Annales Univ. Sci. Budapest., Sect. Comp. 31 (2009) 217-233

OPTIMISATION OF BIDIRECTIONAL SYSTOLIC
ARRAYS WITH SPARSE INPUT BY "FOLDING”

L. Ruff (Cluj-Napoca, Romania)

Abstract. We present a study of an interesting transformation procedure
(called “folding”) which can be applied on bidirectional systolic arrays with
sparse input in order to improve their efficiency (the number of processing
elements is reduced to the half while accomplishing the same throughput).
The transformation is exemplified on a systolic array for sequences com-
parison.

The presented work is used as an additional optimization step of our au-
tomatic systolic array design method implemented as a set of rewrite rules
on top of the computer algebra system Mathematica.

1. Introduction

The automatic systolic array design methods available in the literature (see
[13] for a short survey) often lead to arrays which work inefficiently from a certain
point of view. The idea of optimising such arrays is usually tackled separately
and/or it is performed rather intuitively than in an automatic manner.

We demonstrate in this paper starting from a particular (inefficient) array
type how the optimisation step for this case can be performed automatically
by using the power of the rewriting technique. The rewrite rules are detected
after a former study of the starting and resulting array types which have to be
computationally equivalent.

A typical example for inefficiently working systolic arrays are the arrays with
bidirectional sparse data flow. The sparse input insures that the elements of a
data stream will meet each of the elements of the other data stream advancing

218 L. Ruff

in the opposite direction, however because of the sparse input the processing
elements (PEs) will perform a useful computation only at each second time step.

The transformation presented in this paper improves the efficiency of such ar-
rays. It does not affect the timing of the computations (as other circuit-optimising
transformations like retiming [8, 3]), it rather changes (only) the placing of the
computations such that the number of processors needed for the computation is
reduced to the half. A set of rewrite rules is determined, with the help of which
the transformation can be done automatically and it is also easy to implement.

The presented transformation is used as additional optimisation step of our
Junctional-based automatic systolic array design method [5, 11] implemented [es-
sentially] also as a set of rewrite rules.

"The paper is organised as follows: we first present the notations (referred to
as list notation [5, 11]) used in this paper which allow us to reason about the data
streams of the array in a concise way. Using these notations we present the func-
tioning of bidirectional arrays with sparse input, then that of the “folded” array.
By induction on the time ¢ we show that starting from a given input scheme,
the output pattern of the two arrays is the same, thus they are computationally
equivalent. We detect the set of rewrite rules which can be applied onto the
transition function of the array with sparse input in order to get the transition
function of the folded array which needs only the half of the number of PEs to
perform the same computation.

The application of the rewrite rules is exemplified on a case study presenting a
non trivial problem, namely that of sequences comparison: a bidirectional systolic
array with sparse input (which was generated with an automatic design method
in [14]) is transformed into a more efficient “folded” array.

2. List notation

We represent the input streams of a systolic array by lists of fixed size ob jects
(that is lists of scalars), using the following notations and conventions:

e We denote by X; the infinite list (z;,z;41,%i43...) (note that i can also
be negative). X stands for Xo. Xy pym (where n € Z and m € N) denotes
the finite list having m + 1 elements (z,,, Zn i1, ... Zypm).

¢ We denote by a™ the list of n elements all equal to a and by a® the infinite
constant list with all elements equal to a.

e For any list X = (x9,21,...,Zn,...), we denote by H[X] = ¢ the head of
it and by T'[X] = (z1,...,2n,...) the tail of it.

Optimisation of bidirectional systolic arrays 219

e The k*® tail respectively head of X:
T[X] = (zk, k41, ..., Tp,...), for k>0 ([X]=X,T1 =T)
Tk, for k < 0 is obtained by iterating T_; |k| times, where T1[X;] = Xi—1
(if z;—1 is not defined, then a blank value is inserted in the front of the
list).
Intuitively, the application of the tail function of order k on a list X;,
when k is negative should be understood as if we were operating on the list
which is infinite in both directions: (... Z-1,20,71,...). X; can be seen
as its sublist, then the application of T} means |k| steps “backward” in this
“extended” list.
Hy[X] = H[T}[X]] gives the (k + 1)*" element of X (thus Hy = H).

