) from renamed instances of clauses. We will now briefly explain
the idea formally discussed in [21].

A skeleton for a program P is a labelled ordered tree:

1. with the root labelled by a goal clause and

2. with the nodes labelled by clause instances of the program; some leaves may
instead be labelled ”?”, in which case they are called incomplete nodes.

3. Each non-leaf node has as many children as the non-constraint atoms of its
body.

4. The head predicate of the i-th child of a node is the same as the predicate
of the i-th non-constraint body atom of the clause labelling the node.

We note that a derivation (proof) tree is a special kind of skeleton. Figure 2
shows a complete skeleton tree for the program in Example 1.

In order to properly present the slicing techniques used here we first need to
mention program positions and skeleton positions. A slice is defined with
respect to some particular occurrence of a variable (in a program or skeleton),
and positions are used to identify these occurrences [21]. The set of all positions
of a skeleton tree T is denoted by Pos(T). Note that each label of a skeleton tree
T is a variant of a program clause, or a goal. Thus the positions of T can be
mapped in a natural way into the corresponding program positions.

Intuitively, a program slice with respect to a specific variable at some program
point contains all those parts of the program that may affect the value of the
variable (backward slice) or may be affected by the value of the variable (forward

Learning of constraint logic programs 249

slice). The slice then provides a focus for analysis of the origin of the computed
values of the variable in question. A precise formulation of the slicing problem
for CLP programs and different slicing techniques based on a simple analysis of
variable sharing and groundness can be found in [21].

4.2. An overview of slicing and automatic debugging of constraint
logic programs

We would now like to provide a brief overview of the slicing of constraint logic
programs.
To construct slices of derivation trees we introduce a dependency relation on the
positions of a derivation tree (skeleton).

Derinition 5. (The formal definition of the proof tree dependence
relation). Let T be a derivation tree, α, β ∈ Pos(T). Denote the direct depen-
dency relation ∼T on Pos(T). Then α ∼T β if and only if one of the following
conditions holds:

1. α and β are positions in an occurrence of a clause constraint (constraint
edge).

2. α and β are positions in a node equation (transition edge).

3. α and β are positions in an occurrence of a term (functor edge).

4. α and β share a variable (local edge).

Notice that the relation is both reflexive and symmetric. The transitive clo-
sure ∼∗

T of the direct dependency relation will be called the dependency relation
on Pos(T). Thus ∼∗

T is an equivalence relation. The dependency relation of a
proof tree can be represented as a graph called the proof tree dependence graph
(PTDG). The nodes of PTDG are the proof tree (skeleton) positions, and there
is an edge between two positions if they are directly dependent. This graph
represents the data flow of a CLP program. A slice of a proof tree contains a
connected part of the PTDG (of the proof tree). Directionality information can
be introduced into the PTDG to make the slice more precise [21]. A formal
syntactical definition of the slice is the following.

Definition 6 (A slice of a proof tree). Let T be a proof tree and let α be
a variable position of T . Then [α]∼∗ is called a slice of T with respect to α.

A semantical meaning of this slice definition can be given which relates the
proof tree dependence relation to the dependencies in the constraint store [21].
Figure 2 shows the program dependencies and a backward slice of the program
in Example 1 for the goal lightmeal(A,M) with respect to A.

250 Gy. Szilágyi Kocsisné

cheese(camamber, 2).
fish(sole, 2).

fishlightmeal(A , M) :− { I + J =< 10 }, appetiser(A, I), main(M, J).

main (M2, J2) : − fish(M2, J2), { J2 > 0 }.appetiser(A1, I1) : − cheese(A1, I1), {I1> 0 }.

Figure 2. Proof tree dependence represented in graphical form along with the
backward slice with respect to A in fishlightmeal(A,M)

The algorithmic program debuggingmethod, introduced by Shapiro [19],
can isolate an erroneous procedure, given a program and an input on which it
behaves incorrectly. Shapiro’s model was originally applied to Prolog programs
but it can be also extended to constraint logic programs in a fairly natural way.
Shapiro’s algorithm [19] traverses the proof tree of a program in different ways
and asks the user about the expected behavior of each resolved goal. A major
drawback of this debugging method is the great number of queries made to the
user about the correctness of the intermediate result of procedure calls. A major
improvement in the localization process is possible by combining the algorithmic
debugging with slicing technique [21, 20]. In this paper we refer to this method
as the DEB SLICE debugging method, which consists of the following steps:

1. A proof tree is produced for a buggy program (negative example),

2. then a proof tree dependence graph is constructed which is sliced and

3. then those parts of the tree that have no influence on the visible symptom
of a bug are removed.