¢ The prefiz of order n of a list is P,[X] = (zq,...,Zp_1) = Xon-1-

e The concatenation of two lists is denoted by “—7:
(ag,a1,...,ax) ~ X = (ag,a1,...,ax, &g, 1,...).
The first operand must be finite, but the second may also be infinite. We

also use ““~” for prepending a scalar to a (finite or infinite) list: @' X =
= {a) — X.

o We use (as in the theory of cellular automata) a special quiescent symbol “$”
(which belongs to all scalar types) in order to encode the “blank” values.

o A sparse list is defined with the help of the list function Sparsey:
Sparsex|X;] = H[X;] — ($*F — Sparse,[T[X;])).
For brevity we denote Sparsex|X;] by (X:)sx.
(Xi)s1 = (Xi)s = (23,8, 2i11,8,...). By convention (X;)go = X;.

We have extended the T, function to negative m values, too. Here we
define how T_; applies to sparse lists, then 7}, is obtained by iterating the
T_, function |m| times:

T_1[Sparsei [X;]] = $'— Sparsex|X;]
VO<n<k-1,

T_1[$™ — Sparsex|X;]]

T_1[$* — Sparsex[Xi]]

I

$"+1 ' Sparsex|X;]
Sparser[X;-1]

The following properties can be either deduced directly from the definition of
the head and tail function, respectively the Sparses function (see the first two
properties) or can be easily proven with mathematical induction on m, both for
positive and negative m values.

220 L. Ruff

Properties:
T Sparsey, = 8§k Sparse, T’
H Sparsey = H
T,. Sparse;, = Sparsey, Timo if (B + 1)|m
(1) in particular (k =1):
Sparsey T if m is even,
TIm Sparse, - $'— Sparse; T%ﬂ if m is odd.

3. Bidirectional arrays with sparse input

Bidirectional systolic arrays have a two directional data flow. We consider in
this paper arrays where the data advances with the same velocity in both, left-
to-right and right-to-left directions. The sparse input insures that the elements
of one data stream will meet each element of the data stream advancing in the
opposite direction.

Each PE has a left-to-right and a right-to-left input channel, denoted by z.
respectively y and an internal state register (also called local memory variable).
T.

The global input to the array consists of two lists: X is the left-to-right input
list, respectively $ — Y in case of an even number of PEs (or Y, if the number
of PEs is odd) is the right-to-left input list. Note that there is no restriction to
only one input stream in each direction: the elements of both lists may also be
tuples of scalars. The same holds for r which also may be a fixed-size tuple of
internal state registers, then r = (r|1],7|2|,...,r|k]).

One (or both) of the output streams which leave the array at the boundary
PEs is (are) considered as the result computed by the array. In some special
cases the elements of the result are computed in the internal registers. In this
case the left-to-right or right-to-left communication channels can be used at the
end of the computation in order to transmit the results towards the boundary
PEs or an additional direct communication channel may be used specially for the
collection of the results from each PE.

Figure 1 depicts the initial state of such an array for the case when the number
of PEs (n) is even

The initial values of the input channels of PE;, for 0 < n— 1 are the elements
of P,[$ — X_(3-1)4) and Pn[Y_3], as indicated on Fig 1. Besides the elements

of the global input Xg and $ -~ Y; these initial values are also considered to be
given as parameters of the problem.