4. The algorithmic debugger traverses the sliced proof tree only, thus concen-
trating on the suspect part of the program.

Learning of constraint logic programs 251

4.3. The CLP SPEC SLICE algorithm

CLP SPEC SLICE algorithm (defined in this paper) uses the DEB SLICE
algorithm to identify a buggy clause of the program. The clause identified in this
process will be unfolded in the next step of the specialization algorithm.

The CLP SPEC SLICE algorithm consists of the following three steps:

1. finding the clause, the unfolding is applied upon (this step is done by the
DEB SLICE algorithm).

2. finding the literal within the clause, which will be the basis of the unfolding
- the same method is applied here as that used in [3].

3. performing the unfolding on the program.

The Input of the algorithm is: An initial constraint logic program program P ,

background knowledge B ⊆ P (a set of clauses that remains unchanged during the

learning process and does not take part in the refutation of negative examples), sets of

ground atoms E+, E− (the positive and negative examples which are ground instances

of a target predicate).

The Output of the algorithm is: A series of programs

P ′(0), P ′(1), . . . , P ′(n)(P ′(0) = P),

where
P ′(i+1) = Ũnf(P ′(i)) (0 ≥ i ≥ n), and Ũnf

is the unfolding operator extended with clause removal.

THE CLP SPEC SLICE ALGORITHM

1. if the program P does not terminate on all e+ ∈ E+

2. then stop ”Initial program should cover all positive examples.”

3. let i=0

4. while there is an e− ∈ E− such that P ′(i) does not fail on e− or

(no more unfolding can be applied *) do

begin

5. find a buggy clause R ∈ P ′(i) using the DEB SLICE debugger (R is not in B)

6. if the buggy clause can not be identified then stop

7. if R does not cover any atom in E+ then remove R from P ′(i)

8. else

begin

9. - unfold upon the literal b in R that is selected by the computation rule

P ′(i+1) := Unf(P ′(i), R, b)

10. - Let D Res(P ′(i), R, b) := Res(P ′(i), R, b) \ {those clauses that

do not occur in refutations of positive examples }

252 Gy. Szilágyi Kocsisné

11. - P ′(i+1) := P ′(i+1) \ D Res(P ′(i), R, b) /*to find the most specific theory*/

12. end /*else*/

13. let i := i+ 1

14. end /*while*/

We note that this algorithm also produces the most specific theory. It can
readily bee seen that the difference between this and the CLP SPEC algorithm
is the choice of the clause whose literal is unfolded upon.

Theorem 2. The correctness of the CLP SPEC SLICE algorithm
The output P ′(n) of the CPL SPEC SLICE algorithm is a specialization of P with
respect to E+ and E− if the DEB SLICE algorithm is able to identify a buggy
clause (otherwise the CLP SPEC algorithm can be used to find the hypothesis)
and the reason for the program termination is not (*) above.

Proof. The correctness of the CLP SPEC SLICE algorithm depends on the
correctness of the CLP SPEC algorithm and the correctness of the DEB SLICE
algorithm. The CLP SPEC algorithm is correct with respect to these conditions
(see Theorem 4). There are special cases however when the buggy clause could
not be identified by the DEB SLICE method. There is a solution to this problem
[20], but the complexity of this method is too large compared to the complexity
of the CLP SPEC algorithm, so we prefer to apply the CLP SPEC algorithm in
this case.

5. Prototype implementation

Both algorithms (CLP SPEC and CLP SPEC SLICE) have been implemented
in SICStus Prolog. For slicing we have used an earlier developed tool [21]. The
algorithms have being tested on simple examples such as N-Queens, rectangle
[1](to recognize a horizontally lying rectangle), horse-jumping, and so on. Dur-
ing the testing we employed the Prolog computation rule (i.e. we chosed the
leftmost literal). From the test results it can be concluded that the number of
clauses learned by CLP SPEC SLICE is less than that learned by the CLP SPEC
algorithm. It means that CLP SPEC SLICE can learn more compact theories
than CLP SPEC. However, during the running of the CLP SPEC SLICE algo-
rithm an oracle has to answer membership questions to identify a buggy clause
instance. Generally, about the 40 percent of these user queries could be re-
duced applying slicing. Sometimes it was difficult to answer the user queries,
since they were about the correctness of numerical functions (data). The list of
the slice points, which can be identified by the help of a graphical user inter-
face, could be given in a list inserted in the goal in the following way: In the

Learning of constraint logic programs 253

(fishlightmeal(A, beef,< 2 >) negative example the second argument is incor-
rect, so the proof tree is created for the goal fishlightmeal(A, beef), the slice is
created with respect to the second argument (beef), and the algorithmic debug-
ger asks about only the correctness of those predicates that are included in this
slice of the proof tree. If the list is empty then the proof tree is walked by the
original algorithmic debugging method.