Optimisation of bidirectional systolic arrays 221

Y-z $ Y_1 $ w $...
To (&} e Tn—1
| $ o PEQ $ PE1 Tr_1 $ PEn_l

Figure 1. Bidirectional array with sparse input (n is even). Initial state

We denote by z the value of the communication channel z* at time step t.
Note the difference between the above mentioned notation and the way, how the
list elements are denoted: let us suppose for example, that the elements of the
sparse list Xg are fed into the communication channel x*, then at a certain time
step ¢ the value of the input channel &% could be z; (or $), that is z} = z; (z¢ = $)
holds.

z} and y5*! denote the initial values of the z* respectively y**! input channels
of PE;, Vi,0 <7< n-1. Then

; (2) z_: if 7 is even,
o = ~i[X = e
o H-ilXs] { $ ifiis odd,
(2) .f ..
i+l _ N @ Y_n-i 17 1S even,
%o = Mool { $ ifiisodd.

The transition function of a PE (that is the computations performed by a
PE) is described on Fig. 2. We assume that the functions f;, fy and f, are
producing blanks when applied to blank arguments and if at least one of the
arguments is blank, then the corresponding value is transmitted unchanged, that

tee i+l 4 __ 1 : 7 — i
18: .’L'H_l = Ty, yt+1 = Y s respectlvely rt+1 =Ty

Y yit! Computations:
7] »
4 i+1 _ R o |
I rt it+1 mH—l - fl’[zﬂrt’yt]
z z i = fylat, gt
— — Yir1 = Jyl&e Ter Yy
i i il
PE 7't+1—fr[33t77’tayt]
i

Figure 2. Computations of a PE in a bidirectional array with sparse input

222 L. Ruff

As already mentioned, the sparse input insures that each element of the two
input lists will meet each other, but on the other hand this is also the reason for
which the array is inefficient: the PEs are namely idle at each second time step.

A commonly used idea is to merge two PEs which are working alternately
(that is to map the computations of two different PEs which are working alter-
nately onto one single PE) in order to transform the array into a more efficient
one: if the array with sparse input had n PEs, then the same problem can be
solved using only n/2 PEs.

One possibility is to merge two neighbouring PEs (PE, and PE,,;) into one
single PE. This is possible because two neighbouring PEs are active in alternating
time steps, thus the merged PE will do the computations of PE;, respectively
PE;4, in the even respectively odd time steps.

"The compression of the array by merging more PEs into a single processor is
also the subject of the so called partitioning problem, which means the mapping
of the systolic algorithm onto an array with a fixed number of processors. The
partitioning problem has two different forms: LPGS (locally parallel, globally
sequential) [9] and LSGP (locally sequential, globally parallel) [2, 4]. The latter
approach permits not only the synthesis of systolic arrays with a fixed number
of PEs, but as a particular case it can improve the efficiency of the PEs by
compressing the array. Merging neighbouring PEs is considered to be generally
more advantageous if we want to pipeline many problems on the same array.

In the sequel we present in detail a different solution of array compression,
based on the same idea of merging two PEs which are working alternately, but
not the neighbouring PEs are considered. In our case, that is the optimisation
of bidirectional arrays, the delay between two problems to be solved on the same
compressed array is not affected by the fact that we merge a PE active at the
beginning with a PE active much later. Moreover, the input and output lists will
be introduced into, respectively collected from the array at the same (leftmost)
PE, which can be useful from the point of view of the implementation.

Thus, the main difference between the two array types resulted after the two
mentioned compression types consists in their architecture, the complexity of a
PE and the time required for the computation is the same.

We assume that the number of PEs, n, is even (otherwise an additional
“dummy” PE should be introduced before merging two PEs).

Optimisation of bidirectional systolic arrays 223

4. “Folded” array

An interesting solution which enhances the efficiency of the bidirectional array
with sparse input consists in mapping the computations of PE,_; _; onto PE;, for
t=0,...,5 — 1. We call the resulted array “folded” array, because the mapping
process can be intuitively understood as folding the inefficient array in the middle
and merging the functionality of the overlapping PEs, as shown on Fig 3.

== merge — — — — — — — — — — — — 9
i folding axis l
Y-z $! Y-1 $ Y5
e [
. |
r0 r! - rETl] rn-l
X, $ r ' $ T_n
$ PE, PE, 7! PEz_; | PE,.; "2
2
[
I
T_y Y-z T-(3-1)
,rn—l T.n—Z T% ::|
r0 rrooL I S where
Inp PE, Y- pE, - PE Inp = I[X,Y]

Figure 3. Bidirectional “folded” array. Initial state

Now each PE has to perform different computations in the successive time
steps. The PEs are not aware of the time, but this problem can be solved with
either the introduction of a control signal with alternating 0,1 values, or with
the help of an additional internal state register s. The s® state register of PE;,
0 <i< % —1is initialised with the value s such that:

i | 0 ifiiseven,
%0 =91 1 othervise.

The computations performed by a PE are shown on Fig. 4. The last PE, that
is PEz_; is slightly different from the other PEs of the array: its left-to-right
output channel is connected to its right-to-left input.

224 L. Ruff

(different computations

Computations: .
,p : fori=1% —1)
7 1 ol
Stp1 =1~ 8¢
case sy = 0
g — i oot ity 31 3 .1 =
1 = fylag,wi, b7 bl = fylag w? 7 af]
i+1 _ i i i+l
ay1 = falah,wi b
i _ i, pidl
Wiy = fr[atalLli:bt]
case st = 1
1 i1 osi g
at+1 - fy[bt y Wy, at] .
A . n.1 n _n_1 n_1
] — ; 2 J— 2 2 2
b, = felbit, wz,aé]btﬁ = fela?, w@ 04
-1 _ i+1 -t
Wiy = frlbgT, Wy, ay]
; y n N
bt = bz+1 ps -1 7
- w e -~ w
) 3 .] 2_1 bz =a%
at S az+1 (1%‘1 Sz
— W — T
PEZ PE.u_l
)

Figure 4. Computation of a PE in a bidirectional “folded” array

Let us consider the function I which interleaves two lists:
Ila—~ A,b— B] ={a,b) — I[A,B] .

The input list Inp can be defined as Inp = I[X,Y]. The initial values of the
input channels are

3) a§ = H_i[Inp] 0<k<E,
by = H_(-nlinp] 0<k<3
Note that
@ | Hi [As] = HT;Ag = HA; if 4 is even,
(4) Hl [I[A, B” - { Hi—l[B$] = HTZ'_]B$ = H.Bf;l if 7 is odd.

The computations presented on Fig. 4 describe the transition function of a
PE of the “folded” array in the classical way, which is rather concise and is
recommended to be used in case of the implementation of the systolic array.

Optimisation of bidirectional systolic arrays 225

We introduce here, however, a new notation (see Fig. 5) for the same tran-
sition function which is more intuitive, thus the functioning of a PE of this
particular array can be expressed more clearly. This notation reveals namely one
of the main characteristics of the PE of this particular array: the input channels
receive/output the values of the lists X, respectively Y in the alternating time
steps. Thus the new notation makes the understanding and the reasoning about
the functioning of the array much easier.

By convention we denoted an z value by Z, when it is input from right to left
(see the upper input channel on Fig. 5 a)) and by z, when it is input from left to
right (Fig. 5 b)). In the same way, we use the notation ¥ and y for the y values.

The connection between the two notations can be expressed in the following
way:

y, ifi+tiseven (sj_; =1),
xzp ifi+tisodd (si_; =0),

5 ; ,
®) ; &, if i+tiseven (si_; =1),
U, ifi+tisodd (si_; =0).

4.1. Computational equivalence of the two array types

Hereafter we show that the “folded” array described in this section and the
bidirectional array with sparse input, presented in Sect. 3 perform the same
computation. That is, we demonstrate by induction on ¢ that for the input
scheme given in Fig. 3 the following holds (we denote the PEs of the “folded”
array by PE’): at a certain time step ¢, the transition function of PE’; outputs the
same result as the transition function of PE,, if ¢ + ¢ is odd (which is equivalent
to s;_; = 0), respectively PE,_1_;, if i + ¢ is even (si_, = 1).