6. Related work and discussion

A major area of research motivated by all the ICLP systems involves the
question of developing notions of bias restrictions. A reduced size of search space
can help to solve the time and complexity problems. In our work we gave a
modification of the specialization method which combines the CLP SPEC algo-
rithm with algorithmic debugging and slicing in order to reduce the bias and to
learn more compact theories. Different learning method have been introduced
for learning constraint logic programs in [8, 11, 12, 14, 18]. Kawamura and
Furukawa [8] adopted the dominant paradigm in ILP, namely the paradigm of
inverse resolution for generalizing constraints. Sebag et all. [18] propose a frame-
work for learning clauses which can discriminate between positive and negative
examples expressed as constrained clauses. They conjecture that only a subset
of the entire set of discriminating clauses need to be determined fully in order to
explicitly represent the learned concept. The remaining clauses of the concept
can be derived from these basic set of clauses. Martin and Vrain’s [11] idea is
that instead of interpreting function symbols in constraints symbolically, if we
interpret them by more semantic means, there is scope for development of better
algorithms for generalizing and inducing constraint logic programs. Page and
Frisch [14] extend the concepts involved in the generalization of atoms, to more
general forms of atoms, especially atoms with constraints attached to them. Mi-
zoguchi and Ohwada [12], extend ideas from ILP based on Plotkin’s framework
[17] of Relative Least General Generalization(RLGG) to induce constraint logic
programs. We have adopted an other existing ILP technique for ICLP, namely
a specialization method using [3]. One of the aims of our future work will be to
combine the CLP SPEC SLICE method with other specialization algorithms [4],
[5], [6], [10], [15], [16].

7. Appendix

The following small example shows how the CLP SPEC SLICE algorithm
learned the horse-jumping from an initial theory. As the example is very small,
no slice was created and the algorithmic debugger asked only one question at
each iteration step.

254 Gy. Szilágyi Kocsisné

The initial program describing horse-jumping (which needs to be spe-
cialized) was the following:

1. horse(A,B,C,D):-Horiz=abs(A-C),Vert=abs(B-D),horse step(Horiz,Vert).

2. horse step(Horiz,Vert) :- num(Horiz), num(Vert).

background (num(X) :- X=0.0). background (num(X) :- X=1.0).

background (num(X) :- X=2.0). background (num(X) :- X=3.0).

background (num(X) :- X=4.0). background (num(X) :- X=5.0).

background (num(X) :- X=6.0). background (num(X) :- X=7.0).

background (num(X) :- X=8.0). background (num(X) :- X=9.0).

The set of positive exampes:

positive horse(1.0,2.0,3.0,3.0). positive horse(3.0,6.0,4.0,4.0).

positive horse(4.0,2.0,3.0,4.0). positive horse(5.0,2.0,3.0,3.0).

positive horse(5.0,6.0,4.0,4.0). positive horse(4.0,6.0,3.0,4.0).

The set of negative examples:

negative horse(3.0,2.0,7.0,6.0). negative horse(2.0,3.0,4.0,8.0).

negative horse(3.0,5.0,7.0,6.0). negative horse(2.0,3.0,4.0,5.0).

negative horse(3.0,2.0,7.0,6.0). negative horse(2.0,3.0,4.0,6.0).

negative horse(2.0,3.0,3.0,6.0).

The running of the CLP SPEC SLICE algorithm:

- ? start.

Welcome to CLP SPEC learning system.

Please enter the filename to be processed: horse.

The background knowledge is:

3: num(A):-A=0.0 4: num(A):-A=1.0 5: num(A):-A=2.0

6: num(A):-A=3.0 7: num(A):-A=4.0 8: num(A):-A=5.0

9: num(A):-A=6.0 10: num(A):-A=7.0 11: num(A):-A=8.0

12: num(A):-A=9.0

The theory needs to be specialized is:

1: horse(A,B,C,D):-E=abs(A-C),F=abs(B-D),horse step(E,F)

2: horse step(A,B):-num(A),num(B)

Learning of constraint logic programs 255

The positive examples are:

1013: horse(1.0,2.0,3.0,3.0) 1014: horse(3.0,6.0,4.0,4.0)

1015: horse(4.0,2.0,3.0,4.0) 1016: horse(5.0,2.0,3.0,3.0)

1017: horse(5.0,6.0,4.0,4.0) 1018: horse(4.0,6.0,3.0,4.0)

The negative examples are:

1019: horse(3.0,2.0,7.0,6.0) 1020: horse(2.0,3.0,4.0,8.0)

1021: horse(3.0,5.0,7.0,6.0) 1022: horse(2.0,3.0,4.0,5.0)

1023: horse(3.0,2.0,7.0,6.0) 1024: horse(2.0,3.0,4.0,6.0)

1025: horse(2.0,3.0,3.0,6.0)

Checking input examples:

The sets of positive and negative examples are distinct.

Checking positive examples:

All positive examples are covered.

Checking negative examples:

1019: horse(3.0,2.0,7.0,6.0) covered. 1020: horse(2.0,3.0,4.0,8.0) covered.

1021: horse(3.0,5.0,7.0,6.0) covered. 1022: horse(2.0,3.0,4.0,5.0) covered.

1023: horse(3.0,2.0,7.0,6.0) covered. 1024: horse(2.0,3.0,4.0,6.0) covered.

1025: horse(2.0,3.0,3.0,6.0) covered.

The fact horse(3.0,2.0,7.0,6.0) is covered by the theory.

Starting the false proc. algorithm to determine the basis of the unfolding.

Is it ok [horse step(4.0,4.0)] (y/n) n

Unfolding at the clause instance:

2: horse step(4.0,4.0):-num(4.0),num(4.0)

- trying resolvent(s): [2-1]

- trying resolvent(s): [2-2]

The result of the unfolding is:

1: horse(A,B,C,D):-E=abs(A-C),F=abs(B-D),horse step(E,F).

2: horse step(A,B):-num(A),B=1.0.

3: horse step(A,B):-num(A),B=2.0.

Checking positive examples:

All positive examples are covered

Checking negative examples:

1021: horse(3.0,5.0,7.0,6.0) covered. 1022: horse(2.0,3.0,4.0,5.0) covered.

The above theory:

256 Gy. Szilágyi Kocsisné

covers 6 positive samples from 6 (100.00 percent)

fails on 5 negative samples from 7 (71.43 percent.)

The fact horse(3.0,5.0,7.0,6.0) is covered by the theory.

Starting the false proc. algorithm to determine the basis of the unfolding.

Is it ok [horse step(4.0,1.0)] (y/n) n

Unfolding at the clause instance:

2: horse step(4.0,1.0):-num(4.0),1.0=1.0

- trying resolvent(s): [2-1]

The result of the unfolding is:

1: horse(A,B,C,D):-E=abs(A-C),F=abs(B-D),horse step(E,F)

2: horse step(A,B):-A=2.0,B=1.0

3: horse step(A,B):-num(A),B=2.0

Checking positive examples:

All positive examples are covered

Checking negative examples:

1022: horse(2.0,3.0,4.0,5.0) covered.

The above theory:

covers 6 positive samples from 6 (100.00 percent) and

fails on 6 negative samples from 7 (85.71 percent).

The fact horse(2.0,3.0,4.0,5.0) is covered by the theory.

Starting the false proc. algorithm to determine the basis of the unfolding.

Is it ok [horse step(2.0,2.0)] (y/n) n

Unfolding at the clause instance:

3: horse step(2.0,2.0):-num(2.0),2.0=2.0

- trying resolvent(s): [3-1]

The result of the unfolding is:

1: horse(A,B,C,D):-E=abs(A-C),F=abs(B-D),horse step(E,F)

2: horse step(A,B):-A=2.0,B=1.0

3: horse step(A,B):-A=1.0,B=2.0

Checking positive examples:

All positive examples are covered

Checking negative examples:

The above theory:

covers 6 positive samples from 6 (100.00 percent) and

fails on 7 negative samples from 7 (100.00 percent).

Learning of constraint logic programs 257

—————— The final result theory is: ——————

1: horse(A,B,C,D):-E=abs(A-C),F=abs(B-D),horse step(E,F)
2: horse step(A,B):-A=2.0,B=1.0
3: horse step(A,B):-A=1.0,B=2.0

Checking positive examples:

All positive examples are covered.

Checking negative examples:

No negative example is covered

The above theory:

covers 6 positive samples from 6 (100.00 percent) and

fails on 7 negative samples from 7 (100.00 percent).

yes - ?

As we can see the algorithm has learnt the correct theory for horse-jumping.

References

[1] Alexin Z., Gyimóthy T. and Boström H., Integrating algorithmic debugging
and unfolding transformation in an interactive learner, Proceedings of ECAI’96,
12th European Conference on Artificial Intelligence, Budapest, Hungary, (Ed. W.
Wahlster), John Wiley and Sons Ltd., 1996., 403-408.