Formally:
. .. n
Vi, 05255—1, VYt >0
i - i+l _ ,n—1—i
Yeer = Yn Yo = U o
i+1 i+1 = n—i
Iy zT = x e z = z
(6) ifs;=0,9 oUifsi=1,4 T .
Wir = Ty Wep1 = Top o
-1 _ -1 i _ i
(Wepy = wy), Wiy = wp).

L. Ruff

226
Computations:
. —i4+1 -4 .
Y = AlET gyl

-14+1 -1 .
fz[xz+) w;ﬂ;]»

if0<i<2—2

; T
fy[ﬁ,ﬂi,yz]7

fo<i<2-2

_i
Yir i i il
fylzt, iyt
ifi=5%-1
i+1 i o gt
£;-kl = fI [Eiv w‘i, yt]
, S i
Wiy frlzy, wi, ¥y]
-1 . -1
Wiy = Wy

common computation:

-1
xZ —
t+1 iHl i
felzt™, wy, Y,
ifg=1n _
if 1= 7 —1
- i _ i+1 =% g
wt+1 - f’r[&t) wtvgt]
i _ i
Wy = Wy
i
St+1
-1 ~1+1
1_1 — .’I,'H—
-~ w f———
i gt i+1
Y ¥
— 'lUi F—
PE;
a)si=1

i
1- s

_ i1
Y 3 Yy
] w fe—
II: Si $i+1
*‘T w'l | e
PE;
b) s; =0

Figure 5. Computations of a PE in a bidirectional “folded” array. A different

view

Base step: we verify that (6) holds for ¢ = 0.

Indeed, for the case when s} = sj = 0 we have (i is even):

-1
1=

(i){

fylzd, wh, gt if i= 3 -1

SylH i[Inp), v, H_(n_i_yy[Inp]],if 0< i< 2 —2
fylH-i[Inp], 7§, H_ (i 11)[Inp]),if i = 21

h@&%ﬁ?ﬁﬁogigg—Q(m{fwm%&$HHO§i§%—2
1

’ ; 41 . .
fylag,ré,abt],if i = 5=

227

Optimisation of bidirectional systolic arrays

@j‘““ﬁ”&wzﬂf sisy
l fy[m——éfréjyy—-%—l]?if 1= % -1

= fy[z‘_é,rf),y_%_t Jf0<i<2—1
@
= fylat,rhu™'] = v
~ We can similarly check that (6) holds for z and w, then we can verify the case
s; = sy =1 (4 is odd) similarly.
Induction step: if (6) holds for ¢t = k (induction hypothesis), then (6) also
holds for t = k + 1.

We consider here only the computation of ¥ respectively y**1. One can
similarly check the induction step for the other computations from (6).

For the case si = i1 =0 (that is, i + k is odd) we have:

-7
Yo

TS 5 S . _p

def. {fy[zzwwzﬂ,ykﬂl ifo<i<g-2 _

i i i+1) -
fy[£k+1yyk+17gk+1] lf,”_i_l

(ind. hyp.) { f!l[]"i--}-l’r}c+17yllcil] if0<i< 3 -2
1

i i n—1-1i rs_n
Fol#hqn i] ifi= i
— 1=

V|3

4 i+17 . .
= fy[‘ycéc—;-lvTIlH»l?y}cﬁ-l] it 0 S ? S
= y}HQ :

In the same way, for s¢ = S}H_] =1 (that is, ¢ + k is even):

it+1 def. pitl - i) =
Qk+2 - fy[lk+17 wk+1)y_k+1] =
(ird. hyp.) n—(i+1) n-1-i n-1-(i—1); _
= fylzi Tkl Ykt | =
. n—1-i . n—1—¢ , n—i dif- n—1—1
= A1/ S T = Ykt2

We have shown that for t = k + 1

i — i e oo
Yir1 = Y if s; =0,
i+1 _ n—1—1 . i
Y, T Y if sy =1.

The induction step can be performed in a similar way for the computation of
it &, wi and wi.

It turns out that the “folded” array with constant internal state registers
defined in this section computes the same list of results as the corresponding

bidirectional array with sparse input.

228 L. Ruff

The above considerations allow us to formulate the transformation which
should be applied on the transition function of a bidirectional array with sparse
input, in order to get the transition function of the “folded” array as a set of
rewrite rules. Let us denote the expression of the transition function of the array
with sparse input corresponding to the computation of z, y and r with E,, E,
and E,, respectively.

The set of rules to be applied for example onto E, are the following (see the
set of rules on the right hand side of the operator “/.”)

case s% =0
. EZ/-{I"*LT—’MJI—’?J},
1 j—
case s; =1 _ -
i+l i i ot 5 il i ; S n
B/ {xi) =%, 30 —2, r -,y — Qt} ifo<i< -2,
i+l =i i i+1 o il i s
B/ {7 =TT o Y, oWy - gt} ifi=12—1.

There is no speed-up in the computation of the results, but the number of the
PEs used for the computation of the same result was reduced to the half which
increases the efficiency of the array. The PEs of the folded array are active at
each time step.

5. Systolic array for sequences comparison

The problem of similarity determination has applications specially in bioin-
formatics and natural language processing. It means the comparison of two
sequences while allowing certain mismatches between them. In order to get the
similarity between two sequences, we have to align them at first.

Given two sequences (e.g. DNA or RNA), the problem consists in finding
the “best” alignment between them. The problem is largely presented in the
literature [1]. Most algorithms used are based on dynamic programming.

The problem consists in making the sequences to be of the same size, by
inserting gaps. The best alignment is one that maximises some scoring function
(for instance, we score +1 for each match, —1 for each mismatch and —2 for each
gap).

Let p = pipa...pm and t = tyta...t; be the two sequences. The matrix
A(m x k) will contain the items of p along the rows and the items of ¢ along the
columns, and each entry A(4,j) corresponds to the optimal alignment of the it"
prefix of p with the jt* prefix of ¢.

Optimisation of bidirectional systolic arrays 229

At —-1,5) -2 align p(¢) with a gap,
A(i,j—1)—2 align t(j) with a gap,
(7) A(t,j) =max{ A —1,j—1)+1 align p(i) with ¢(5),

+1 for a match,
—1 for a mismatch.

Note. The value A(z,0) stands for aligning the i** prefix of p with the 0** prefix
of ¢t. The optimal score is —2. Analogously, A(0, ;) stands for aligning the 0th
prefix of p with the jt* prefix of ¢. The optimal score is also —2.

5.1. Bidirectional systolic array with sparse input for the problem of
sequences alignment

Figure 6 shows the input scheme of a bidirectional systolic array with sparse
input for the sequences alignment problem, presented in [14]. Note that the
array was generated in an automatic manner using the ideas from the space-time
transformation methodology [12, 13] and from the method of [6, 7).

The size of the array is n = m + k — 1 (where m is the length of the sequence
p and k is the length of ¢). We have two input streams in both, left-to-right and
right-to-left directions: the elements of B and p, respectively A and ¢. The C
values are computed in the internal state registers. Note that the initial values
for B and C are copies of the corresponding initial values of the A matrix.

Let us denote the sparse list of the elements of p by Py and that of ¢ by Lg
(instead of 7§, in order to avoid the confusion with the tail function). Ag and By
are the two input lists which collect the partial results, such that:

Hi[A] = Ao,
Hl[B] = Bi+1,0-

The list of initial values for the internal state registers are

Rl,m+k—1 = <C7n-1,07 Cm—2,0, ey CO,O7 00,17 sy CO,k—l)'

The elements of Py and Lg, As and Bg are preloaded in the array, which
means that the Xg sparse input list corresponding to the description of the array
with sparse input from Sect. 3 is Xg = T,,,_1[(Bg, P;)], and Y3 = Tk[(As, Lg)].