[2] Boström H., Asker L., Combining divide-and-conquer and separate-and-
conquer for efficient and effective rule induction. Proceedings of the Ninth Inter-
national Workshop on Inductive Logic Programming, LNAI Series 1634, Springer
Verlag, 1999.

[3] Boström, H., Idestam-Almquist, P., Specialization of logic programs by prun-
ing SLD-trees. Proceedings of the Fourth International Workshop on Inductive
Logic Programming (ILP-94), Bad Honnef/Bon, Germany, 31-47.

[4] De Schreye D., Gluck, R., Jorgensen, J., Leuschel, M., Martens, B.
and Sorensen, H. M., Conjunctive partial deduction: Foundations, control,
algorithms, and experiments. The Journal of Logic Programming, 41(2-3)(1999),
231-277,
Erratum appeared in JLP, 43(3)(2000), 265.

[5] Fioravanti, F., Pettorossi, A. and Proietti, M. Automated strategies for
specialising constraint logic programs. Kung-Kiu Lau (ed.), 10th International
Workshop on Logic-based Program Synthesis and Transformation, LNCS 2042,
Springer-Verlag, 2000., 125146.

[6] Howe, J.M., King, A., Specialising finite domain programs using polyhedra.
A. Bossi ed.,Logic-Based Program Synthesis and Transformation (LOPSTR’ 99),
LNCS 1817, Springer-Verlag, 2000., 118-135.

258 Gy. Szilágyi Kocsisné

[7] Jaffar, J., Maher, M.J., Constraint logic programming: A Survey. The Journal
of Logic Programming, 19/20(1994), 503-582.

[8] Kawamura T., Furakawa K., Towards inductive generalization in constraint
logic programs. Proceedings of the IJCAI-93 workshop on inductive logic program-
ming, France, Academic Press, 1993., 93-104.

[9] Marriott, K., Stuckey, P. J., Programming with constraints. An introduction.
The MIT Press, 1998.

[10] Marriott M., Stuckey, P., The 3 R’s of optimizing constraint logic programs: Re-
finement, removal and reordering. Proceedings of the Twentieth Symposium on
Principles of Programming Languages, Charleston, South Carolina, ACM Press,
1993, 334-344.

[11] Martin L., Vrain C., Induction of constraint logic programs. Proceedings of
Algorithms and Learning Theory (ALT), 1996, Sydney, Australia, Springer Verlag,
1996.

[12] Mizoguchi F., Ohwada H., Constrained relative least general generalization for
inducing constraint logic programs. New Generation Computing, 1995.

[13] Muggleton S., Inductive logic programming. The ACM Press, 1994.
[14] Page C. D., Frisch A. M., Generalizing atoms in constraint logic, Proceedings

of Second International Conference on Knowledge Representation and Reasoning,
1991.

[15] Peralta, J. C., Gallagher, J. P., Imperative program specialisation: An ap-
proach using CLP. Annalisa Bossi (ed.), Logic-Based Program Synthesis and
Transformation, LNCS 1817, Springer Verlag, 1999., 102-117.

[16] Peralta, J. C., Gallagher, J.P., Convex Hull Abstractions in Specialization of
CLP Programs. Proceedings of the 12th International Workshop on Logic Based
Program Synthesis and Transformation (LOPSTR 2002), Madrid, Spain, Springer
Verlag, 2002., 90-108.

[17] Plotkin, G. D. A note on inductive generalization. Machine Intelligence, 1971.,
101-124.

[18] Sebag M., Rouveirol C., Constraint inductive logic programming. Advances in
ILP, IOS Press, 1996., 277-294.

[19] Shapiro, E., Algorithmic Debugging, The MIT Press.
[20] Szilágyi, Gy., Harmath, L. and Gyimóthy, T., Debug Slicing of Logic Pro-

grams. Acta Cybernetica, 15(2)(2001), 257-278.
[21] Szilágyi, Gy., Maluszyński, J. and Gyimóthy, T., Static and Dynamic Slic-

ing of Constraint Logic Programs. Journal of Automated Software Engineering,
9(1)(2002), 41-65.

[22] Tip, F., A survey of Program Slicing Techniques, Journal of Programming Lan-
guauges, 3(3)(1995), 121-189.

Gy. Szilágyi Kocsisné
Department of Programming Languages and Compilers,
Eötvös Loránd University
Pázmány Péter s. 1/C
H-1117 Budapest, Hungary
szilagyi@aszt.inf.elte.hu