The computations of a PE are shown on Fig. 7, where

1 ifz=y,
ot =Mt s = L T2

230

L. Ruff
° Ao,s
Bso o B3o o
P4 ° P3 °
o tS

Figure 6. Linear systolic array for sequences alignment (m = 4, k = 3) [14]

Computations:
a%-‘;—l fila e —-2,bi—2,f2[pi,li+1]+rﬂ
bl = filal! —zm~z&ww#ﬂ+mg4~_ gﬁ
i1 = filagtt - 2,5} — 2, fa[p}, 177'] + T%]p R pitl
pi-ﬂ pt A A
— lz+1
t+1

Figure 7. Computations of a PE in the linear array for sequences alignment

5.2. The optimised array

Applying the rewrite rules described in Sect. 4.1 we automatically get the
following transition function computed by the PE of the “folded” array:

S%H =1—5§,
ifs} =0:
1 i . o—i+1 S -i+1
(Alar™ =20, - 2, folpl, 1)+ wil ;)
(_i y > fo<i< -2
a 7[= o . .
aaas <f1{ - 27&% - 2‘» f2[£;75+1] +Mﬂvﬂ+l>
ifi=5%-1,
i1 ; . . i1 . .
et = (hla =2,8 - 2l] + il g,
1 o141 .
wi = AlET =20 -2, folpl 1]+ wil,
i"i+1 = iui,
ifst =1:
i -i+1 =i+l - i1y 44
@) = (flad-2.6 -26F G+ oL,
. i1 Sitl i+1
(flai —2,6, -2, flp, L]+ @}, 5,)
T if0<i<?—2
(bts1:Pip1) =

(filai — 2,6 —

BN LaR 4

2. fz[p”'l l]+w] 1+1>

Optimisation of bidirectional systolic arrays 231

Concerning the efficiency of the algorithms for sequences comparison, the
best known sequential algorithms solve the problem in O(mn) time and O(m+n)
space, where m and n are the lengths of the two sequences [1]. The best space and
time optimal parallel algorithm for the same problem requires only O((m+mn)/p)
space and O(mn/p) time, where p is the number of processors used [10].

The efficiency of our systolic solution is comparable to that of the best space
and time optimal parallel algorithms as it achieves a linear speedup (the execution
time is O(m +n)), wile using mnaz(m, n) processors and requiring constant space
per processor. Besides, it was designed and optimised in an automatic way.

6. Conclusions

We have described a transformation process for the optimisation of bidirec-
tional arrays with sparse input, which can be formulated as a set of rewrite rules.
The rules were detected after we have shown by induction, using list notation that
the bidirectional array with sparse input described in Sect. 3 and the “folded”
array presented in Sect. 4 are computationally equivalent. Thus the implemen-
tation of this optimisation process is easy and can be performed in a completely
automatic manner.

The fact that the automatisation of the optimisation step requires a former
analysis of the arrays can be seen as a disadvantage, however, on the other hand,
once we detected the rules, they can be easily applied to that class of arrays,
which makes it worth to study the optimisation problem in this way for other
array types, too.

In Sect. 3 we have mentioned another solution of optimisation (not detailed
in this paper), which consists in merging the functionality of the neighbouring
PEs (also subject to the more general array partitioning problem (2, 4]). Tt is
a commonly used optimisation procedure, for which the rewrite rules could be
detected in the same manner. The main difference between the two implementa-
tions consist in the architecture of the resulted arrays, specially the introduction
of the input elements into the array, which in our case is performed at the same
(leftmost) PE rather than at the two different PEs from the edge. This fact would
facilitate the implementation of the problem for the case, when we would like to
solve the same problem repeatedly, for input lists having variable lengths. While
in the case of the other array type one of the input PEs would always change
according to the required array length, in our case the input is pipelined into the
array always at the same place, respectively the results can be collected from the
same PE as well. We would need additional control registers only to determine
the leftmost PE, which has a slightly different behaviour than the others.

232 L. Ruff

The presented work is used as additional optimisation step of our automatic
systolic array design method, also implemented as a set of rewrite rules [5, 11] on
top of the computer algebra system Mathematica [15]. This points out that it is
possible to handle both, the design and optimisation problem for systolic arrays
in a completely automatic manner, using the same framework. The presented
solution serves as a good example which demonstrates the applicability and ef-
ficiency of rewriting technique used in the process of automatic systolic array
design and optimisation. It also motivates the further investigation concerning
other optimising-transformations which can be applied to systolic arrays.

References

(1] Aluru S., Futamura N. and Mehrotra K., Parallel biological sequence
comparison using prefix computations, J. Parallel Distrib. Comput., 63 (3)
(2003), 264-272.

(2] Bu J., Deprettere E. F. and Dewilde P., A design methodology for
fixed-size systolic arrays, Application specific array processors, eds. S.-Y.
Kung and E.E. Swartylander, IEEE Computer Society, 1990, 591-602.

(3] Even G., The retiming lemma: A simple proof and applications. INTEG:
Integration, The VLSI Journal, 20 (1996), 123-137.

[4] Darte A., Regular partitioning for synthesizing fixed-size systolic arrays.
Integration, The VLSI Journal, 12 (3) (1991), 293-304.

[5] Jebelean T. and Szakécs L., Functional-based synthesis of systolic online
multipliers, SYNASC-05 Int. Symp. on Symbolic and Numeric Scientific
Computing, eds. D. Zaharie, D. Petcu, V. Negru, T. Jebelean, G. Ciobanu,
A. Cicortas, A. Abraham and M. Paprzycki, IEEE Computer Society, 2005,
267-275.

(6] Kazerouni L., Rajan B. and Shyamasundar R.K., Mapping linear
recurrences onto systolic arrays, IPPS 10th Int. Parallel Processing Symp.,
IEEE Computer Society Press, 1995, 891-897.

[7] Kazerouni L., Rajan B. and Shyamasundar R.K., Mapping linear
recurrence equations onto systolic architectures, Int. J. of High Speed Com-
puting (IJHSC), 8 (3) (1996), 229-270.

[8] Leiserson C.E. and Saxe J.B., Optimizing synchronous systems, Journal
of VLSI and Computer Systems, 1 (1) (1983), 41-67.

[9] Moldovan D.I. and Fortes J.A.B., Partitioning and mapping algorithms
into fixed size systolic arrays, IEEE Trans. Computers, 35 (1) (1986), 1-12.

Optimisation of bidirectional systolic arrays 233

(10]

1]

[12]

(13]

(14]

15

Rajko S. and Aluru S., Space and time optimal parallel sequence align-
ments, Transactions on Parallel and Distributed Systems, 15 (12) (2004),
1070-1081.

Ruff L. and Jebelean T., Functional-based synthesis of a systolic array
for GCD computation, Proc. of the 18" Int. Symp. on Implementation and
Application of Functional Languages IFL’06, Budapest, August 2006, Tech-
nical Report No:2006-S01, ISBN 9634638767, 44-61.

Song S.W., Systolic algorithms: concepts, synthesis, and evolution,
Temuco, CIMPA School of Parallel Computing, Chile, 1994.

Szakécs L., Automatic design of systolic arrays: A short survey, Technical
Report 02-27, RISC Report Series, University of Linz, Austria, 2002.
Szakacs L. and Chiorean I., Automatic derivation of a systolic algo-
rithm for sequences comparison, Analele Universitatii din Timisoara, Seria
Matematica - Informatica, Special Issue on Computer Science - Proc. of
SYNASC'03, XLI (2003), 213-227.

Wolfram S., The Mathematica book, 5th edition, Wolfram Media, 2003.

L. Ruff

Babes-Bolyai University
Cluj-Napoca, Romania
laura@cs.ubbcluj.ro

